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Impacts of spatio‑temporal change 
of landscape patterns on habitat 
quality across Zayanderud Dam 
watershed in central Iran
Seyed Mohammad‑reza Abolmaali *, Mostafa Tarkesh *, Seyed Alireza Mousavi , 
Hamidreza Karimzadeh , Saeid Pourmanafi  & Sima Fakheran 

The biodiversity of an ecosystem is greatly influenced by the spatio‑temporal pattern of 
the landscape. Understanding how landscape type affects habitat quality (HQ) is important 
for maintaining environmental and ecological sustainability, preserving biodiversity, and 
guaranteeing ecological health. This research examined the relationship between the HQ and 
landscape pattern. The study presented an interpretation of the biodiversity variation associated 
with the landscape pattern in the Zayanderud Dam watershed area by integrating the Land Change 
Modeler and the InVEST model. Landsat images and maximum likelihood classification were used 
to analyze the spatio‑temporal characteristics of the landscape pattern in 1991 and 2021. The 
future landscape pattern in 2051 was simulated using a Land Change Modeler. Subsequently, the 
InVEST model and the landscape maps were used to identify the spatial distribution of HQ and its 
changes over three periods. The mean values of the HQ in the study area were 0.601, 0.489, and 
0.391, respectively, demonstrating a decreasing trend. The effect of landscape pattern change 
on HQ was also assessed based on landscape metrics, including PD, NP, SHDI, and CONTAG. HQ 
had a significant positive correlation with the CONTAG parameter (R = 0.78). Additionally, it had a 
significant inverse correlation with NP (R = − 0.83), PD (R = − 0.61), and SHDI (R = − 0.42). The results 
showed that the habitats in the northern region had lower quality compared to those in the southern 
parts of the Zayanderud Dam watershed. The density, diversity, and connectivity of landscape 
patches significantly influence the HQ in the study area. This research has the potential to enhance 
understanding of the impacts of land change patterns on biodiversity and establish a scientific basis 
for the conservation of natural habitats. Additionally, it can facilitate efficient decision‑making and 
planning related to biodiversity conservation and landscape management.

As an important component of global change and a major driver, landscape patterns profoundly 
impact ecosystems and the services and goods they supply to  humans1. The alteration of these patterns can lead 
to various natural effects and environmental  operations2. Biodiversity is closely connected to the generation of 
ecosystem services (ES). Habitat quality (HQ), as an agent for biodiversity, represents the environmental capacity 
to supply suitable situations for population and person durability, extending from low to high, and resources 
accessible for survivorship, population persistence, and  reproduction3,4. As well as being an important index of 
environmental health and security, which is vital for human well-being5. Landscape is the place of habitat, and 
land use change (LUC) could be an essential sign of the effect of human activities, containing conversions in the 
extent, intensity, and structure of land use and land cover (LU/LC). LUC vitally modifies HQ and the structure 
and composition of ecosystems, which influences nutrient cycling and energy flow among habitat  patches6. The 
growth in LUC has driven habitat degradation, fragmentation, or even habitat loss, resulting in a continuous 
decrease in  HQ7.

Land change models are excellent instruments for geographical, environmental, and other studies on LU/LC 
 changes8. To study the past and predict future LULC changes in the watershed, a land change modeler (LCM) 
embedded in TerrSet has been used. The model is powerful because of its dynamic planning skills, appropriate 
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calibrations, and ability to simulate several types of LU/LC9. LCM compares changes in LU/LC over several time 
periods, defines these changes, and presents the outcomes using multiple maps and graphs.

Regional changes in biodiversity and landscape patterns can be directly affected by changing habitat  quality10. 
In order to assess ecosystem services functions, several models have been developed, such as the multiscale 
Integrated Ecosystem Services  Model11, Artificial Intelligence for Ecosystem  Services12, HQ model in InVEST 
(Integrated Valuation of Ecosystem Services and Tradeoffs model)13 and so on. The InVEST was expanded within 
the framework of the Natural Capital  Project14. A partnership was established in 2007 with the University of 
Minnesota, Stanford University, and the World Wildlife Fund. The aim of this partnership is to develop a robust 
tool for valuing and quantifying various ecosystem services provided by landscapes. InVEST can exploit the 
advantages of little input data, precise outputs, and clear spatial projection to assess different ecosystem services 
such as biodiversity conservation, soil protection, and carbon reserves. Therefore, InVEST has been successfully 
used to evaluate ecosystem services in various  areas15.

