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Eco‑environmental changes due 
to human activities in the Erhai 
Lake Basin from 1990 to 2020
Xiaojie Liu 1,2, Junyi Chen 1,2*, Bo‑Hui Tang 1,2, Liang He 3, Yunshan Xu 4 & Chao Yang 5,6

Human activities have increased with urbanisation in the Erhai Lake Basin, considerably impacting 
its eco‑environmental quality (EEQ). This study aims to reveal the evolution and driving forces of 
the EEQ using water benefit–based ecological index (WBEI) in response to human activities and 
policy variations in the Erhai Lake Basin from 1990 to 2020. Results show that (1) the EEQ exhibited 
a pattern of initial degradation, subsequent improvement, further degradation and a rebound from 
1990 to 2020, and the areas with poor and fair EEQ levels mainly concentrated around the Erhai Lake 
Basin with a high level of urbanisation and relatively flat terrain; (2) the EEQ levels were not optimistic 
in 1990, 1995 and 2015, and areas with poor and fair EEQ levels accounted for 43.41%, 47.01% and 
40.05% of the total area, respectively; and (3) an overall improvement in the EEQ was observed in 
1995–2000, 2000–2005, 2005–2009 and 2015–2020, and the improvement was most significant in 
1995–2000, covering an area of 823.95  km2 and accounting for 31.79% of the total area. Results also 
confirmed that the EEQ changes in the Erhai Lake Basin were primarily influenced by human activities 
and policy variations. Moreover, these results can provide a scientific basis for the formulation and 
planning of sustainable development policy in the Erhai Lake Basin.

Keywords Eco-environmental quality, Ecological index, Erhai Lake Basin, Spatiotemporal evolution, Human 
activities

Rapid urbanisation since the 1950s has caused significant disruptions in regional and global ecosystems, 
particularly in  China1–3.The number of prefecture-level and county-level cities in China increased from 193 in 
1978 to 673 in 2018, with the built-up urban area expanding by approximately 7.8  times4. In addition, the pattern 
of land resource allocation has been altered, and large ecological land areas, including grasslands and forests, 
have been converted into urban areas. Habitat problems such as the urban heat island effect, climate change and 
aquatic environment degradation have exacerbated, impacting the security of regional  ecosystems5–7.

The ecological environmental status and ecosystem security in the region can be directly assessed by 
evaluating the ecological environmental quality (EEQ)8,9. Currently, regional EEQ evaluation primarily relies on 
field measurements and remote sensing  techniques10. Field measurements can effectively and accurately assess the 
regional EEQ but often require extensive data collection as well as considerable time and manpower. In contrast, 
remote sensing techniques, with their advantages of rapid, real-time and large-scale monitoring, have been 
proven to be effective in rapidly capturing the spatiotemporal changes in regional ecological  environments11,12.

Early studies on ecological environment monitoring based on remote sensing techniques often used only a 
single ecological indicator for assessing the regional  EEQ13,14; however, it might not yield accurate results due 
to the complex interactions among ecosystems and the diversity of influencing factors. Ying et al.15 proposed 
a comprehensive evaluation method based on analytic hierarchy process (AHP) for determining EEQ, which 
integrated social economy and natural environmental factors. In 2015, the Ministry of Environmental Protection 
of the People’s Republic of China released and optimised the ecological index (EI), which was used to assess the 
EEQ in lake basins and  cities16,17. However, most of the previously used methods have shortcomings, including 
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cumbersome evaluation factors, difficulty in acquiring data and a high degree of subjectivity in indicator weights. 
Therefore,  Xu9 selected four indicators, namely greenness, dryness, wetness and heat, based on the pressure-
state-response (PSR) framework. These indicators were combined with PCA to create a remote sensing–based 
ecological index (RSEI) for evaluating the comprehensive ecological status of regions. Then, to address the issue 
of non-uniqueness in the eigenvector direction in PCA, Ning et al.18 proposed an RSEI that does not consider 
the direction of eigenvectors. Yang et al.19 adopted the PSR framework and incorporated five indicators, namely 
vegetation cover (VC), vegetation health index (VHI), normalised building and bare soil index (NDBSI), land 
surface humidity (LSM) and land surface temperature (LST), to construct a comprehensive ecological evaluation 
index (CEEI) for assessing the EEQ objectively.

