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Analysis of the fatigue status 
of medical security personnel 
during the closed‑loop period 
using multiple machine 
learning methods: a case study 
of the Beijing 2022 Olympic Winter 
Games
Hao Xiao 1, Yingping Tian 1, Hengbo Gao 1, Xiaolei Cui 1, Shimin Dong 2, Qianlong Xue 3 & 
Dongqi Yao 1*

Using machine learning methods to analyze the fatigue status of medical security personnel and the 
factors influencing fatigue (such as BMI, gender, and wearing protective clothing working hours), with 
the goal of identifying the key factors contributing to fatigue. By validating the predicted outcomes, 
actionable and practical recommendations can be offered to enhance fatigue status, such as reducing 
wearing protective clothing working hours. A questionnaire was designed to assess the fatigue 
status of medical security personnel during the closed‑loop period, aiming to capture information 
on fatigue experienced during work and disease recovery. The collected data was then preprocessed 
and used to determine the structural parameters for each machine learning algorithm. To evaluate 
the prediction performance of different models, the mean relative error (MRE) and goodness of fit 
(R2) between the true and predicted values were calculated. Furthermore, the importance rankings 
of various parameters in relation to fatigue status were determined using the RF feature importance 
analysis method. The fatigue status of medical security personnel during the closed‑loop period was 
analyzed using multiple machine learning methods. The prediction performance of these methods 
was ranked from highest to lowest as follows: Gradient Boosting Regression (GBM) > Random Forest 
(RF) > Adaptive Boosting (AdaBoost) > K‑Nearest Neighbors (KNN) > Support Vector Regression 
(SVR). Among these algorithms, four out of the five achieved good prediction results, with the 
GBM method performing the best. The five most critical parameters influencing fatigue status were 
identified as working hours in protective clothing, a customized symptom and disease score (CSDS), 
physical exercise, body mass index (BMI), and age, all of which had importance scores exceeding 
0.06. Notably, working hours in protective clothing obtained the highest importance score of 0.54, 
making it the most critical factor impacting fatigue status. Fatigue is a prevalent and pressing issue 
among medical security personnel operating in closed‑loop environments. In our investigation, we 
observed that the GBM method exhibited superior predictive performance in determining the fatigue 
status of medical security personnel during the closed‑loop period, surpassing other machine learning 
techniques. Notably, our analysis identified several critical factors influencing the fatigue status of 
medical security personnel, including the duration of working hours in protective clothing, CSDS, 
and engagement in physical exercise. These findings shed light on the multifaceted nature of fatigue 
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among healthcare workers and emphasize the importance of considering various contributing factors. 
To effectively alleviate fatigue, prudent management of working hours for security personnel, along 
with minimizing the duration of wearing protective clothing, proves to be promising strategies. 
Furthermore, promoting regular physical exercise among medical security personnel can significantly 
impact fatigue reduction. Additionally, the exploration of medication interventions and the adoption 
of innovative protective clothing options present potential avenues for mitigating fatigue. The 
insights derived from this study offer valuable guidance to management personnel involved in 
organizing large‑scale events, enabling them to make informed decisions and implement targeted 
interventions to address fatigue among medical security personnel. In our upcoming research, we will 
further expand the fatigue dataset while considering higher precisionprediction algorithms, such as 
XGBoost model, ensemble model, etc., and explore their potential contributions to our research.

Keywords Medical security, Questionnaire survey, Fatigue analysis, Machine learning, Case study

Medical security plays a crucial role in various large-scale events or competitions and requires special attention 
to the fatigue status of medical  staff1. Fatigue is characterized by persistent physical and mental exhaustion, even 
after sufficient rest. In closed-loop environments, fatigue can hinder the focus and decision-making abilities of 
medical staff, increasing the risk of medical errors, accidents, and compromising the safety of those under their 
 care2. Additionally, fatigue can lead to a decrease in the efficiency of medical personnel, impacting their ability to 
perform their duties effectively. Prolonged fatigue can also result in physical and mental health issues for medi-
cal staff, such as anxiety, depression, and digestive system  complications3, which further diminishes the quality 
and efficacy of their work. Therefore, it is imperative to analyze the fatigue status of medical security personnel 
within closed-loop conditions.

Current research on the fatigue analysis of medical security personnel primarily centers around three key 
areas: analyzing physiological indicators, assessing psychological health, and exploring the relationship between 
the work environment and  fatigue4. Some studies have specifically examined the impact of work environment on 
the level of fatigue experienced by medical staff, focusing on factors such as work intensity, overtime situations, 
and the nature of their  tasks5. Several studies utilized logistic regression or multiple linear regression to explore 
the various factors that impact fatigue levels among the study participants, such as sleep patterns, workload, 
stress levels, and physical  activity6.These studies have found that excessive workload, long working hours, and 
high work intensity are the main contributors to fatigue among medical  staff7. Despite the widespread attention 
given to fatigue among healthcare workers, there is currently no relatively efficient and accurate method available 
to assess their fatigue status promptly.

With the advancements in computer processing power and the availability of big data, artificial intelligence 
has experienced significant growth since  20148. Within the medical industry, machine learning has been widely 
applied in various areas, including medical image recognition, personalized treatment, clinical decision sup-
port, medical resource optimization, and health management and  prevention9. These applications have greatly 
improved the quality of medical services, optimized resource allocation, and enhanced patient  outcomes10. 
However, the application of machine learning technology to analyze fatigue during closed-loop periods, par-
ticularly in the context of large-scale events, faces several challenges. Firstly, privacy protection and data sharing 
regulations may limit the collection of essential information and health data of medical staff, thus hindering 
the acquisition of sufficient high-quality data for training and applying machine learning models. Secondly, the 
multifaceted nature of factors influencing medical staff fatigue poses challenges in selecting suitable machine 
learning algorithms to integrate and process the complex datasets.

