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An air door opening and closing 
time identification and stage 
division method based on the wind 
speed data of a single sensor
Ying Song 1*, Shan Li 1 & Wentian Shang 2

In mines, tunnel ventilation is monitored using wind speed sensors to measure the stability of the 
mine ventilation system. However, opening and closing the air door will cause violent fluctuations 
in the monitoring data of the wind speed sensors. When false alarms are triggered, the staff can 
diagnose only the mine ventilation system based on their experience. A numerical simulation method 
is adopted to explore the changes in the flow field during the opening and closing of the air door to 
address this issue. In addition, a method that is based on the wind speed data of a single sensor is 
proposed to identify the time and divide the stages of air door opening and closing. The experimental 
results showed that the proposed method can successfully identify the air door opening and closing 
time and apply stage division when needed.

In mine ventilation systems, air doors are commonly built in tunnels to control the airflow direction and speed 
to maintain the airflow distribution in conformance with the designed  route1,2. However, during the process of 
opening and closing the air door in the tunnel, the flow field at the air door’s location and the associated tunnel 
will change drastically, resulting in large fluctuations in the wind speed sensor monitoring data for the  tunnel3. 
The fluctuations in the wind speed during this process are greater than those during other activities, such as 
car  operation4. Large data fluctuations can cause wind speed sensor alarms, which interfere with normal mine 
production activities, making the application of mine ventilation management systems extremely  difficult5–8. 
Therefore, it is crucial to identify the time duration and classify the air door opening and closing stages by 
monitoring the wind speed sensor data.

The essence of wind speed monitoring data is time series data. Therefore, fluctuations in the wind speed 
sensor monitoring data, which are caused by opening and closing the dampers, can be considered time series 
anomalies. In recent years, time series anomaly identification methods have been applied in many  fields9,10. In 
blast furnace ironmaking, Zhou et al.11 proposed a method that integrates principal component analysis (PCA) 
and independent component analysis (ICA) to monitor and diagnose furnace anomalies during blast furnace 
ironmaking by using operational data from the BF ironmaking process. In semiconductor fabrication, Hsu 
et al.12 developed a multiple time series convolutional neural network (MTS-CNN) model to distinguish between 
normal and abnormal wafers by collecting monitoring data from multiple sensors. In oil and gas extraction, 
Soriano-Vargas et al.13 studied a visualization and analysis method that is based on an interactive visualization 
of the time series data for anomaly detection through monitoring the data of oil and gas reservoirs. In aviation 
automation, He et al.14 used an anomaly detection and mitigation algorithm that is based on online subspace 
tracking to achieve high accuracy in anomaly detection and low error in data recovery through online unmanned 
aerial vehicle (UAV) flight data. In power quality signals, Rodriguez et al.15 adopted a recurrent long short-term 
memory (LSTM) recurrent neural network (RNN) for power quality disturbance classification through a deep 
convolutional autoencoder and stacking to identify and classify disturbances through power quality signals. In 
speech signal recognition, Cao et al.16 employed an urban noise identification method using convolutional neural 
networks (CNNs) to classify urban noise by utilizing the monitored acoustic signals within a city. In pipeline 
transportation, Zang et al.17 utilized a small leak detection method based on virtual sample generation (VSG) 
and unified feature extraction (UFE) techniques, which improved accuracy in detecting small leaks in pipelines 
through deep mining of basic information and machine learning model training.
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In mine ventilation, several methods exist for the effective detection of fluctuations in wind speed sensor data. 
Huang et al.18 proposed a hybrid coded adaptive evolutionary strategy (ES) algorithm, which can identify the 
location of faults in a ventilation network and predict the range of changes in wind speed data using data from 
multiple wind speed sensors. Zhao et al.19 introduced a method for building a tunnel fault wind speed range 
library using a 0–1 sensitivity matrix and applied an improved support vector machine (SVM) method for fault 
diagnosis and localization. However, the above methods have three major limitations: (i) They cannot be used 
to obtain additional information about a fault after acquiring the reason or location of its occurrence. (ii) They 
are used only for permanent or prolonged failures such as tunnel collapse, broken air doors, or fan malfunction. 
Normal operation with minor variations in time, such as the normal opening and closing of dampers, cannot be 
recognized. (iii) Their performance is significantly influenced by sensor location.