Lately, HQ research has focused mostly on a few  countries16, and less research has been carried out in the 
semi-arid regions. In Iran, agricultural and industrial expansion and LU/LC change have led to a reduction in 
 HQ17. Several studies in Iran have investigated the impact of LULC on  HQ18–20. However, Limited studies in Iran 
have explored the relationship between landscape metrics and  HQ20–22. These studies showed that HQ is closely 
associated with fragmentation resulting from landscape alterations and land use categories, thereby aiding in 
the comprehension of ecological attributes and habitat  degradation18,21,22. Nevertheless, the lack of research in 
the central regions of Iran is apparent.

LCM and InVEST have demonstrated effective results, but there is limited research on integrating these 
two models. We can provide useful data to policymakers, managers, and planners to conserve biodiversity 
and achieve other landscape objectives by assessing the results of LCM and InVEST. The Zayanderud Dam 
watershed in central Iran is an important part of the Gavkhooni watershed. Rapid economic developments 
have led to a dramatic change in LU/LC types and environmental problems. The destruction of natural forests 
and rangelands has been driven by economic growth, mainly related to the expansion of agricultural land and 
build-up development. LUC in the Zayanderud Dam watershed has an incredibly damaging effect on natural 
forests and rangelands, as well as on the expansion of agricultural and construction  areas23. The study has 
concentrated only on the spatial distribution of habitat quality due to time and cost constraints. The objectives of 
this research were to: (1) assess regional spatiotemporal changes of HQ by analyzing the LUC of the Zayanderud 
dam watershed over the past 30 years (1991), present, and the next 30 years (2051). (2) Determine the relationship 
between spatiotemporal variation in landscape characteristics and the HQ in the study area. (3) Summarize 
information to optimize planning and improve the LU/LC pattern.

Methods
Study area
The study area was the Zayanderud Dam watershed located in the western part of the Gavkhouni watershed in 
central Iran, covering nearly 413,000 hectares. Zayanderud is the main river in the Gavkhooni watershed basin, 
which flows into the Gavkhooni wetland in the east. The Zayanderud Dam watershed gives the highest part of 
water yield. The average temperature of the basin is 8–13 °C with 350–1250 mm  precipitation23. This region used 
to have a significant capacity for livestock grazing, with its primary LU/LC being forests and rangelands. Animal 
husbandry and agriculture are the primary sources of subsistence in these areas. However, in recent times, the 
transformation of rangelands into dry farming, intensive grazing, and urban expansion has led to the destruction 
of natural rangelands and forests in the  area24. The area is the habitat of valuable and medicinal plant species 
such as Quercus brantii, Kelussia odoratissima, Rheum ribes, Astragalus cyclophyllon, and Daphne mucronata. 
The transformation of natural habitats into agricultural lands, along with the expansion of residential areas, has 
caused the destruction of forests and  rangelands25. Figure 1 demonstrates the location of the Zayanderud Dam 
watershed in central Iran.

LU/LC assessment
Landsat image classification is useful for automatically categorizing all pixels into LU/LC classes, facilitating 
the extraction of basic  information26. For image classification, field studies were conducted in June 2021 to 
gather training areas for each LU/LC class to be used in the image classification process. Locations of each LU/
LC were determined with GPS. Sample data were collected in homogeneous areas of LU/LCs regarding the 
spatial resolution of the images (30 m). The supervised classification was implemented using the maximum 
likelihood classification "MLC" method to produce a classification map after preprocessing Landsat images. 
The MLC method is a widely used algorithm for the classification of supervised satellite  images27. Reference 
data collected from field studies were used for classifying 1991 and 2021 images (60 training areas were used 
for each LU/LC class in the image classification/420 training areas in total). Locations of each LU/LC were 
determined with GPS. Sample data were collected in the homogeneous areas of LU/LCs regarding the spatial 
resolution of the images (30 m). In this study, seven separable LU/LC are considered (Table 1). Description of 
Landsat images used in this study is provided in Table 2. The Normalized Difference Vegetation Index (NDVI) 
helped investigate the condition and density of the rangelands on a spatial  basis28,29. Three rangeland condition 
classes were characterized based on the NDVI confidence interval (95%) and were classified as good (> 0.17), 
fair (0.12–0.17), or poor (0.01–0.12)28.