Currently, the RSEI is widely used for EEQ evaluation in areas of varying scales, including nature  reserves20, 
sea island  cities21, and Northeast  China22 owing to its portability. Furthermore, the RSEI was enhanced via 
effective modifications and its scalability was  reported23,24. However, the EEQ of water cannot be effectively 
evaluated using the RSEI because water bodies are susceptible to producing outliers for various indicators; 
therefore, they must be masked before EEQ  evaluation25,26. Water quality is one of the crucial factors affecting 
the regional ecological  environment27; therefore, the impact of water bodies must be considered in evaluating 
the regional EEQ. To this end, Jiao et al.26 first developed the surface potential water abundance index (SPWI) to 
depict the spatial distribution of water-related ecological factors. Then, the entropy weight method was used to 
integrate the five indexes of SPWI, normalised difference latent heat index (NDLI), ratio vegetation index (RVI), 
normalised difference soil index (NDSI) and LST to produce a water benefit–based ecological index (WBEI). This 
method was used to conduct regional EEQ assessments, including water bodies. The effectiveness of WBEI was 
demonstrated via its comparative analysis with RSEI and EI. Unfortunately, Jiao et al.26 assessed the performance 
of WBEI holistically and did not provide a detailed analysis of the EEQ of water bodies. However, water is an 
integral part of natural ecosystems, and the EEQ of water bodies directly affects regional ecosystem security.

The Erhai Lake Basin is the second-largest plateau freshwater lake basin in China. It is the primary source 
of production and domestic water supply for Dali City and its surrounding  villages28. In recent years, the rapid 
urbanisation in the Erhai Lake Basin, particularly in the lakeside area, has led to the significant expansion of 
urban areas and continuous degradation of the ecological environment. These developments have posed potential 
threats to the aquatic ecosystem and human  health29. The EEQ in the Erhai Lake Basin was recently  evaluated30,31, 
but the impact of water ecological factors was not considered therein. Erhai Lake and its surrounding rivers 
are integral components of the Erhai Lake Basin and must not be overlooked in its EEQ assessment. Water 
ecological factors must also be considered for EEQ assessment. In this study, the WBEI was used to determine 
the spatiotemporal characteristics of the EEQ in the Erhai Lake Basin from 1990 to 2020. In addition, the 
performance of WBEI in terrestrial and aquatic areas was assessed, and the EEQ in the Erhai Lake Basin was 
quantified by considering the impact of urbanisation on water bodies. Moreover, the spatiotemporal evolution 
characteristics and driving factors of EEQ were determined. These results can be used for sustainable regional 
development and improving the local ecological environment.

Study area and data source
Study area
The Erhai Lake Basin is located in the Dali Bai Autonomous Prefecture of Yunnan Province, Southwest 
China, spanning from latitude 25°36′N to 25°38′N and longitude 100°05′E to 100°17′E (Fig. 1). It is part of 
the Lancang–Mekong River system and experiences a low-latitude plateau subtropical monsoon climate. The 
temperature of the lake water remains between 10 °C and 20 °C throughout the year. As of 2020, the resident 
population of the river basin is approximately 9.9  million32.

Data source and pre‑processing
The Landsat 5/7/8 surface reflectance datasets and water surface  data33 were obtained from Google Earth Engine 
(GEE). To mitigate the impact of cloud cover, images with the least cloud cover over the entire study area 
from March (dry season) 1990 to 2020 (Table 1) were selected, and cloud removal and quality screening were 
performed on these datasets. Then, the mean value of high-quality multi-year images taken during the same 
month was calculated and the Savitzky–Golay (SG) filter was  applied34 to fill in any missing data. As a result, 
the remote sensing images of the Erhai Lake Basin from 1990 to 2020 with excellent quality and no cloud cover 
were obtained.

Methodology
A research framework was established to validate and assess the WBEI model performance, then monitor the 
EEQ evolution of the Erhai Lake Basin from 1990 to 2020. This framework encompasses several key components, 
including data pre-processing, WBEI calculation and assessment, EEQ classification and temporal and spatial 
monitoring of the EEQ (Fig. 2).

WBEI construction method
The WBEI is a regional EEQ assessment index that integrates three key factors such as water ecological factors 
(SPWI and NDLI), thermal environment factors (LST) and land cover conditions (RVI and NDSI) using the 
entropy weight method.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8646  | https://doi.org/10.1038/s41598-024-59389-6

www.nature.com/scientificreports/

SPWI
The SPWI is an indicator for the spatial distribution of surface water flow and provides insights into the influence 
of water on the ecological environment. It enhances the reliability of EEQ assessments in proximity to water 
 bodies26,35 and is calculated as follows:

where ρBlue , ρNIR and ρSWIR2 are the reflectance values of the blue, thermal infrared and second short-wave 
infrared bands of Landsat images, respectively.