The identification method for air door opening and closing proposed in this paper aims not only to determine 
the air door opening and closing state but also to explore and clarify the relationship between the air door 
opening and closing and the abnormal fluctuation data of the wind-velocity sensor data to conduct intelligent 
identification. To better identify fluctuations in wind speed data caused by the opening and closing of air doors, 
this paper uses image recognition to identify time series data, which is different from the above methods.

This article is organized into five sections, including the current section. In Section "Numerical simulation", 
a numerical simulation is used to explore the air door opening and closing process and identify the specific flow 
field changes in the associated tunnel after closing. In Section "The proposed time identification and stage division 
method", a method for identifying air door opening and closing times and stage division via data enhancement 
via multiscale sliding windows, the extraction of deep features from the data via DWT, the classification of the 
data samples via a classification model, and the correction of the identification results via a regression model 
are proposed. The advantages of the SVM and least absolute shrinkage and selection operator (LASSO) models 
are validated in this paper in terms of their accuracy in air door opening and closing time recognition and stage 
division compared to other classification and correction models through a significant number of experiments, 
as shown in Section "Experimental studies". Conclusions and future work are presented in the last section.

Numerical simulation
In this section, several numerical simulations were conducted to explore the specific changes in the tunnel’s flow 
field during the opening and closing of the air door. The model contains four parts: (1) a brief description of the 
physical model is given in the first part, (2) the mesh generation method and the quality of the final generated 
mesh are discussed in the second part, (3) the selections of the solution model and the parameter settings for 
the numerical simulations are given in the third part, and (4) the numerical simulation results are presented, 
and the flow field laws are summarized in the fourth part.

Physical model
The numerical simulation model in this study refers to the experimental tunnel of the Laboratory of Mine 
Thermodynamic Disasters and Control of Ministry of Education. The tunnel section is rectangular, with a length 
of 2.5 m and a width of 3 m. The air door is located in the middle of the left and right sides of the tunnel. The 
detailed dimensions of the tunnel are shown in Fig. 1a.

Mesh generation
Given the complex geometric structure of the physical model, partition and local encryption methods were used 
to divide the meshes. Tetrahedral meshes were used in areas VI and VII, with air doors within 5 m. Hexahedral 
meshes were used in areas I, II, III, IV, and V. Dense meshes were used within 5 m of the air door, and sparse 
meshes were used in the area.

After the grid dependency test, the final model in this study consisted of 434,700 meshes in the area within 
5 m of the air door, 79,200 meshes in areas VI and VII, and 112,500 meshes in areas I, II, III, IV, and V, for a 

Figure 1.  Physical model after meshing.
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total of 626,400 meshes. Skewness is one of the quality inspection criteria of the mesh basic unit, where a value 
of 0 is the best quality and 1 is the worst quality. After the mesh division, the average skew of the entire model 
was approximately 0.283, and the maximum deflection of the mesh in the entrance area was 0.794. All of these 
values fall within the requirements of the mesh’s maximum deflection being less than 0.97 to ensure good mesh 
quality. The mesh generation results are shown in Fig. 1, where Fig. 1a shows the overall mesh of the model and 
Fig. 1b shows the mesh change process in the area within 5 m of the air door.

Model selection and parameter setting
According to the actual mine ventilation system situation, the inlet and outlet boundaries are set as the velocity 
inlet and pressure outlet, respectively, and the physical quantities of the fluid within the physical model are set 
with reference to air. According to the  literature20–22, the temperature is 20 °C, the humidity is 50%, the pressure 
is atmospheric pressure, the realizable k-ε turbulence model is selected as the solution model, and the coupled 
method with second-order upwind accuracy is selected for the solution. According to the air door motion law, 
the dynamic mesh is updated using the spring analogy model and the local redrawing model. After the time step 
sensitivity analysis, the selected time step is 0.0125 s.

Numerical simulation results
In this section, numerical simulations were conducted based on several condition parameters: (1) the inlet wind 
speed before opening the air door was 3 m/s; (2) the opening and closing angle was 90°; (3) the opening and 
closing speed was 15°/s; and (4) the time duration to open the air door to a fixed angle was 20 s. Figure 2 shows 
the numerical simulation results and the field velocity.