Some areas were selected as samples based on field study results for accuracy assessment and were used for 
Landsat images. The overall accuracy and Kappa coefficient were also  determined30,31 (Eqs. (1) and (2))
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Figure 1.  Location of the study area: (i) the Gavkhouni basin in Iran, (ii) the study area within the Gavkhouni 
basin, and (iii) sub-watersheds of the Zayanderud dam watershed, along with the Digital Elevation Model 
(DEM). This map was generated using ArcGIS 10.5 software (URL: https:// www. esri. com/ en- us/ arcgis/ produ 
cts/ index).

Table 1.  Class description based on maximum likelihood classification.

Class name Description

Zagros forest Include the areas where trees mainly grow naturally

Rangeland/good Include areas covered with natural vegetation that are used for grazing/ NDVI > 0.17

Rangeland/fair Include areas covered with natural vegetation that are used for grazing/NDVI = 0.12–0.17

Rangeland/poor Include areas that are poorly covered by natural vegetation/NDVI = 0.01–0.12

Water bodies Water covers areas such as rivers and dam lakes

Agriculture Includes all farms and gardens

Build up area Includes all residential and man-made areas (cities, industrial areas, villages…)

Table 2.  Description of Landsat images used in this study (*Landsat images Source: https:// earth explo rer. usgs. 
gov/).

Dataset Sensor Path/Row Date Band Number Resolution panchromatic

Landsat  5* TM 164/36, 164/37 6.18.1991
7.2.1991 1, 2, 3, 4, 5 30

Landsat  8* OLI 164/36, 164/37 6.14.2021
6.27.2021 2, 3, 4, 5 30

https://www.esri.com/en-us/arcgis/products/index
https://www.esri.com/en-us/arcgis/products/index
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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where P0 represents the actual adaptation between two maps, and Pe demonstrates the probability of adaptation

LU/LC prediction using Land Change Modeler (LCM)
The LCM model is the module of land change, which is linked to IDRISI. Clark’s Laboratory and International 
Conservation have worked together for many years to develop IDRISI. The problem of rapid LU/LC change in 
recent years is addressed in the LCM model. In estimating LUC, this model is one of the basic models. Through 
the current land use situation, LCM can predict future LU/LC situations and is a good reference for decision-
makers to make plans and expand conservation  policies32. The LCM defines the factors affecting future LU/LC 
change and how much LU/LC change took place among earlier and later LU/LC and then computes a relative 
value of changes. To predict future trends in the study area, changes in LU/LC values for 1991 and 2021 have 
been analyzed. Within the LCM module, it is possible to generate maps of transition potential based on each 
sub-model and associated explanatory variables in three different ways: a similarity-weighted instance-based 
machine learning tool, logistic regression, and multi-layer perceptron (MLP) neural  network33. The performance 
of the MLP is higher when modeling the relationship between nonlinear land changes and explanatory variables. 
As well as, when models of many transition types are used, it is more dynamic and flexible than any  other33.

The LCM has been widely used in various global research endeavors as an innovative model for identifying 
and representing LU/LC alterations across diverse  applications34,35. In recent studies, LCM has been used in 
central Iran to obtain accurate  results36–38. This module incorporates historical data up to the present, enabling 
it to predict LU/LC changes  effectively39. The process of forecasting future land cover within the LCM framework 
involves four primary stages: (1) examining past LU/LC modifications, (2) developing transition matrix maps, 
(3) validating the model, and (4) projecting future LU/LC maps.

This study identified descriptive variables that impact changes in LU/LC in the future using Cramer’s V 
coefficient. This coefficient measures the correlation between dependent and independent variables, ranging 
from zero to one. Values closer to zero indicate a weak correlation, while values closer to one indicate a strong 
correlation. For a variable to be considered influential, the coefficient should be above 0.1540. The Cramer’s V 
correlation coefficients for the descriptive variables (elevation, slope, distance to water bodies and rivers, distances 
to agricultural land, and distances to built-up areas) are presented in Table 3.

HQ computation and prediction
The HQ model in InVEST projects the HQ for a preservation  goal14. In order to determine what landscape 
constitutes habitat for different species, landscape maps are transformed into HQ  maps41. The type of landscape 
determines the quality of the habitat in a cell, the landscape in circumambient cells, and the sensitivity of the 
habitat in the cell to the threats located near the  landscape42. The HQ in a grid cell can be affected by the landscape 
around it. Each grid cell is given a HQ score of 0 to 1, with non-habitat scored as 0, and the highest HQ scored 
as  115.