NDLI
Urban air humidity considerably influences the characterisation of the internal climate of urban areas. Their 
impact on the urban ecosystem can be determined by investigating their  correlation36. In this study, the NDLI 
was used to represent the urban air  humidity37 ; it is calculated using Eq. (2):

(1)SPWI =
ρNIR − ρSWIR2 + ρBlue

ρNIR + ρSWIR2 + ρBlue
,

Figure 1.  Location of the Erhai Lake Basin. (a) Study area in China, (b) study area in Yunnan Province and (c) 
elevation of the study area. The figure is created used ArcMap 10.7, https:// www. arcgis. com.

Table 1.  Experimental data collection.

Date Cloud (%) GEE ID

1990.03.18 1.00 LANDSAT/LT05/C01/T1_SR

1995.03.16 0.00 LANDSAT/LT05/C01/T1_SR

2000.03.21 1.00 LANDSAT/LE07/C01/T1_SR

2005.03.11 5.00 LANDSAT/LT05/C01/T1_SR

2009.03.22 1.00 LANDSAT/LT05/C01/T1_SR

2015.03.23 0.06 LANDSAT/LC08/C01/T1_SR

2020.03.20 0.31 LANDSAT/LC08/C01/T1_SR

1990–2020 – JRC/GSW1_3/YearlyHistory

https://www.arcgis.com
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where ρGreen,ρRed and ρSWIR1 are the reflectance values of the green, red and first short-wave infrared bands, 
respectively.

LST
The urban heat island considerably influences the urban ecological environment, and its impact can be 
determined based on the  LST9. Herein, the LST was retrieved using the emissivity modulation (EM)  method38,39 
as follows (Eqs. (3), (4), (5), (6)):

where Tb and λ are the brightness temperature and central wavelength (μm) of the thermal infrared band, ε is the 
surface emissivity, ρ = 1.438 ×  10−2 (mK), Pv is the vegetation coverage, NDVImax and NDVImin are the maximum 
and minimum values of NDVI, respectively, and ρNIR and ρRed are the surface reflectance values in the near-
infrared and thermal infrared bands, respectively.

RVI
The RVI effectively depicts vegetation coverage while mitigating discrepancies arising from various soil 
backgrounds and  shadows40. Herein, the RVI was used to indicate the impact of regional human activities on 
the ecological models within regional boundaries; it is calculated using Eq. (7):

(2)NDLI =
ρGreen − ρRed

ρGreen + ρRed + ρSWIR1
,

(3)LST =
Tb

1+
(

�Tb
ρ

)

lnε

(4)ε =

{

0.979− 0.046× ρRed NDVI < 0.2
0.971(1− Pv)+ 0.987Pv 0.2 ≤ NDVI ≤ 0.5

0.99 NDVI > 0.5

(5)Pv =

[

NDVI − NDVImin

NDVImax − NDVImin

]

(6)NDVI =
ρNIR − ρRed

ρNIR + ρRed
,

Figure 2.  Flowchart of image processing and analysis.
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where ρRed and ρNIR are the reflectance values of the red and near-infrared bands, respectively.

NDSI
In addition to vegetation cover, changes in impervious surface area can directly reflect the intensity of human 
activities on the ecological  environment41. Herein, the NDSI, which is responsive to impervious surfaces, was 
used to determine the impact of human activities on the ecological  environment42 and is calculated using Eq. (8):

where ρNIR and ρSWIR1 are the reflectivity values of the near-infrared and first short-wave thermal infrared bands, 
respectively.

Corrected entropy weight coefficient method
Information entropy is a measurement index used to quantitatively describe the degree of information uncertainty 
and has been widely used in information  fusion43. Herein, it was used to evaluate the information richness of 
each ecological indicator and the degree of information difference among the indicators. Each indicator was 
then assigned an appropriate  weight44.

First, the weight of each indicator was calculated using the corrected entropy weight coefficient  method45 
as follows:

where wj and ej denote the weight and entropy for each ecological indicator j, respectively, m is the number of 
ecological indicators, fij is the proportion of pixel i in each ecological indicator j, n is the number of all pixels in 
each ecological indicator j and xij is the reflectivity of pixel i in each ecological indicator j.

As each indicator has a different unit and numerical range, their direct fusion will cause an imbalance of 
the indicator weight  value9. Therefore, the values of the five indicators must be normalised to fall within [0,1] 
before fusion as follows:

where Nj is the standardised value of Ni, Nmax and Nmin represent the maximum and minimum values of each 
indicator, respectively.

The WBEI was then acquired by linear superposition and fusion of the weight value and the corresponding 
ecological indicator as follows:

where NDLI, RVI and SPWI are positive indicators. LST and NDSI are negative indicators. w1 , w2 , w3 , w4 and 
w5 are the weight values of the NDLI, RVI, SPWI, LST and NDSI, respectively. NNDLI , NRVI , NSPWI , NLST and 
NNDSI are the normalised values of the NDLI, RVI, SPWI, LST and NDSI, respectively.