To address these challenges, we utilized integration techniques to reduce the risk of algorithm overfitting 
and improve the robustness of the model to noise and outliers in the data. Meanwhile, research the most critical 
influencing factors through big data mining techniques. Specifically, this paper introduces five commonly used 
machine learning methods and proposes a prediction model for fatigue conditions within the fully closed-loop 
management system implemented during the 2022 Beijing Winter Olympics. Practical investigations, question-
naire surveys, and machine learning techniques are utilized to establish this model. With the aim of ensuring the 
privacy of medical personnel, a comprehensive analysis is conducted on the results of the questionnaire survey. 
The mean relative error (MRE) and the coefficient of determination (R2) are used as evaluation metrics to assess 
the predictive effectiveness of different algorithms in capturing fatigue conditions and identifying the optimal 
model. Furthermore, based on the prediction outcomes, the study determines the three factors that have the most 
significant impact on fatigue conditions and provides practical recommendations to mitigate these conditions. 
The research findings are a valuable reference for medical staff and management personnel involved in large-scale 
events during similar closed-loop periods, thereby promoting intelligent advancements in the medical field.

Methods
This research gathered pertinent data concerning healthcare professionals throughout the Winter Olympics’ 
enclosed-loop phase via a questionnaire. It employed machine learning techniques to extract, scrutinize, and 
construct models from the data. The study conducted a comparative analysis of prevalent machine learning 
methodologies and pinpointed crucial factors influencing fatigue. A detailed flowchart of the process is illus-
trated in Fig. 1.

This research proposal was submitted for review on January 1, 2022, and was approved by the Research Ethics 
Committee of the Second Hospital of Hebei Medical University on March 15, 2022. The review resolution number 
is 2022-P014. This study followed the principles of GCP and the protocol approved by the ethics committee. All 
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methods were conducted in accordance with relevant guidelines and regulations, and all participants obtained 
informed consent.

Questionnaire design
The objective of this closed-loop fatigue questionnaire is to assess the fatigue experiences of medical person-
nel during their work and identify the factors that contribute to fatigue conditions. Through the design of this 
questionnaire, valuable information can be collected to effectively understand the fatigue status and the factors 
that influence fatigue among medical security personnel.

1. Preparation of the survey questionnaire.

The survey questionnaire is carefully prepared by experienced medical security personnel and consists of two 
parts. The first part focuses on collecting essential information about the study population, including gender, age, 
body mass index (BMI), marital status, education level, professional title, total working hours, working hours in 
protective clothing, and night shift working hours. Additionally, it gathers data regarding whether individuals 
engage in physical exercise during their work and if they report any systemic symptoms or diseases. To evaluate 
the overall health status of healthy individuals working under closed-loop conditions, a customized symptom 
and disease score (CSDS) is  developed11. The total working hours are calculated on a monthly basis using the 
scheduling table, while the duration of wearing protective clothing refers to the time spent wearing such clothing 
upon entering the diagnosis area. Moreover, night shift working hours pertain to the duration of working night 
shifts while wearing protective clothing in the diagnosis area.

2. Method of conducting the questionnaire survey.

To ensure the reliability, accuracy, and effectiveness of the survey, an anonymous approach is employed, 
allowing all support personnel to voluntarily respond while maintaining anonymity.

3. Design of the Customized Symptom and Disease Score (CSDS).

Considering the prevalence of systemic symptoms or diseases among healthcare personnel working under 
the closed-loop system, the customized symptom and disease score (CSDS) is structured around eight systems: 
respiratory, digestive, neuropsychiatric, cardiovascular, urogenital, ear-nose-throat, skin, and oral. Each symp-
tom or disease associated with a system is assigned a score of 1. The cumulative scores across multiple systems 
range from 0 to 8, with higher scores indicating a poorer health condition and more severe disease condition. 
Since medical security personnel may have limited diagnostic expertise, an expert panel consisting of profes-
sionals with advanced knowledge in relevant fields is responsible for diagnosing the various symptoms listed 
in the questionnaire. For instance, if symptoms such as nasal congestion and a runny nose, which belong to the 

Figure 1.  Flow chart of fatigue status analysis.
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respiratory system, occur and significantly affect daily life, work, or sleep, a score of 1 is assigned. Similarly, if 
symptoms such as abdominal pain and diarrhea related to acute gastroenteritis are experienced and have an 
impact on daily functioning or sleep, a score of 1 is given. If both of these situations occur within the specified 
period without abnormalities in other systems, 2 points are deducted. This design enables the CSDS to effectively 
reflect both the status and severity of diseases.

Fatigue status calculation
MFI-20 (Multidimensional Fatigue Inventory-20) is a widely used scale for assessing physical, cognitive, and 
emotional fatigue levels in  individuals12. Following the core concept of this scale, the calculation of fatigue status 
during the closed-loop period can be done through the following steps:

Step 1: Design a fatigue status calculation table comprising 20 items that encompass manifestations of physi-
cal fatigue (e.g., decreased strength, vitality, and endurance), cognitive fatigue (e.g., decreased focus and delayed 
thinking), and emotional fatigue (e.g., anxiety and depression). This table covers fatigue performance across 
various dimensions.