The source of degradation could be regarded as the types of landscape that are modified by humans, such 
as cities, agriculture, and roads, which cause edge  effects15. Edge effect refers to changes in the physical and 
biological characteristics at a boundary between neighboring patches. The sensitivity of each habitat type to 
threats is the general aim of conserving landscape and  ecology43. The HQ was computed by combining LU/LC 
classes and biodiversity threats. The HQ equation is demonstrated by Eq. (3):

where  Qxj explains the HQ of x cell with land type j,  Hj is the HQ of land type j, and K shows the half-saturation 
 constant14.

(1)Kappa(k) =
P0 − Pe

1− Pe

(2)Overall Accuracy =
Number of Correctly Classified Pixels

Total Number of Pixels

(3)Qxj = Hj

(

1−

(

Dz
xj

Dz
xj + Kz

))

Table 3.  The Cramer’s V coefficients for the descriptive variables that impact LU/LC change.

Variables Cramer’s V coefficients

Elevation 0.434

Slope 0.258

Distance to water bodies and rivers 0.358

Distances to agricultural land 0.512

Distances to built-up areas 0.225
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In Eqs. (4), (5) and (6),  Dxj defines the total threat level in cell x with land type j, r is the number of threat 
factors, y denotes the set of cells on r’s raster map,  wr indicates the impact weight of threat r,  irxy defines the 
degradation decay function through distance, βx means the available grid cell x;  Sjr shows the relative sensitivity of 
land type j to threat factor r,  dxy demonstrates the distance among pixel y and pixel x;  drmax denotes the maximum 
impact threat distance of r originated in pixel  y14.

Based on the literature review and expert knowledge, HQ of land type j and threat parameters were initially 
 determined15,44. The values of model parameters have been proposed by 15 experts with a wide range of 
environmental experience, including expertise in experimental ecology, ecological modeling, environmental 
impact assessment, and knowledge of the study  area10,18–20. The structure and meaning of the table that they 
should fill in and the parameters were described in detail before an expert score was performed, along with an 
explanation of how the InVEST HQ model functions.

The following parameters have been added to the model, including LU/LC maps (1991, 2021, and 2051), 
threat factors layers (including agriculture land, livestock grazing, mining land, main roads, minor roads, rural 
land and urban land), weight, the maximum effective distance of threat factors and decay (Table 4), sensitivity of 
landscape types to each threat (Table 5), and half-saturation constant. The HQ maps were created after running 
the InVEST-HQ model, with a pixel size set to 30 m based on Landsat images.

The relationship between LU/LC pattern and HQ
For measuring the spatial characteristics of LU/LC patterns, landscape metrics are appropriate tools. The 
relationship among landscape quantitative change, function, and structure can be described by  metrics45. The 
impacts of different LU/LC on the environment and habitats can be considered according to landscape metrics. 
In this research, the impacts of LU/LC on HQ were recognized using patch density (PD), number of patches 
(NP), contagion index (CONTAG), and Shannon’s diversity index (SHDI). The selection of landscape metrics 
was based on the literature review in central  Iran20,22. These metrics can determine the different characteristics of 
LU/LC in terms of its size, shape, composition, continuity, and fragmentation. The number and density of LULC 
patches in a given landscape are illustrated by the NP and PD indicators, respectively. Habitat fragmentation 
and discontinuity are reflected in the increasing values of these indicators. SHDI demonstrates the shifts in the 

(4)Dxj =

R
∑

r=1

Yr
∑

y=1

(

ωr
∑R

r=1 ωr

)

ryirxyβxSjr

(5)irxy = 1−

(

dxy

drmax

)

(Linear)

(6)irxy = exp

(

−
2.99dxy

drmax

)

(Exponential)

Table 4.  Threat factors and maximum effective distances, weights, and type of decay in the study area.

Threat Maximum effective distance (km) Weight DECAY 

Agriculture land 8 0.82 Linear

Livestock grazing 6 0.72 Linear

Urban land 8 0.31 Exponential

Rural land 8 0.51 Exponential

Mining land 10 0.69 Exponential

Main roads 7 0.50 Linear

Minor roads 5 0.50 Linear

Table 5.  LU/LC types and its sensitivity to each threat.