WBEI performance validation
Herein, the spatial coverage sampling  method46 was used to evenly select 2000 points in the Erhai Lake Basin in 
2020, and the WBEI performance for both water bodies and land areas was evaluated.

In the land area, the improved  RSEI18 and  CEEI19, which can quickly and accurately assess the improvement 
in regional terrestrial EEQ , were used to validate the performance of WBEI.

where PC1 is the first component of PCA, f  is the positive normalisation of the four indicators and VNDVI , 
VWet , VNDSI and VLST are the eigenvectors of the NDVI,  Wet47, NDSI and LST, respectively. VC is the vegetation 
coverage, VHI is the vegetative health index, NDSI is the normalised differential build-up and bare soil  index9 
and LSM is the land surface moisture. More detailed information about the RSEI and CEEI can be found in the 
study reported by Ning et al.18 and Yang et al.19.

In the water area, the trophic level index (TLI)48 was used to comprehensively validate the performance of 
WBEI in determining the EEQ.

(7)RVI =
ρNIR

ρRed
,

(8)NDSI =
ρSWIR1 − ρNIR

ρSWIR1 + ρNIR
,

(9)wj =
1−ej

m−
∑m

i=1 ej
j = 1, 2, 3, . . . ,m

(10)ej =
1

ln (n) ×
∑n

i=1

(

fijlnfij
)

(11)fij =
xij

∑n
i=1 xij

(12)Nj =
Ni−Nmin

Nmax−Nmin
,

(13)WBEI = w1 × NNDLI + w2 × NRVI + w3 × NSPWI − w4 × NLST − w5 × NNDSI ,

(14)RSEI = PC1
[

f (NDVI ,Wet,NDSI , LST)|VNDVI |, |VWet |,−|VNDSI |,−|VLST |

]

(15)CEEI = f (VC,VHI ,NDBSI , LSM, LST)
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where x is the ratio of the near-infrared band to infrared band and Cchl−a is the chlorophyll-a concentration in 
the water area.

WBEI classification and EEQ change detection
Based on the principle that a higher value of EEQ (closer to 1) indicates a better ecological environment and by 
considering the mean and standard deviation of WBEI, the WBEI values were categorised into five ecological 
quality  levels49 (Table 2). A transition matrix was used to describe the EEQ changes in the Erhai Lake Basin from 
1990 to  202050 (Table 3).

Kernel density estimation
Kernel density estimation (KDE) is a non-parametric method used to estimate the probability density function. It 
calculates the density distribution of points and line elements in space in their surrounding fields using a kernel 
function and reflects the distribution characteristics of spatial elements with the kernel density value of each 
grid in a continuous simulation  image51.

where fn(x) is the estimated value of the probability density; n is the number of observations; h is the bandwidth, 
which is the extended width of x in space and directly affects the precision of the kernel density result; K(·) is 
the kernel function and x − Xi is the distance from x to sample Xi.

Results and discussion
WBEI model performance
To objectively assess the effectiveness of WBEI for EEQ assessment, distinct evaluation models were used for 
both land areas and water bodies. The correlation coefficients between the WBEI and RSEI as well as WBEI 
and CEEI were determined for land areas (Fig. 3), whereas that between the WBEI and TLI was determined for 
water bodies to assess the WBEI performance (Fig. 4). Thus, the WBEI had a strong correlation with the RSEI 
and CEEI in land areas, with  R2 values of 0.785 and 0.842, respectively. It demonstrated a good correlation with 
TLI in water bodies (R = 0.733), with an  R2 value of 0.538. These findings indicate that the WBEI can assess the 
quality of terrestrial ecological environments and water area ecological environments to a certain extent.

Validation of the SPWI
To validate the ability of SPWI to characterize water spatial distribution, this study compared three different levels 
of water abundance in Erhai Lake, urban construction areas and ponds based on the Wet  index47, which is widely 

(16)Cchl−a = 67.519x2 + 16.995x − 2.0334

(17)TLI = 10×
[

2.5+ 1.086× log
(

Cchl−a

)]

(18)x =
ρNIR

ρRed
,

(19)fn(x) =
1

nhn

n
∑

i=1
K
(

x−Xi
hn

)

,

Table 2.  Classification of the EEQ in the Erhai Lake Basin. x and s represent the average value and standard 
deviation of the WBEI of EEQ from 1990 to 2020, respectively.

Types Poor Fair Moderate Good Excellent

Dividing criteria  < x−1.5 s x−1.5 s ~ 
x-0.5 s

x-0.5 s ~ 
x + 0.5 s

x + 0.5 s ~ 
x + 1.5 s  > x + 1.5 s

Table 3.  Transition matrix of the EEQ in the Erhai Lake Basin. T1 and  T2 represent the beginning and ending 
years of each period, respectively.