Step 2: Based on their personal experiences, participants rate their fatigue levels for each item in the fatigue 
status calculation table using a scoring range of 1–5. The scores reflect the degree of conformity, ranging from 
complete non-conformity to complete conformity.

Step 3: Establish a classification criterion by setting an average score of 3 points for each item. If a participant’s 
score exceeds 3 points for a particular item, it indicates the presence of fatigue symptoms in that specific area.

Step 4: Calculate the overall fatigue level by summing the scores of all items. A higher total score indicates 
more pronounced fatigue symptoms.

ML algorithms
Fatigue status modeling algorithm

1. KNN algorithm.

The K-Nearest Neighbors (KNN) algorithm operates by computing distances between samples to enable 
classification or regression  prediction13. It determines the class or value of new samples by considering the class 
or output value of the k closest samples. This algorithm is characterized by its simplicity, ease of comprehension, 
and does not necessitate an explicit training process. It is well-suited for multi-classification problems. However, 
when confronted with large-scale datasets, it incurs a substantial computational cost and is susceptible to noise. 
Consequently, judicious selection of distance metrics and k-values is essential.

2. Support vector machine algorithm.

Support Vector Regression (SVR) is a machine learning approach that emerged in the mid-1990s and is based 
on statistical learning theory. At its core, SVR aims to identify the optimal separating hyperplane that maximizes 
the margin between different classes, utilizing support vectors—data points nearest to the hyperplane—to define 
this margin. While linear SVR is straightforward, dealing with linearly separable data, non-linear scenarios are 
managed through the kernel trick, which effectively transforms the input space into a higher-dimensional one 
where linear separation becomes  feasible14.

In the context of sample space, partitioning hyperplanes can be defined using the following linear  equation15:

where W is the normal vector responsible for determining the direction of the hyperplane, and b is the dis-
placement that denotes the distance between the hyperplane and the origin. Assuming that the hyperplane can 
accurately classify samples, the training samples (xi,yi) are defined as follows:

In Eq. (2), yi =  + 1 indicates that the sample is positive and yi = -1 indicates that the sample is negative. By 
multiplying both sides of the Eq. (2) by yi, we obtain:

Which is equivalent to:

All samples in the training set must satisfy Eq. (3), and the sample points closest to the hyperplane satisfy 
Eq. (4). SVR algorithm is a robust tool for classification and regression, largely owing to its utilization of Kernel 
functions and the Penalty parameter. The Kernel function facilitates the SVR’s ability to manage non-linearly 
separable data by transforming the input space into a higher-dimensional one where linear separation becomes 

(1)WTx + b = 0

(2)
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xi + b ≥ +1, yi = +1
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xi + b ≤ −1, yi = −1
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feasible. Concurrently, the Penalty parameter governs the trade-off between minimizing training error and 
ensuring model generalizability.

3. AdaBoost algorithm.

AdaBoost (Adaptive Boosting) is an ensemble learning algorithm that combines multiple different decision 
trees in a non-random manner, achieving higher accuracy and stability than traditional decision  trees16. During 
the training process, AdaBoost calculates the error rate of weak classifiers based on the current sample weight 
distribution. It then adjusts the sample weights by increasing the weights of misclassified samples and decreasing 
the weights of correctly classified samples. This process is repeated, resulting in a series of weak classifiers. The 
weight of each weak classifier in the final classifier is determined by its error  rate17. Weak classifiers with lower 
error rates are assigned higher weights as they make a larger contribution to the classification task. Finally, all 
weak classifiers are combined into a strong classifier by weighting them according to their respective weights. 
This strong classifier can classify new samples by synthesizing the results of multiple weak classifiers, thereby 
improving the overall classification accuracy.

4. Gradient boosting regression algorithm.

Gradient Boosting Regression (GBM) is an ensemble learning method, which trains multiple weak predic-
tive models step-by-step and combines their predictions for regression tasks. Compared to AdaBoost, Gradient 
Boosting Regression uses a different approach to construct the ensemble  model18. Here is the basic calculation 
process of Gradient Boosting  Regression19:

Initialization: First, the true values of the target variable are used as the initial prediction value, which can be 
understood as the prediction result of the first weak predictive model.

Building weak predictive models: Next, train a weak predictive model (usually a decision tree) that tries to 
capture patterns in the target variable that were not captured by the previous model.

Calculate residuals: Use the difference between the previous model’s predicted results and the actual values 
as the new target variable (i.e., residuals), which can transform the problem into a regression problem for fitting 
residuals.

Update predicted values: Use the new target variable as the initial prediction value, train another weak predic-
tive model, and add its predicted results to the previous prediction results to obtain the updated prediction value.

Repeat iterations: Repeat steps 3 and 4, improving the model’s predictive ability by fitting residuals in each 
iteration and adding new prediction results to previous ones.

Obtain final prediction results: Add up all the predictive results of weak models to obtain the final predic-
tion result. The key to Gradient Boosting Regression is to continuously improve the model’s predictive ability 
through  iterations20. In each iteration, the model fits the negative gradient of residuals, allowing it to focus more 
on previously incorrectly predicted samples and gradually improve overall predictive performance.