LU/LC Habitat Agriculture land Livestock grazing Urban land Rural land Mining land Main roads Minor roads

Zagros forest 1 0.70 0.61 0.74 0.70 0.80 0.85 0.70

Rangeland/good 1 0.75 0.82 0.68 0.70 0.81 0.85 0.70

Rangeland/fair 0.8 0.84 0.84 0.68 0.70 0.81 0.73 0.70

Rangeland/poor 0.6 0.84 0.71 0.54 0.70 0.80 0.73 0.70

Water bodies 0.5 0.40 0 0 0 0 0.35 0.35

Agriculture 0.2 0 0.30 0.70 0.75 0.85 0.50 0.65

Build up area 0 0 0 0 0 0 0.60 0.50
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ratio and number of land types. In a watershed, the richer land types, the higher SHDI value and the higher 
number of fragmented patches. The degree of agglomeration of the landscape is shown by the CONTAG Index; 
the higher CONTAG value, the higher the degree of agglomeration of the plaque and the better the  linkage45–47. 
In FRAGSTATS, the metrics are calculated with LU/LC map at the landscape level, and Microsoft Excel 2016 
was used to draw their charts. Figure 2 illustrates the research flow chart.

Results
Analysis of LU/LC change
The present LU/LC map was created with an accuracy of 91% and a kappa coefficient of 0.88. The shift in LU/LC 
classes was calculated by measuring the net change using change analysis in LCM (see Supplementary Fig. S1 
online). Habitat classes (forests and rangelands) covered 82%, 64%, and 45% of the total area in 1991, 2021, and 
2051 respectively. The comparison of the spatio-temporal area of various LU/LC classes and the net area change 
of each LU/LC during the periods 1991, 2021, and 2051 was demonstrated in Figs. 3 and 4. The expanding 
agricultural and construction land areas can be attributed to the growing population and urban sprawl. The fair 
and poor rangelands seem to have transformed into low-yield agricultural lands.

Spatiotemporal variation of HQ
Threat factor maps (including agricultural land, livestock grazing, mining land, main roads, minor roads, 
rural land, and urban land) were generated using LU/LC maps. Figure 5 shows the maps of threat factors. The 
InVEST-HQ model generated HQ layers in various periods (Fig. 6). As summarized in Table 6, the HQ score 
was divided into six levels by the interval range: No habitat (0), Poor (0–0.2), Relatively poor (0.2–0.4), Moderate 
(0.4–0.6), Relatively good (0.6–0.8), and Good (0.8–1.0)14,35.

Our research illustrated that the level of HQ in the Zayanderud Dam watershed reduced from 1991 to 2021. 
The InVEST model has been used to generate HQ maps under business-as-usual scenarios, and changes in HQ 
have been analyzed based on predicted LU/LC maps. The results demonstrated an overall decrease of 18.14% 
in the Zayanderud Dam watershed. Modelling predicted a significant decrease (19.55%) would be observed in 
2021–2051, which was the same as the change in characteristics of LU/LC types. Figure 7 shows the net change 
in the area of HQ classes in two periods 1991–2021 and 2021–2051. Therefore, rapid population growth and 

Figure 2.  The workflow of the evolution of landscape patterns and habitat quality.
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LUC resulted in rapid degradation of the quality of its habitat. The average value of HQ in the Zayanderud Dam 
watershed was 0.601 in 1991, 0.489 in 2021, and 0.391 in 2051, showing a continuous decrease over the entire 
period.

The areas with low HQ scores were mostly located in the northern, central, and eastern parts of the 
Zayanderud Dam watershed, including Daran County and Chadegan County. Also, the areas with high HQ 
scores were mainly located in the south and west of the study area. The decreasing HQ will continue in future 
years under the current trend of LU/LC changes. With changes in landscape patterns and decreasing HQ, the 
landscape tends to become fragmented patches with reduced connectivity. As a result, it is vital to recognize and 
control human impact on landscape patterns and HQ.