T1-T2

T1

Poor Fair Moderate Good Excellent

T2

Poor Unchanged Degraded Degraded Degraded Degraded

Fair Improved Unchanged Degraded Degraded Degraded

Moderate Improved Improved Unchanged Degraded Degraded

Good Improved Improved Improved Unchanged Degraded

Excellent Improved Improved Improved Improved Unchanged
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used to evaluate regional EEQ. As shown in Fig. 5, in region (I) (Erhai Lake), the normalised SPWI results were 
consistent with the normalised Wet Index results, both indicating high water abundance. However, in region (II) 
(urban construction area), the water content abundance is extremely poor, whereas the Wet index results yielded 
high values, whereas SPWI yielded the opposite results. In addition, the water content abundance of region (III)
(pond) should be much lower than that of region (I) (Erhai Lake), the values of the two regions were the same 
in the wet index results, while SPWI could effectively distinguish between the water abundance levels of the two 
regions. In summary, SPWI can better reflect the abundance of surface water resources in the Erhai Lake Basin.

Spatiotemporal evolution of EEQ from 1990 to 2020
WBEI analysis
The average values of WBEI and the weights of each ecological factor from 1990 to 2020 were obtained using the 
GEE (Table 4). Based on the average WBEI value, the EEQ exhibited a pattern of initial degradation, subsequent 
improvement, further degradation and a rebound. Specifically, the changes in WBEI from 2009 to 2020 aligned 
with the changes in water resources monitored by the local water conservancy  department52. This further 
confirmed the correlation between water factors and the regional ecological environment.

Moreover, the weight of the water ecological indicator exhibited an initial improvement followed by 
degradation from 1990 to 2020, indicating significant fluctuations in the environmental water quality in the 
Erhai Lake Basin. The trend for LST weight from 1990 to 2020 was contrary to that for NDLI, in line with 
the explanation that LST decreases due to the cooling effect of  evapotranspiration37. In terms of land cover, 
the combined weights of the RVI and NDSI exhibited a fluctuating upward trend, suggesting an increased 
responsiveness of land cover to the urban ecological environment in the Erhai Lake Basin over the past 30 years. 
This indicates that impervious surfaces encroached upon the natural landscape in the Erhai Lake Basin from 
1990 to 2020.

Changes in the EEQ
The spatiotemporal characteristics of the EEQ in the Erhai Lake Basin from 1990 to 2020 were derived from 
the WBEI classification results (Fig. 6), and the area and proportion of the EEQ classification were quantified 
(Table 5). The changes in the EEQ for each year were detailed from the perspectives of land areas and water bodies 
(Fig. 7). In general, from 1990 to 2020, the Erhai Lake Basin primarily contained regions with fair, moderate 

Figure 3.  Correlation coefficients between WBEI and RSEI and CEEI. (a) WBEI with RSEI and (b) WBEI with 
CEEI.

Figure 4.  Correlation coefficient between WBEI and TLI.
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and good EEQ levels, accounting for more than 20%. Additionally, regions with poor and fair EEQ levels were 
primarily concentrated around Erhai Lake characterised by high urbanisation levels and relatively flat terrain.

The Erhai Lake Basin exhibited lower EEQ levels in 1995 than in other years (Tables 4 and 5). A poor EEQ 
level was observed over an area of 130.99  km2, mainly concentrated along the eastern coast of Erhai Lake (Fig. 6). 
Specifically, the proportion land and water regions with poor EEQ levels accounted for 5.62% and 0.02% of the 
total land area and water body, respectively (Fig. 7). Meanwhile, areas with poor and good EEQ levels were the 
largest, reaching 1086.78  km2 (41.92%) and 740.50  km2 (28.57%), respectively (Table 5). The Erhai Lake Basin 
exhibited higher EEQ levels in 2009 than in other years. Excellent EEQ levels were observed across areas of 
337.36  km2, accounting for 13.01% of the total area (Table 5), primarily concentrated in Erhai Lake and the 
Cangshan Mountain region characterised by lower levels of human activity (Fig. 6). Among them, the proportion 
of land and water with excellent EEQ levels accounted for 10.79% and 32.83% of the total land and water areas, 

Figure 5.  Spatial distribution of water obtained from (a) original false-color image, (b) Wet results, and (c) 
SPWI results.

Table 4.  Average values of the WBEI and the weight of each ecological factor from 1990 to 2020.