Feature importance analysis algorithm
To determine the key factors that influence fatigue condition, the RF algorithm is used in this section to calcu-
late the importance score of  features21. RF algorithm can calculate the contribution of a single feature variable 
to each decision tree and rank each feature according to the average contribution level. One key advantage of 
RF compared to other algorithms is its ability to handle a large number of features without feature selection or 
dimensionality reduction preprocessing. RF can effectively deal with high-dimensional datasets and automati-
cally select relevant features while mitigating the risk of overfitting. Another advantage of RF is its capability to 
capture non-linear relationships and interactions between features, which may not be easily discernible using 
linear methods. Hence, we adopt RF for feature importance assessment.

The importance score of a single feature is represented by VIMj, and the Gini coefficient is represented by GI. 
Given m features X1, X2,…, Xm, the Gini coefficient of that feature is calculated using the following  equation22:

In the formula: k is the number of features in the dataset; pmk is the proportion of category k in node m, which 
randomly selects two samples with different classification labels in node m. The calculation formula for the Gini 
coefficient change of feature Xj before and after node m bifurcation is:

In the formula, GIl and GIr represent the Gini coefficients of the first and second new nodes after bifurcation. 
In this study, a node is a basic unit of a decision tree that represents a test or check on an attribute (or feature); 
a feature corresponds to a variable or column in your dataset that can be used to make predictions. If the node 
where feature Xj appears in the decision tree is located in set M, then the VIM calculation formula for Xj in the 
i-th tree is:

(5)GIm = 1−

|K |
∑

k=1

p2mk

(6)VIMij = GIm − GIl − GIr

(7)VIMij =
∑

m∈M

VIMjm
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If there are n decision trees in RF, then VIMj =
n
∑

i=1

VIMij . The value range of feature importance score VIMj 

is from 0 to 1: when feature X is completely consistent with target Y, the feature importance score is 1; when 
feature X is a constant value and Y is randomly distributed, the feature importance score is 0.

Determination of model structural parameters
The selection of hyperparameters is a critical factor that affects both the performance and generalization ability 
of a model. The choice of different hyperparameter values can lead to models exhibiting distinct characteristics 
and performance on diverse datasets. By optimizing hyperparameters, we can enhance the model’s adaptability to 
data, improve accuracy, and prevent overfitting or underfitting issues. Various methods are commonly employed 
for optimizing hyperparameters, including grid search, particle swarm optimization, whale optimization algo-
rithm, and random search.

In this study, type parameter optimization was conducted on each learner using five-fold cross-validation. The 
evaluation hyperparameters of each learner were theoretically adjusted through grid search methods. Besides 
the optimized hyperparameters, the other initialization type parameters of each learner were set to the default 
values of each classifier function in the Scikit learning library. The detailed optimization process can refer to 
section “Modeling”.

Case study
Beijing 2022 Olympic Winter Games
As shown in Fig. 2. The participation of medical staff in the medical security work during the Beijing 2022 
Olympic Winter Games is commendable. It’s important to ensure the health and safety of all individuals within 
the Olympic Village, and the medical support provided by the Winter Olympics Village Comprehensive Clinic is 
crucial in achieving this objective. The adherence to closed-loop management and the use of protective clothing 
in the diagnosis and treatment area is a necessary precaution to prevent any potential spread of diseases or infec-
tions. The fact that 469 patients sought medical assistance during the Winter Olympics period and 488 during 
the Winter Paralympics indicates the importance of having comprehensive clinics within the Olympic Village 
to provide medical support. The varying level of dependence on medical resources among different countries 
highlights the importance of providing equitable access to medical support to all individuals, regardless of their 
country of origin. This is crucial in ensuring the fairness and integrity of the Olympic Games. Overall, the efforts 
of the medical security personnel at the Winter Olympics Village Comprehensive Clinic during the Beijing 2022 
Olympic Winter Games deserves appreciation as they played a vital role in ensuring the success of the Games. 
Irrespective of the patients’ nationality or role, the medical security personnel of the comprehensive clinics 
provided professional and efficient medical services, as depicted in Fig. 3.

Questionnaire analysis
There are a total of 120 medical security personnel working at the Winter Olympics Village Comprehen-
sive Clinic, selected based on the following criteria: (1) having worked for at least 30 days within the clinic’s 

Figure 2.  Beijing 2022 Olympic Winter Games.
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closed-loop system, and (2) being physically fit. Exclusion criteria included chronic physical illnesses and unsuit-
ability according to other researchers’ opinions. After obtaining informed consent, a questionnaire survey was 
conducted on the 120 personnel who had worked for two months. The survey was conducted by trained profes-
sionals, and 113 valid questionnaires were collected out of 120 distributed, resulting in a response rate of 94.17%.

Among the 113 medical security personnel surveyed, there were 59 males and 54 females; 26 unmarried indi-
viduals and 87 married individuals; 50 individuals with a bachelor’s degree or below (including those currently 
enrolled) and 63 individuals with a graduate degree; 36 people hold junior or lower professional titles, 56 people 
hold intermediate professional titles, and 21 people hold senior professional titles. The ages ranged from 19 to 
57 years old (34.2 ± 8.3), with the highest number of individuals aged 31–37; Height: 150–185 cm (170.0 ± 7.8), 
weight: 47–100 kg (67.9 ± 12.8), BMI: 17.2–31.4 kg/m2 (23.3 ± 3.1). The duty areas of the comprehensive clinic 
include the clean area and the contaminated area. Among the surveyed population, 12 people had never worn 
protective clothing and participated in the duty of the contaminated area, while the rest of the personnel have 
participated in the duty of the contaminated area to varying degrees. Duty includes day and night shifts, with 40 
people not participating in the night shift. During the closed management period, 13 people did not report any 
physical symptoms or diseases, while the highest number of reported symptoms or diseases were related to the 
respiratory and digestive systems at 54 and 47 respectively, as depicted in Fig. 4.