Discussion
The results indicated that in the southern and central parts of the study area, the most suitable and unsuitable 
habitats were found, respectively. Natural vegetation was one of the most important factors for increasing HQ in 
southern areas (Zagros forest and rangelands). Also, the factors contributing to improving the quality of these 
habitats include the distance from sources of threats and the limitation of access. Indeed, a factor that decreases 
the impacts of sources of degradation is habitat-to-threat source distance because a near threat to habitats 
reduces in terms of effect with increasing the distance. The LU/LC pattern showed that agricultural activities and 
built-up areas that caused HQ degradation dominate the study area’s central and northern parts. The intensity 
and density of human destruction also influenced habitat and environmental degradation in the Zayanderud 
Dam watershed. These results show that the HQ of the study area has been substantially affected by LULC and 
its changes. Former research also refers to the effect of LU/LC change on  HQ17,20,48.

As an indicator of biodiversity, The HQ in the InVEST model refers to the environment’s ability to provide 
adequate conditions for population and individual  durability49. The model considers higher biodiversity levels 
in areas with high HQ. Biodiversity is reduced after the destruction of similar  habitats14. Nevertheless, there are 
not necessarily high levels of biodiversity in areas with good HQ. In addition, the origin of this model is more 
willing to use natural vegetation habitats, which have specific restrictions in the Zayanderud Dam watershed. 
Plus, it should be noted that the watershed has a dummy border where the threats to habitat instantly out of 
the research area border have been ignored and clipped. As a consequence, the threat intensity on the margins 

Figure 3.  Charts indicate the percentage of each LU/LC from the total area in 1991, 2021 and 2051.

Figure 4.  Charts indicate the net area change (ha) of each LULC in two period 1991–2021 and 2021–2051.
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Figure 5.  Threat factor maps: (a) agricultural land, (b) livestock grazing, (c) urban land, (d) rural land, (e) 
mining land, (f) main roads, (g) minor roads. This map was generated using ArcGIS 10.5 software (URL: https:// 
www. esri. com/ en- us/ arcgis/ produ cts/ index).

Figure 6.  Habitat quality map in 1991, 2021 and, forecast map of habitat quality in 2051. This map was 
generated using ArcGIS 10.5 software (URL: https:// www. esri. com/ en- us/ arcgis/ produ cts/ index).

https://www.esri.com/en-us/arcgis/products/index
https://www.esri.com/en-us/arcgis/products/index
https://www.esri.com/en-us/arcgis/products/index
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of a determined area will always be  lower10. The HQ scores should be expounded as comparative scores with 
superior scores demonstrating that the landscape is more suitable for a certain conservation goal. It is not 
feasible to interpret the landscape HQ score as a forecast of species survival, landscape durability, or any other 
specific species preservation and conservation action. HQ measures are not converted into monetary values in 
the InVEST habitat model.

Four landscape metrics have been calculated at the landscape level in this research (Table 7). The effect of 
landscape patterns on HQ was also evaluated using several landscape metrics, including PD, NP, CONTAG, and 
SHDI (Fig. 8). PD and ND indicators denote the rate of habitat fragmentation. CONTAG and SHDI define the 
connectivity and diversity of LU/LCs. PD, NP, and SHDI alterations indicate an additive trend in 2021 and 2051, 
whereas CONTAG changes demonstrate a decrease in 2021 and 2051. Generally, the tendency of all metrics 
showed that the HQ of the Zayanderud Dam watershed was reduced by increasing habitat fragmentation and 
diversity of LU/LCs and decreasing contagion and connectivity in 2021 and 2051.

These results showed that the number, density, diversity, and connectivity between landscape patches and LU/
LC type strongly impact the HQ of the study area. Indeed, two key factors significantly influencing HQs within 
the Zayanderud Dam watershed are spatial pattern and LU/LC type. Former researches also recognized LU/LC 
and landscape metrics as effective factors in environmental situations and  processes20,50–52.

The linear correlation analysis between the HQ and landscape metrics showed that at the 0.05 significance 
level, HQ had a significant positive correlation with the CONTAG parameter (R = 0.78). Additionally, it had 
a significant inverse correlation with NP (R = -0.83), PD (R = -0.61), and SHDI (R = -0.42). Figure 9 illustrates 
Pearson’s correlation coefficients and the correlation matrix between the HQ and landscape metrics. These 
dependencies show that landscape patterns are essential to the habitat conditions because landscape components 
are considered obstacles to expanding threats. Ahmadi Mirghaed and  Souri53 also pointed out that the HQ is 
always influenced by landscape metrics such as NP, PD, LPI, and LSI. Chu et al.10 noted that changes in landscape 
patterns over time cause changes in HQ.