Year

Water 
Ecological 
Factors Thermal Environment

Land 
Coverage

WBEI MeanSPWI NDLI LST RVI NDSI

1990 0.22 0.30 0.10 0.28 0.10 0.37

1995 0.23 0.28 0.11 0.25 0.13 0.34

2000 0.23 0.24 0.12 0.29 0.12 0.40

2005 0.21 0.24 0.12 0.30 0.13 0.42

2009 0.22 0.22 0.18 0.27 0.11 0.45

2015 0.15 0.24 0.14 0.34 0.13 0.40

2020 0.17 0.28 0.14 0.26 0.15 0.41
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respectively (Fig. 7). Previous studies have also confirmed our findings. Specifically, in the land regions from 
1999 to 2019, lower EEQ values were predominantly clustered around Erhai Lake, which experienced intense 
human activity. Conversely, higher EEQ values were primarily concentrated in the western and southern parts 
of the study area, notably in the Cangshan region situated in the western segment of the Erhai Lake  Basin30,31.

Monitoring of dynamic changes in EEQ in the Erhai Lake Basin
The EEQ changes in the Erhai Lake Basin from 1990 to 2020 were calculated using the transition matrix (Tables 6, 
7 and Fig. 8), and a search radius of 1000 m was selected for KDE to visualise the spatial patterns of EEQ 
changes (Fig. 9 and 10). In general, the EEQ in the Erhai Lake Basin tended to deteriorate in 1990–1995 and 
2009–2015 (Table 4). The areas (percentage) of deterioration were 567.72  km2 (21.90%) and 655.73  km2 (25.30%), 
respectively; these regions were mainly distributed around Erhai Lake (Fig. 10), particularly on its western coast. 
The EEQ tended to improve in 1995–2000, 2000–2005, 2005–2009 and 2009–2015 (Table 4), with the largest 
improvement in 1995–2000 across 823.95  km2, accounting for 31.79% of the total basin area. This area was 
concentrated in the southwest of the Erhai Lake Basin, particularly in the Cangshan Mountain region (Fig. 10). 
In addition, the improved area exceeded twice the deteriorated area in 2000–2005, 2005–2009 and 2015–2020 
(Table 7).

Figure 6.  Spatiotemporal characteristics of the EEQ in the Erhai Lake Basin from 1990 to 2020.

Table 5.  EEQ levels in the Erhai Lake Basin from 1990 to 2020.

Year

Poor Fair Moderate Good Excellent

Area  (km2) Percentage Area  (km2) Percentage Area  (km2) Percentage Area  (km2) Percentage Area  (km2) Percentage

1990 93.58 3.61 1031.71 39.80 702.23 27.09 574.67 22.17 190.07 7.33

1995 130.99 5.05 1086.78 41.92 740.59 28.57 627.51 24.21 6.40 0.25

2000 38.13 1.47 927.11 35.76 727.24 28.06 747.12 28.82 152.66 5.90

2005 51.76 2.00 835.03 32.21 685.94 26.46 800.58 30.88 218.95 8.45

2009 57.81 2.23 764.70 29.50 649.54 25.06 782.85 30.20 337.36 13.01

2015 105.57 4.07 932.78 35.98 612.42 23.63 720.64 27.80 220.86 8.52

2020 69.61 2.69 918.52 35.43 600.79 23.18 763.86 29.47 239.49 9.24
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Driving forces of the EEQ changes in the Erhai Lake Basin
The changes in EEQ in the Erhai Lake Basin were mainly influenced by a combination of anthropogenic and 
natural factors, with human activities and policy variations playing dominant  roles53. This study conducted 
principal component analysis (PCA) on five indices (see Supplementary Table S1), revealing that the NDSI, 
which represents the intensity of human activities, exhibited the highest comprehensive contribution in the 
first principal component (PC1). This indicated that human activities and policy factors are the predominant 
drivers of EEQ changes in the Erhai Lake Basin, consistent with previous research  findings30,53. Additionally, 
natural factors, such as climate, belong to the realm of macroscopic regulation and cannot be controlled, while 
anthropogenic factors, such as human activities, can be assessed and controlled through the mutual feedback 
between humans and the ecological  environment54. Consequently, this study primarily analysed the influence 
of human activities and policy changes on the trends of EEQ changes.

Since the 1970s, the urbanisation rate in the Erhai Lake Basin has continuously increased. Moreover, human 
activities in the basin have remained consistently active, causing ecological environmental  damage55. In 1990, 
93.58  km2 (3.61%) and 1031.71  km2 (39.80%) of areas exhibited poor and fair EEQ levels, respectively (Table 5). 
Furthermore, the fishery has considerably increased in Dali City since 1993, and artificial fish feed is directly 
dispersed into Erhai Lake. This has deteriorated the water quality and increased the total nitrogen (TN) and total 
phosphorus (TP)  concentrations56, leading to deteriorated EEQ.