Modeling
Data pre‑progressing

1. Dataset segmentation.

In machine learning and data analysis, it is common practice to partition a dataset into an 80:20 ratio. This 
partitioning method maximizes the data utilization for model training and ensures enough data support for 
testing the model’s performance. By utilizing 80% of the data for model training, the model effectively learns the 
data’s features and patterns, leading to improved generalization capabilities. The remaining 20% of data is reserved 
for testing the model’s performance, providing an objective evaluation of its predictive abilities on unknown 
data. This study employs this partitioning method to accurately assess the fatigue score prediction capability of 
various machine learning algorithms.

2. Missing value handling.

Figure 3.  Medical security work during Beijing 2022 Olympic Winter Games.
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Missing value handling is a fundamental task in data cleaning. Various methods, such as deleting samples 
with missing values, imputing means or medians, using the most frequent value, or implementing interpolation 
methods, are commonly used to address this issue. In this study, due to the limited amount of data, missing 
values were filled using the mean.

3. Exception handling.

Handling outliers is a common task in data analysis that involves identifying and dealing with extreme values 
in a dataset. Various methods, such as box plots and Z-score methods, can be used to identify outliers, followed 
by outlier deletion, smoothing transformations, mean replacement, and so on. In this study, the box plot method 
is employed to detect outliers based on the recorded data characteristics. Outliers are defined as values less than 

Figure 4.  Histogram of statistical distribution of medical staff information.
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Q1−1.5 * IQR or greater than Q3 + 1.5 * IQR, with IQR representing the interquartile range. The identified outli-
ers are then replaced with the mean value for that parameter.

Table 1 illustrates the data distribution of the training and testing sets after data preprocessing.

Model structure parameter selection
Before inputting the processed data into machine learning algorithms, it is imperative to ascertain the structural 
parameters of each algorithm. This includes determining the number of decision trees for the RF algorithm and 
the kernel function for the SVR algorithm. To accomplish this, grid search is utilized to identify these hyperpa-
rameters. Grid search is a method employed to establish the structural parameters of machine learning  models23. 
It works by exhaustively searching for a given combination of parameters, evaluating the model’s performance 
using cross-validation for each parameter combination, and ultimately selecting the optimal model structural 
parameter—the combination with the best performance. Meanwhile, perform 5-fold cross validation on 80% 
of the training set to determine the optimal prediction model. Finally, the chosen model structural parameters 
for this study are detailed in Table 2.

Evaluation indicators
The predictive performance of different machine learning models is assessed using two metrics: the mean relative 
error (MRE) and the coefficient of determination (R2), which quantify the disparities between the actual and 
predicted values. The computation formulas for MRE and R2 are as follows:

where, n represents the sample size; yi denotes the true value; ŷi denotes the predicted value; y signifies the mean 
value. MRE measures the deviation between the observed and predicted fatigue condition values, with smaller 

(8)MRE =
1

n

∑n

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

(9)R2 =

n
∑

i=1

(ŷi − yi)
2

n
∑

i=1

(yi − yi)
2

Table 1.  Distribution of training and testing set data. Note: Mean the average value; Std the standard 
deviation; Min the minimum value; Max the maximum value; InP1 gender; InP2 marriage; InP3 educational 
background; InP4 professional title; InP5 age; InP6 represents body mass index; and InP7 respiratory 
symptoms/diseases; InP8 digestive system symptoms/diseases; InP9 skin system symptoms/disease; InP10 
symptoms/diseases of the ear, nose, and throat system; InP11 a symptom/disease of the urinary system; InP12 
neurological and psychiatric symptoms/diseases; InP13 oral symptoms/diseases; InP14 symptoms/diseases of 
the cardiovascular system; InP15 CSDS; InP16 the working hours when wearing protective clothing; InP17 the 
total working hours; InP18 night shift working hours; InP19 physical exercise.