Figure 2 shows that a sudden increase in the wind speed develops during the opening and closing of the air 
door, where its influence is limited to the tunnel area where the air door is located. This is due to the narrower 
cross-section between the two doors compared to the tunnel section. Ultimately, the air door opens and closes 
the overall process, which dramatically changes the flow field. In the tunnel where the air door is located, the 
wind speed is significantly higher, and the flow field changes are more disturbing. In the tandem tunnel, the 
wind speed is slightly higher, and the flow field changes are more stable. In parallel tunnels, the wind speed is 
significantly lower, and the flow field changes are more stable. The flow field can still change even after the air 
door is close to 0°, after which it becomes stable.

The proposed time identification and stage division method
This section describes the specific process of identifying the air door opening and closing time and the stage 
division method. It includes five parts. First, the overall architecture of the proposed time identification and stage 
division method is introduced. Second, the preprocessing step, including discrete normalization and multiscale 
sliding window discretization, is described in detail. Third, the classification steps, including feature vector 
extraction and the classification process, are described. Fourth, we introduce the merging and selection steps. 
Finally, the correction steps of the four regression models and their feature vectors are introduced.

The architecture of the method
Based on the research discussed in the previous two sections, the air door opening and closing time identification 
and stage division method is proposed based on the numerical simulation results. Figure 3 shows the architecture 
of the proposed method.

The proposed method includes four main steps, as follows:

Figure 2.  The flow field changes due to opening and closing the air door.
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Step 1: Preprocessing. The wind speed sensor data segment is processed into time series data with a varied 
range of [0, 1] using outlier normalization. Then, multiple original samples 

{

G2,G4, . . . ,G2s
}

 composed of 
subtime series data are generated using the multiscale sliding window.

Step 2: Classification. The traditional statistics and discrete wavelet transform are used to extract the feature 
vectors from all the subtime series data of each original sample, and multimodels that are dedicated to this sample 
are used to complete the classification process. For example, in the original sample ( Gk ) classification process, 
one of the two classification models ( Mk

o ) is for classifying the air door opening and closing time, and the other 
( Mk

f  ) is for classifying the air door fixed angle opening time. In summary, two types of samples can be generated 
based on the original sample classification results. The first type is for the time identification samples 
{

G2
o ,G

4
o , . . . ,G

2s
o

}

 that are composed of different sets containing subtime series data that belong to the air door 
opening and closing category and its classification confidence. The second type is for stage division samples 
{

G2
f ,G

4
f , . . . ,G

2s
f

}

 , which are composed of multiple sets containing subtime series data that belong to the air 
door’s fixed angle opening category and its classification confidence.

Step 3: Merging and Selection. All the subtime series data in each time identification sample or stage division 
sample are merged using the merge set approach. After the merging is completed for all the samples of both types, 
the optimal air door opening and closing time series data ( Sopo  ) and the optimal air door fixed angle opening 
time series data ( Sopf  ) are selected using the intersection over union (IoU) metric with classification confidence.

Step 4: Correction. Twelve basic features for the two optimal time series are extracted as the input features 
for using the four regression models 

{

R −�t
op
os ,R −�t

op
oe ,R −�t

op
fs ,R −�t

op
fe

}

 . The two optimal time series 
starting and ending times 

{

t
op
os , t

op
oe , t

op
fs , t

op
fe

}

 are corrected. Using the four correction times 
{

t
op′
os , t

op′
oe , t

op′
fs , t

op′
fe

}

 , 
the air door opening and closing times 

[

t
op′
os , t

op′
oe

]

 can be identified and divided into the air door opening stage 
[

t
op′
os , t

op′
fs

]

 , air door fixed angle opening stage 
[

t
op′
fs , t

op′
fe

]

 , and air door closing stage 
[

t
op′
fe , t

op′
oe

]

.

Preprocessing
The wind speed sensor data are continuous time series data. Before processing the data using machine learning, 
data discretization and normalization are performed to obtain good classification  performance23–25.

Dispersion standardization
Data normalization is an important preprocessing step that converts all the data of several ranges to fit in the 
range [0, 1], making different samples  comparable26.