The deteriorating ecological environment has affected the quality of life; thus, the importance of protecting 
the ecological environment to enhance the quality of life has been gradually recognised. The local government 
in China, with support from the United Nations Environment Programme (UNEP) and the United Nations 
Development Programme (UNDP), implemented ‘Investment Planning and Capacity Building for Sustainable 
Development of Erhai Lake Basin’ in 1995–1996. Since 2000, the Erhai Lake Basin has actively promoted 
tourism, leveraging its beautiful alpine lake scenery and distinctive ethnic culture. This has mitigated ecological 
degradation caused by agricultural and industrial  development57, resulting in an overall improvement in the EEQ 
in the Erhai Lake Basin in 1990–2009. However, the absence of planning and delayed infrastructure development 
in the early rural areas around Erhai Lake has led to the rapid proliferation of hotels, inns and restaurants, 
resulting in disorderly and extensive development, as well as ecological degradation in non-coal  mine28,29. 
Consequently, the EEQ in the Erhai Lake Basin seriously deteriorated from 2009 to 2015.

Fortunately, under the guidance of the Government of China to protect the ecological environment of the 
Erhai Lake Basin, the local government has proactively implemented a series of measures since the end of 2015. 
These measures include the establishment of sewage treatment plants, closure of mines, rectification of illegal 
construction works, and the formulation of a series of protection and treatment policies. On 30 May 2018, Dali 
City announced the ‘Three-line Delineation Plan for Ecological and Environmental Protection of Erhai Lake’ 
that defines the key management areas for water ecological protection. In May 2020, the government of the Dali 
Bai Autonomous Prefecture approved the implementation of the ‘Erhai Lake Protection and Governance Plan 
(2018–2035)’. This plan aims to provide directions for the protection and management of the Erhai Lake Basin, 
adopting a systematic and holistic approach to restore the lake basin and establish an ecological security barrier. 
As a result, due to the promotion and policy influence of local government departments, the EEQ in the Erhai 
Lake Basin considerably improved from 2015 to 2020.

Development of ecological quality conservation measures
Water bodies, such as Erhai Lake and rivers, are crucial components of the Erhai Lake Basin. The water quality of 
these bodies is a key factor influencing the ecological environment within the basin. Therefore, considering the 
water bodies is helpful for a more comprehensive quantification of the EEQ within the Erhai Lake Basin. This, 
in turn, is of great significance for formulating effective measures to promote the sustainable development of the 
region. Based on the EEQ assessment results of the Erhai Lake Basin from 1990 to 2020 and the characteristics 

Figure 7.  Changes in the EEQ levels of land areas and water bodies in the Erhai Lake Basin from 1990 to 2020. 
(a) Land and (b) water.
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Table 6.  Transition matrix for the EEQ in the Erhai Lake Basin from 1990 to 2020.

1990–1995 1990

1995

Area  (km2) Poor Fair Moderate Good Excellent

Poor 71.24 59.22 0.40 0.13 0.00

Fair 22.24 884.97 136.78 41.38 1.40

Moderate 0.09 85.89 502.48 143.44 8.69

Good 0.00 1.62 62.48 387.12 176.28

Excellent 0.00 0.01 0.09 2.60 3.70

1995–2000 1995

2000

Area  (km2) Poor Fair Moderate Good Excellent

Poor 35.54 2.57 0.02 0.00 0.00

Fair 94.75 788.49 37.43 6.40 0.04

Moderate 0.68 281.07 411.50 33.71 0.28

Good 0.03 14.45 284.67 446.25 1.73

Excellent 0.00 0.20 6.97 141.14 4.35

2000–2005 2000

2005

Area  (km2) Poor Fair Moderate Good Excellent

Poor 23.81 27.76 0.16 0.01 0.02

Fair 14.28 752.67 61.43 5.90 0.76

Moderate 0.05 139.32 475.31 68.11 3.16

Good 0.00 6.88 181.81 546.00 65.90

Excellent 0.00 0.48 8.54 127.10 82.83

2005–2009 2005

2009

Area  (km2) Poor Fair Moderate Good Excellent

Poor 32.41 25.18 0.17 0.04 0.00

Fair 19.10 653.57 70.90 18.10 3.02

Moderate 0.19 153.49 417.30 67.81 10.78

Good 0.05 2.74 192.59 508.47 79.01

Excellent 0.00 0.05 4.98 206.18 126.15

2009–2015 2009

2015

Area  (km2) Poor Fair Moderate Good Excellent

Poor 45.40 56.45 2.79 0.88 0.05

Fair 12.37 667.25 207.44 40.80 4.92

Moderate 0.03 39.00 389.71 169.07 14.60

Good 0.01 1.69 47.72 512.49 158.73

Excellent 0.00 0.31 1.88 59.61 159.06

2015–2020 2015

2020

Area  (km2) Poor Fair Moderate Good Excellent

Poor 48.37 20.08 0.96 0.18 0.02

Fair 56.37 759.00 80.65 17.33 5.16

Moderate 0.73 147.10 391.34 50.15 11.46

Good 0.09 5.97 135.02 558.52 64.26

Excellent 0.00 0.63 4.44 94.45 139.96

Table 7.  EEQ changes in the Erhai Lake Basin from 1990 to 2020.