Dataset

Training test Test set

Mean Std Min 25% 50% 75% Max Mean Std Min 25% 50% 75% Max

InP1 0.38 0.49 0.0 0.0 0.0 1.0 1.0 0.87 0.34 0.0 1.0 1.0 1.0 1.0

InP2 0.76 0.43 0.0 1.0 1.0 1.0 1.0 0.83 0.39 0.0 1.0 1.0 1.0 1.0

InP3 0.51 0.50 0.0 0.0 1.0 1.0 1.0 0.74 0.45 0.0 0.5 1.0 1.0 1.0

InP4 0.82 0.71 0.0 0.0 1.0 1.0 2.0 1.04 0.64 0.0 1.0 1.0 1.0 2.0

InP5 34.13 8.38 19.0 29.3 35.0 38.8 57.0 34.48 8.04 19.0 32.0 36.0 39.5 48.0

InP6 23.71 3.15 17.2 21.3 23.9 25.6 31.4 21.89 2.47 18.4 20.5 21.5 22.6 28.1

InP7 0.53 0.50 0.0 0.0 1.0 1.0 1.0 0.26 0.45 0.0 0.0 0.0 0.5 1.0

InP8 0.46 0.50 0.0 0.0 0.0 1.0 1.0 0.26 0.45 0.0 0.0 0.0 0.5 1.0

InP9 0.36 0.48 0.0 0.0 0.0 1.0 1.0 0.30 0.47 0.0 0.0 0.0 1.0 1.0

InP10 0.41 0.49 0.0 0.0 0.0 1.0 1.0 0.26 0.45 0.0 0.0 0.0 0.5 1.0

InP11 0.21 0.41 0.0 0.0 0.0 0.0 1.0 0.13 0.34 0.0 0.0 0.0 0.0 1.0

InP12 0.41 0.49 0.0 0.0 0.0 1.0 1.0 0.35 0.49 0.0 0.0 0.0 1.0 1.0

InP13 0.11 0.32 0.0 0.0 0.0 0.0 1.0 0.17 0.39 0.0 0.0 0.0 0.0 1.0

InP14 0.07 0.25 0.0 0.0 0.0 0.0 1.0 0.13 0.34 0.0 0.0 0.0 0.0 1.0

InP15 2.56 1.57 0.0 1.3 3.0 3.0 8.0 1.87 1.39 0.0 1.0 2.0 3.0 5.0

InP16 82.27 45.73 0.0 60.0 85.0 108.0 160.0 55.57 45.90 0.0 20.0 60.0 85.0 144.0

InP17 168.38 36.19 108.0 144.0 180.0 180.0 240.0 193.87 29.34 138.0 180.0 180.0 210.5 240.0

InP18 22.93 21.56 0.0 0.0 21.0 43.5 72.0 7.57 11.04 0.0 0.0 0.0 12.0 36.0

InP19 0.82 0.77 0.0 0.0 1.0 1.0 2.0 1.04 0.82 0.0 0.0 1.0 2.0 2.0

Output 52.50 13.15 20.0 46.0 57.0 61.0 79.0 49.22 16.07 20.0 34.0 52.0 62.5 67.0
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values indicating superior predictive accuracy. The R2 metric ranges from 0 to 1, with higher values indicating 
a closer alignment between the predicted and original distributions.

Result analysis
Analysis of prediction results
The detailed analysis and comparison of machine learning (ML) algorithms for predicting fatigue state, as pre-
sented in the referenced Fig. 5 and Table 3, provide insightful observations into the efficiency and accuracy of 
various ML models in capturing and predicting the nuances of fatigue states. The study meticulously evaluates 
five different ML algorithms: GBM, KNN, AdaBoost, RF, and SVR, to assess their predictive capabilities in the 
context of fatigue state prediction.

Among these algorithms, the GBM stands out as the most effective model, demonstrating superior perfor-
mance in predicting fatigue states. GBM leverages the gradient descent algorithm, a powerful optimization 
technique, to fine-tune sample weights and enhance the performance of weak classifiers iteratively. This approach 
allows GBM to achieve a high degree of accuracy in capturing the measured observation values related to fatigue 
states. The model’s MRE of 0.207 and R2 score of 0.812 signify its robustness and reliability in predicting fatigue 
states with minimal deviation from actual measurements.

Following GBM, the RF, AdaBoost, and KNN algorithms exhibit commendable predictive performances. 
These models, characterized by their unique approaches to learning and prediction, achieve MRE values below 
0.3 and R2 scores above 0.75, indicating their effectiveness in modeling fatigue states. RF, an ensemble learning 
method that constructs multiple decision trees and merges their predictions, offers the advantage of reducing 
overfitting while maintaining high accuracy. AdaBoost, enhances model performance by focusing on difficult-
to-predict instances and adjusting accordingly, thereby improving overall prediction accuracy. KNN, a simple 
yet powerful algorithm, predicts the outcome based on the aggregation of the nearest data points in the feature 
space, providing intuitive and straightforward predictions.

On the other hand, the SVR model shows the least favorable results in this comparative study. With an MRE 
of 0.372 and an R2 of 0.706, SVR’s performance in predicting fatigue states is notably lower than its counterparts. 
SVR, which focuses on finding the optimal hyperplane in a high-dimensional space to minimize error, may strug-
gle with the complexity and variability inherent in fatigue state data, leading to its relatively poorer performance.

In summary, this comprehensive analysis illustrates the varying degrees of effectiveness of different ML 
algorithms in predicting fatigue states. The GBM emerges as the top performer, offering the most accurate and 
reliable predictions. This is followed by the RF, AdaBoost, KNN, and finally, SVR models, in descending order 
of predictive performance. These findings underscore the importance of selecting the appropriate ML model 
based on the specific characteristics and requirements of the data being analyzed. By doing so, researchers and 
practitioners can harness the full potential of ML algorithms to advance our understanding and prediction of 
fatigue states, ultimately contributing to improved health monitoring and management strategies.

Feature importance analysis
The importance rankings of 19 input parameters on fatigue conditions were calculated using the Random Forest 
(RF) feature importance analysis method, as shown in Fig. 6. The findings reveal that working hours in protec-
tive clothing, CSDS scores, physical exercise, BMI, and age are the top five parameters that exert a significant 
influence on fatigue status, with importance scores exceeding 0.06. Particularly, working hours in protective 
clothing obtained the highest importance score of 0.54, making it the most crucial factor impacting fatigue sta-
tus. Although logistic regression suggested that working hours are an important factor influencing  fatigue24, the 
study’s results using machine learning did not find total working hours to be a significant factor affecting fatigue. 
It appears that there may be a discrepancy in the findings regarding the impact of working hours on fatigue 
between logistic regression and machine learning. This inconsistency highlights the complexity of understanding 
the relationship between working hours and fatigue within the context of this study.

Table 2.  Structural parameters of five ML algorithms.