Normalization can be performed via various methods. In this study, deviation standardization is used to 
process the wind speed sensor data. The expression is shown in Eq. (1):

(1)x′ =
(x − xmin)

(xmax − xmin)

Figure 3.  The process of identifying the air door opening and closing time and stage division.
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where x′ represents the normalized data, x represents the wind speed sensor data, xmin represents the minimum 
value of the wind speed sensor data, and xmax represents the maximum value of the wind speed sensor data.

The wind speed monitoring data {x1, x2, . . . , xL} change to 
{

x′1, x
′
2, . . . , x

′
L

}

 after dispersion standardization 
is applied.

Multiscale sliding window discretization
Discretization, which converts continuous data into discrete data with a finite number of intervals, is one of 
the most basic data partitioning techniques. Using discretized data allows for the construction of more efficient 
machine learning  models27–29. Similar to most other time sequences, wind speed sensor data have multiscale 
properties. Figure 4 shows that the data at different scales can show different patterns. Therefore, the adopted 
discrete method in this study is the multiscale sliding window.

Based on the Coal Mine Safety Regulations in China and the data characteristics of the wind speed sensor 
data, the parameter constraints are  obtained4. The parameters that are selected for the multiscale sliding window 
obey the following two constraints:

Equation (2) is the constraint of the sliding window scale, where W is the set of the sliding window scale, wi 
is the sliding window scale, and Pmin and Pmax represent the minimum and maximum values of a reasonable 
sliding window scale, respectively. When Pmin is greater than or equal to 2, Pmax is less than the quickest air door 
opening and closing time. Equation (3) is the constraint of the sliding distance, where ti,k is the sliding distance 
of the wi scale sliding window and li,k is the remaining length of the time series data after the wi scale sliding 
window has been slid k times.

According to the two constraints of the multiscale sliding window, a segment of the normalized wind speed 
sensor data 

{

x′1, x
′
2, . . . , x

′
L

}

 is discretized by a multiscale sliding window to generate multiple original samples 
{

G2,G4, . . . ,G2s
}

 . The expression of each sample is shown in Eq. (4):

where Gk represents the sample discrete by the k-scale sliding window and Ski  represents the subtime series data 
within the ith k-scale sliding window. Ski =

{

x′i·k+1, x
′
i·k+2, . . . x

′
i·k+k

}

 when i  = n ; Ski =
{

x′L−k , x
′
L−1, . . . , x

′
L

}

 
when i = n.

(2)Pmin ≤ {W |wi} ≤ Pmax

(3)











ti,k =
wi

2
li,k ≥

wi

2

ti,k = li,k li,k <
wi

2

(4)
{

Gk|Ski

}

, i = 1, 2, . . . , n

Figure 4.  An example of continuous data discretized by a multiscale sliding window.
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Classification
This section introduces two major points: the composition of the feature vectors extracted from each subtime 
series and the classification process for the specific flow.

Feature extraction method based on the DWT and statistics for the subtime series data
Statistical features can fully express the global information of subtime series data. Each subtime series statistical 
feature includes the mean value x′ , the minimum value x′min , the maximum value x′max , and the standard deviation 
σ . The expressions of the features used in this study are listed in Table 1.

However, the limited statistical features cannot fully express the sample’s fluctuation information. A method 
for extracting fluctuation characteristics based on the DWT is proposed to mine the hidden information from 
subtime series data.

The DWT is a signal represented by a finite length or a fast-decaying oscillatory waveform that is scaled and 
panned to match the input data. It overcomes short-time Fourier transform (STFT) deficiencies with a good 
time–frequency local analysis capability and multiresolution analysis characteristics, which makes it widely used 
in signal and image recognition and detection. The process of a discrete wavelet transformation of the subtime 
series data can be expressed using Eq. (5):

where f (t) is subtime series data, WTf (q,w) is subtime series data resulting from discrete wavelet transform data, 
t  is the sequence of data, q is a scale parameter, w is the translation parameter along the time axis, and ψq,w(t) is 
a wavelet base function. In this study, the db1 wavelet is used.