The relationship between HQ, LU/LC, and landscape metrics has been explored in this study. Furthermore, 
the importance of maintaining the HQ of the Zayanderud Dam watershed for stakeholders and regional decision-
makers has been highlighted. Nevertheless, more data about ecosystem situations and ecological connections are 

Table 6.  Area of HQ classes in 1991, 2021 and 2051.

Habitat quality class Area 1991 (ha) Area 2021 (ha) Area 2051 (ha)

0 7959 9981 12,471

0–0.2 65,741 101,057 209,121

0.2–0.4 20,578 138,298 102,510

0.4–0.6 190,717 52,985 48,623

0.6–0.8 117,051 101,258 40,252

0.8–1 10,945 9421 23

Figure 7.  Net change area of HQ classes in two period 1991–2021 and 2021–2051.

Table 7.  Landscape metrics in 1991, 2021 and 2051 at landscape level.

NP PD CONTAG SHDI

1991 3340 37.1 50.95 1.11

2021 3801 49.4 47.51 1.23

2051 3848 55.8 39.22 1.31
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available. The study of landscape patterns can provide an accurate and significant evaluation of ecosystems to 
recognize the areas with high HQ and degraded lands. In order to improve our understanding of the ecological 
condition in a region and make better decisions for land management, it has been confirmed that combining 
HQ with landscape metrics is an adequate indicator for assessing  ecosystems20, as well as Zheng and  Li54 
reported that effective LU/LC planning based on habitat quality is essential for achieving sustainable regional 

Figure 8.  The trend of the landscape metrics based on the classes of habitat quality in 1991, 2021and 2051 
(number of patches (NP), patch density (PD), contagion index (CONTAG), and Shannon’s diversity index 
(SHDI)).

Figure 9.  Results of Pearson correlation coefficient between the HQ and landscape metrics.
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development. About natural ecosystems such as rangelands and forests, decision-makers should recover the 
natural biodiversity  system55. The vegetation conservation and restoration project should be carried out regarding 
particular circumstances of the area. Hence, to achieve sustainable development, effective and reasonable regional 
landscape planning is necessary.

Our study has limitations. First, the study area has a dummy border where the threats to the habitat just 
beyond the boundary have been disregarded. As a result, the level of threat intensity at the edges of the study 
area will be lower. Second, the HQ model requires several parameters. The relevant parameters utilized in this 
study were acquired from field studies, Landsat images, previous research, and expert knowledge. This could 
lead to uncertainty in the estimated results. Especially the LU/LC classification error can introduce skepticism 
in the HQ results, particularly in the future. Final, a method for validating the HQ score is not mentioned in the 
model manual or  references10,14,54.

Conclusions
The purpose of the current study was to evaluate the variation of landscape type and pattern, HQ, and investigate 
biodiversity in response to the impression of the LU/LC dynamics in the Zayanderud Dam watershed. The LCM 
model executed well in predicting future land types (2051) by incorporating geographical factors as restrictive 
factors. Over the past 30 years, the HQ has decreased. Future predicted HQ maps represented the same tendencies 
as the last 30 years, denoting the effect of land type dynamics on HQ and biodiversity. It is clear that population 
growth, accompanied by the increase in construction sites and low-yield agricultural lands in central areas of 
the Zayanderood Dam watershed basin, has resulted in biodiversity losses.

The transition from forest and rangeland to agricultural lands and residential areas is expected to affect HQ 
adversely. The key challenge lies in finding a balance between conserving areas with abundant HQ and meeting 
the demands of a growing population. To address this issue, we recommend that, First, local governments 
take steps to prevent LUC in areas with high HQ. Second, governments should promote policies supporting 
agricultural livelihood systems on agricultural lands. Third, Payment for Ecosystem Services (PES) projects are 
considered suitable for conserving high HQ areas.

The results proposed the feasibility of analyzing the impact of LU/LC changes and land type pattern dynamics 
on HQ. This research supplies a scientific foundation for optimizing regional conservation plans for natural areas, 
and a clear and efficient framework was offered for stakeholders, local government, and decision-makers to 
landscape administratorship and planning, sustainable development, and habitat conservation. In future studies, 
it is suggested to recognize the relationship between the economy and habitat quality, as well as the economic 
valuation of HQ in different years.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on 
reasonable request.
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