Models Parameters Describe Range Values

KNN K Number of neighbors participate in the KNN algorithm 10–100 79

weights Weight function used in prediction model Uniform, distance Uniform

SVR C Penalty parameter of the error term 0.1–10 8

gamma Kernel coefficient for radial based function 0.001–1 0.001

AdaBoost base_estimator Base estimator of the model / Decision tree

n_estimators Maximum number of estimators at which boosting is terminated 5–500 100

GBR loss Loss function to be optimized / Squared error

n_estimators The number of boosting stages to perform 5–500 90

max_depth Maximum depth of the individual regression estimators 1–10 3

RF base_estimator Base estimator of the model / Decision tree

n_estimators Number of trees in the forest 5–500 100

max_depth Maximum depth of the tree 1–10 8
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Figure 5.  Prediction results of fatigue state using five machine learning methods.
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Discussion
MFI‑20 score
Fatigue is a prevalent physical symptom within the population. Prolonged physical fatigue, in conjunction with 
associated negative psychological emotions like depression and irritability, collectively contribute to a state of 
adverse stress that can result in various levels of physical symptoms or illnesses. Studies have indicated a connec-
tion between fatigue, burnout, insufficient sleep, and shift work in professions such as police and  firefighters25. 
Medical security personnel experience unique challenges during special periods like the Beijing Winter Olympics, 
including sleep disturbances, shift work, and the requirement to wear protective clothing. This study specifically 

(d) GBM algorithm 

(e) RF algorithm 
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Figure 5.  (continued)

Table 3.  Summary of model prediction indicator results.

Data set Model

Evaluating 
indicator

MRE R2

Training set

KNN 0.179 0.823

SVR 0.237 0.778

AdaBoost 0.093 0.910

GBM 0.023 0.976

RF 0.073 0.929

Test set

KNN 0.292 0.753

SVR 0.372 0.706

AdaBoost 0.246 0.777

GBM 0.207 0.812

RF 0.244 0.790
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focuses on analyzing the factors related to fatigue among medical security personnel participating in the Beijing 
Winter Olympics.

The MFI-20 score, as an effective and reliable measurement method with a stable multidimensional factor 
structure, can effectively evaluate the fatigue status of a population. MFI-20 has been widely used to quantify 
the effects of fatigue, and fatigue has a good correlation with physical symptoms or diseases. It can not only 
be used in research fields to help scientists gain a deeper understanding of the impact of fatigue on individual 
physiological and psychological states, but also in clinical practice to evaluate the fatigue status of patients, guide 
the development of treatment and intervention  measures26. In this study, the MFI-20 score, as a multidimen-
sional fatigue assessment tool, provided us with a reliable and comprehensive way to understand and quantify 
individual fatigue status.

ML algorithms selection
This study gathered and analyzed data on medical security personnel, encompassing various factors such as 
basic information, physical exercise, work environment, working hours, and diseases/symptoms. Subsequently, 
machine learning algorithms were employed to train and analyze this data, with the aim of uncovering the influ-
ence of these different factors on the fatigue status of medical security personnel. The analysis reveals that GBM 
with the gradient descent method, used to adjust sample weights and combine weak classifiers, demonstrates the 
highest prediction performance. It accurately captures the measured values of the target parameters. Conversely, 
the SVR model displays the weakest prediction performance. The predictive performance of the five algorithms, 
in descending order, is as follows: GBM > RF > AdaBoost > KNN > SVR. With the exception of the SVR algorithm, 
the other four algorithms yield good prediction results for fatigue states, particularly the decision tree-based 
improvement algorithms. The advantages and disadvantages are shown in Table 4.

Prior to the determination of the final quintet of algorithms for our analysis, a comprehensive assessment was 
conducted on a variety of alternative machine learning algorithms, including but not limited to the Multilayer 
Perceptron (MLP), Backpropagation Neural Networks (BPNN), and Logistic Regression (LR). This preliminary 
investigation revealed that these alternative methodologies were not optimally suited for application to our data-
set, owing to their inherent limitations in processing capabilities. Specifically, certain algorithms exhibited an 
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Figure 6.  Ranking of factors influencing fatigue condition.

Table 4.  Comparison of advantages and disadvantages of ML algorithms.

ML method Advantages Disadvantages Applicability

GBM
Excellent predictive performance, can handle large 
datasets and high-dimensional features effectively, 
robust against overfitting

Prone to overfitting if not properly tuned, computa-
tionally intensive

Well-suited for predictive modeling tasks with com-
plex interactions and large datasets

KNN
Simple and intuitive algorithm with ease of imple-
mentation, effective in capturing local patterns and 
non-linear relationships

Computationally expensive during prediction, vul-
nerable to irrelevant or noisy features in the dataset

Suitable for datasets with clear local structures and 
instances clustered closely together

AdaBoost Focuses on hard-to-classify instances, can be com-
bined with various base learners making it versatile

Sensitive to noisy data and outliers, may require 
careful tuning of hyperparameters for optimal 
performance

Effective for improving predictive accuracy, especially 
when dealing with challenging instances in the 
dataset

RF
Robust against overfitting and noise in the data, 
provides insights into feature importance, can handle 
high-dimensional data efficiently

May lead to high memory consumption for large 
ensembles, training multiple decision trees can be 
computationally intensive

Well-suited for complex classification and regression 
tasks, especially with high-dimensional feature spaces

SVR
Effective in capturing nonlinear relationships in the 
data using the concept of support vectors, can handle 
high-dimensional feature spaces

Sensitive to the choice of kernel function and its 
parameters, may not perform as well as other algo-
rithms in certain scenarios

Suitable for regression tasks where finding the 
optimal hyperplane is of particular interest, but 
may require careful parameter tuning for optimal 
performance
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inability to efficiently manage the high-dimensional nature of our dataset—a critical aspect for accurately captur-
ing and analyzing fatigue states. Moreover, some models demonstrated inadequate performance when tasked with 
interpreting data characterized by non-linear relationships, a common feature in datasets pertaining to fatigue.