After processing by the DWT, the subtime series data are decomposed into several layers, each consisting of 
several high- and low-frequency coefficients. The fluctuation features are obtained by performing entropy sum 
calculations on the high- or low-frequency coefficients obtained from the multilayer decomposition. The entropy 
sum formula for any layer of the low- and high-frequency coefficients is calculated using Eq. (6):

where ejs represents the entropy sum of the low-frequency coefficients in layer j , ejd represents the entropy sum of 
the high-frequency coefficients in layer j , csji represents the i th low-frequency coefficient in layer j , cdji represents 
the i th high-frequency coefficient in layer j , ns represents the total number of low-frequency coefficients in layer 
j , and nd represents the total number of high-frequency coefficients in layer j.

Since this article uses a db1 wavelet with a filter length of 2, the number of decomposition layers is calculated 
using Eq. (7):

where l  represents the number of decomposable layers.
According to Eq. (6) and Eq. (7), the fluctuation features of each subtime series data are composed as shown 

in Eq. (8):

where Cf  represents the set of fluctuation features, eis represents the entropy sum of the low-frequency coefficients 
in the i-layer, and eid represents the entropy sum of the high-frequency coefficients in the i-layer.

In summary, each subtime series feature vector consists of several statistical and fluctuating features. The 
subtime series data feature vector Ck

i  is shown in Eq. (9):

(5)WTf (q,w) =

∫

Rf (t) · ψq,w(t) dt

(6)























ejs =

ns
�

i=1

−csji × log
csji
2

ejd =

nd
�

i=1

−cdji × log
cdji
2

(7)l =
[

logk2

]

(8){Cf |eis , eid}i = 1, 2, . . . , l

(9)Ck
i =

(

x′, x′min, x
′
max, σ

2, e1s , e1d , . . . , eLs , eLd
)T

Table 1.  Four statistical features.

Statistical features Expression

Mean value x′ =

∑

k

i
x
′
i

k

Minimum value x
′
min

= min(Sk
i
)

Maximum value x′max = max(Sk
i
)

Standard deviation σ =

∑

k

i
(x′

i
−x′)

k
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To illustrate the feature vector clearly, Table 2 shows the composition of the feature vectors that are extracted 
by 2, 4, and 8 data lengths with the subtime series data covering the air door closing time and other times.

Classification process for the specific flow
Multiple models ( 

{

M2
o ,M

4
o , . . . ,M

2s
o

}

 and 
{

M2
f ,M

4
f , . . . ,M

2s
f

}

 ) are used in the classification process. Their 
training and testing data can be found in Section "Experimental studies" of this article. Through the classification 
process, multiple time identification samples 

{

G2
o ,G

4
o , . . . ,G

2s
o

}

 and multiple stage division samples 
{

G2
f ,G

4
f , . . . ,G

2s
f

}

 can be obtained. This is an important prerequisite for air door opening and closing time 
identification and stage division. Algorithm 1 shows the procedure for the classification process.

Inputs: multiple origin samples
2 4 2{ , ,..., }sG G G  , multiple classification 

models
2 4 2{ , }so o oM M M, . . . , for classifying the air door opening and closing 

time from other times, multiple classification models
2 4 2{ , }so o oM M M, . . . , for 

classifying the air door fixed angle opening time from other times;

Outputs: multiple time identification samples
2 4 2{ , ,..., }so o oG G G  , multiple

stage division samples
2 4 2{ , ,..., }sf f fG G G .

1. establish multiple empty samples 
2 4 2{ , ,..., }so o oG G G and

2 4 2{ , ,..., }sf f fG G G
2. for k in 2, 4, … ,2 s do
3.   j, h = 0, 0

4.   for I in 1, 2, …, n do
5.     Realize 

k
iS →

k
iC by Eq. (6), Eq. (7) and Table 1. Expression

6.     classify 
k
iC by

k
oM

7.     if k
iC Category = air door opening and closing time then

8.       
k
oG append [

k
iS ,Category confidence

k
io ] j

9.        j = j + 1

10.     end if
11.     classify 

k
iC by

k
fM

12.     if k
iC Category = air door fixed angle opening time then

13.       
f
oG append [

k
iS ,Category confidence

k
if ] h

14.        h = h + 1

15.     end if
16.   end for
17.end for

Algorithm 1.  Classification process.