Quality/year

Improved Unchanged Degraded

Area  (km2) Percentage Area  (km2) Percentage Area  (km2) Percentage

1990–1995 175.02 6.75 1849.52 71.35 567.72 21.90

1995–2000 823.95 31.79 1686.12 65.04 82.19 3.17

2000–2005 478.45 18.46 1880.62 72.54 233.19 9.00

2005–2009 579.37 22.35 1737.90 67.04 275.00 10.61

2009–2015 162.62 6.27 1773.91 68.43 655.73 25.30

2015–2020 444.81 17.16 1897.19 73.19 250.26 9.65
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of the Erhai Lake Basin, this study proposes the following suggestions: (1) building a robust ecological security 
barrier, optimizing the urban green space pattern, and promoting sustainable development; (2) enhancing the 
effectiveness of the "Erhai Lake Protection and Governance Plan," including strengthening the construction 
of sewage treatment facilities, regulating the construction of hotels, restaurants, and other establishments, 
and enhancing publicity for Erhai Lake protection; (3) utilizing remote sensing and geographic information 
technology to establish a specialised monitoring system for the ecological environment management of the 

Figure 8.  Sankey diagram of the EEQ changes in the Erhai Lake Basin from 1990 to 2020.

Figure 9.  Kernel density distribution of EEQ improvement in the Erhai Lake Basin from 1990 to 2020.
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Erhai Lake Basin, achieving dynamic, effective, quantitative monitoring and evaluation, and providing rapid 
and timely feedback.

Limitations and future works
Herein, the WBEI and EEQ in the Erhai Lake Basin were validated and determined, respectively, from 1990 to 
2020; however, some limitations exist. Firstly, an empirical model was used to estimate the TLI. However, water 
bodies in plateau lakes exhibit highly complex water compositions and distinct regional  characteristics58. In 
addition to chlorophyll-a, water transparency, TN and TP should be used to evaluate water  quality59. These may 
be the reasons for the low correlation coefficient between the EEQ and TLI of water bodies. Secondly, the results 
of SG filtering were used to fill in the missing data. However, the details preserved after SG filtering may include 
abnormal  information60, potentially introducing errors in the filled results.

For future studies, the combination of water transparency, chlorophyll-a, TN and TP should be considered 
to calculate TLI, further evaluate the performance of WBEI in assessing the EEQ of water bodies. WBEI could 
consider more water spectrum of different regions for improving the applicability of evaluating water EEQ. And 
more effective filtering methods such as weighted Whittaker  smoother60 could be considered.

Conclusions
In this study, the performance of WBEI in the EEQ assessment in land areas and water bodies was evaluated. 
Then, the spatiotemporal evolution characteristics of the EEQ from 1990 to 2020 in the Erhai Lake Basin 
were quantitatively analysed using WBEI, and the driving factors of the EEQ evolution were revealed. The 
spatiotemporal evolution characteristics of the EEQ exhibited a trend of initial degradation, subsequent 
improvement, further degradation and a rebound. The regions with poor and fair EEQ levels were mainly 
concentrated around Erhai Lake, which has a high urbanisation level and relatively flat terrain. Among them, the 
EEQ levels in 1990, 1995 and 2015 were not optimistic, and the regions with unsatisfactory EEQ (poor and fair) 
levels accounted for 43.41%, 47.01% and 40.05% of the total basin area, respectively. The EEQ level improved 
in 1995–2000, 2000–2005, 2005–2009 and 2015–2020. The improved area was the largest from 1995 to 2000, 
covering 823.95  km2 and accounting for 31.79% of the total basin area. By analysing the data on the EEQ in the 
Erhai Lake Basin from 1990 to 2020 and the planning documents of the local government on the management 
of the region, we confirmed that the EEQ was primarily affected by human activities and policy variations. The 
findings of this study can serve as a scientific basis for formulating sustainable development policies and the 
planning and management of the Erhai Lake Basin.

Figure 10.  Kernel density distribution of EEQ deterioration in the Erhai Lake Basin from 1990 to 2020.
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Data availability
All data, models, or codes generated or used during this study are available from the corresponding author upon 
reasonable request.
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