Despite these challenges, the potential of achieving enhanced prediction outcomes through the integra-
tion of multiple computational approaches warrants attention. Techniques such as stacking and voting serve 
as illustrative examples of how the amalgamation of disparate algorithms can culminate in superior predictive 
accuracy. Stacking, for instance, entails the training of a meta-model to effectively amalgamate predictions from 
several base models, while voting utilizes a simpler methodology of aggregating predictions to ascertain the final 
output. These strategies have exhibited promising results in various domains, underscoring the merit of hybrid 
computational approaches in machine learning endeavors.

In light of these findings, the forthcoming direction of our research will pivot towards an in-depth exploration 
of these synergistic computational strategies. The ensuing phase of our work is poised to investigate the efficacy 
of ensemble methods and other composite techniques in refining and augmenting the precision of fatigue state 
predictions. By delving into the confluence of diverse machine learning paradigms, our objective is to unearth 
innovative methodologies that surmount the limitations presented by singular algorithmic approaches. This 
venture not only aims to enhance our comprehension of fatigue state prediction mechanisms but also seeks to 
broaden the horizons for applying machine learning in multifaceted, real-world scenarios.

Significant influencing factors on fatigue status
The top five parameters that significantly impact fatigue status are working hours in protective clothing, CSDS 
scores, physical exercise, BMI, and age. Notably, working hours in protective clothing obtained an importance 
score of 0.54, making it the most critical factor influencing fatigue status. In a comprehensive clinic setting, 
personnel may have varying work responsibilities, which can affect their participation in wearing protective 
clothing or engaging in night shift work. As a result, the working hours are categorized into total working hours, 
night shift working hours, and wearing protective clothing working hours.

In this study, the duration of wearing protective clothing emerged as the most significant predictor of fatigue, 
whereas total working hours and night shift working hours showed limited predictive value, aligning with the 
findings of Bilimoria et al.27. The extended duration of wearing protective clothing appears to exacerbate fatigue, 
likely attributable to factors such as the weight and material of the clothing, respiratory resistance, temperature 
regulation, and movement constraints. Consequently, reducing the duration of wearing protective clothing 
emerges as a primary strategy in fatigue alleviation. Implementing regular rest periods, avoiding prolonged 
consecutive wearing of protective clothing, and investigating the threshold for monthly duration are possible 
approaches to mitigate fatigue. Additionally, the development of lightweight and breathable protective clothing 
for support personnel may prove  effective28.

In this study, although respiratory and digestive system symptoms/diseases were reported the most, with 54 
and 47 cases respectively, they were not the best predictors of fatigue. On the contrary, CSDS scores were able 
to predict fatigue better. Due to the fact that medical security personnel are all healthy individuals, we have 
specially designed a CSDS score. By evaluating symptoms that cannot constitute a certain disease, it can also be 
defined as a disease/symptom through expert judgment, and the corresponding score can be calculated. This is 
a new attempt. Related studies have confirmed that there is a mutual influence between fatigue and  disease29,30.

In this study, it was found that physical exercise has a positive impact on predicting fatigue. The closed-loop 
period provides higher-level units with venues and facilities for activities such as running, aerobics, and table 
tennis. Regular participation in physical exercise has been shown to reduce fatigue, as affirmed by the research 
conducted by Estévez-López et al.31. Therefore, it is recommended to provide exercise facilities and actively pro-
mote structured exercise programs within closed-loop management for staff. Additionally, body mass index and 
age were identified as key factors influencing the fatigue status of medical security personnel. Previous studies 
have suggested that the anti-inflammatory amino acid glutamine may reduce subjective fatigue, enhance physi-
ological responses to heat stress, and potentially improve work  performance32.

Conclusions
Fatigue is a prevalent and pressing issue among medical security personnel operating in closed-loop environ-
ments. In our investigation, we observed that the GBM method exhibited superior predictive performance in 
determining the fatigue status of medical security personnel during the closed-loop period, surpassing other 
machine learning techniques. The GBM model achieved impressive performance metrics, with an MRE of 0.207 
and an R2 of 0.812.

Notably, our analysis identified several critical factors influencing the fatigue status of medical security per-
sonnel, including the duration of wearing protective clothing, CSDS, and engagement in physical exercise. These 
findings shed light on the multifaceted nature of fatigue among healthcare workers and emphasize the importance 
of considering various contributing factors. To effectively alleviate fatigue, prudent management of working 
hours for security personnel, along with minimizing the duration of wearing protective clothing, proves to be 
promising strategies. Furthermore, promoting regular physical exercise among medical security personnel can 
significantly impact fatigue reduction.

Additionally, the exploration of medication interventions and the adoption of innovative protective cloth-
ing options present potential avenues for mitigating fatigue. The insights derived from this study offer valuable 
guidance to management personnel involved in organizing large-scale events, enabling them to make informed 
decisions and implement targeted interventions to address fatigue among medical security personnel (Supple-
mentary Information).
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In our upcoming research, we will further expand the fatigue dataset while considering higher precision 
prediction algorithms, such as XGBoost model, ensemble model, etc., and explore their potential contributions 
to our research.
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