Merging and selection
This section introduces two main processes. The first introduces the merging process of the subtime series. The 
second introduces the process of selecting the optimal time series based on the IoU and the confidence.

Subtime series merging
Each time identification sample or stage division sample has many overlapping or nonoverlapping subtime series 
data, which are all part of the target time series that is selected by the classification model, as shown in Fig. 5. 
Therefore, we need to overlap the judgements and merge the two subtime series.

The IoU is used to determine whether two subtime series of data overlap. The IoU between two subtime series 
of data can be calculated using Eq. (10):

where Ska and Skb represent the two subtime series data.

(10)IoUab =
Ska ∩ Skb
Ska ∪ Skb

Table 2.  Comparison of 2-, 4-, and 8-length target and non-target subtime series data features.

Data curve Data length Data time x xmin xmax σ
2

e1s e1d e2s e2d e3s e3d

2 Other 0.500 0.442 0.558 0.082 0.048 0.500 – – – –

2 Air door closing 0.851 0.798 0.903 0.075 0.042 − 0.774 – – – –

4 Other 0.476 0.356 0.558 0.047 0.031 0.959 0.128 0.129 – –

4 Air door closing 0.834 0.798 0.903 0.050 0.050 − 1.332 0.011 − 4.110 – –

8 Other 0.404 0.308 0.558 0.101 0.041 1.919 0.136 0.650 0.191 − 0.501

8 Air door closing 0.764 0.548 0.903 0.110 0.102 − 1.369 0.169 − 5.942 0.182 − 10.401
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When the IoU is greater than 0, the two time series data overlap. The union method is used to merge the two 
subtime series of data. The merging of the two overlapping subtime series data and the confidence calculation 
of the merged subtime series data are shown in Eq. (11):

where Skm represents the merged subtime series data, ckm represents the confidence of the merged subtime series 
data, and cka and ckb represent the confidence of Ska and Skb , respectively.

Based on the overlapping judgement and merging of the two time series datasets, a merging method for each 
sample time series is proposed. Algorithm 2 shows the merging process of the multiple time identification 
samples 

{

G2
o ,G

4
o , . . . ,G

2s
o

}

 using this method. The merging process of the stage division samples 
{

G2
f ,G

4
f , . . . ,G

2s
f

}

 
using this method is the same.

Algorithm 2.  Time identification samples time series data merging process.

Optimal time series selection based on the IoU and the confidence
For multiple merged identification samples 

{

G2′
o ,G

4′
o , . . . ,G

2s′
o

}

 or multiple merged stage division samples 
{

G2′
f ,G

4′
f , . . . ,G

2s′
f

}

 , their subtime series data are considered preliminary identification results. These results 
include an error result and an accuracy gap between the correct results, as shown in Fig. 6. Therefore, an optimal 
time series selection method based on the IoU and the confidence interval is proposed.

In this method, the IoU threshold is used to eliminate incorrect results. Initially, an IoU threshold is set. If 
the average IoU value of a result is smaller than the threshold, the IoU value is eliminated. In this study, the IoU 
threshold is set to 0.1. After eliminating the error, the result with the highest confidence is selected as the optimal 
recognition result. The average IoU of each recognition result is calculated using Eq. (12):

(11)











Skm = Ska ∩ Skb

ckm =
cka + ckb

2

Figure 5.  Example of different sample subtime series data before the merge.
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where IoUv
m represents the average IoU of the Svm subtime series and the other subtime series data, ns represents 

the number of time series data in Gk
o or Gk

f  , and nk represents the number of time identification samples or stage 
division samples.

Using the optimal time series selection based on the IoU and the confidence method, the optimal air door 
opening and closing time series data ( Sopo  ) and its confidence ( copo  ) can be selected from the time identification 
samples 

{

G2′
o ,G

4′
o , . . . ,G

2s′
o

}

 . The optimal air door fixed angle opening time series data ( Sopf  ) and its confidence 
( copf  ) can be selected from the stage division samples 

{

G2′
f ,G

4′
f , . . . ,G

2s′
f

}

.

Correction
Four regression models are established in this method. R− △ t

op
os  and R− △ t

op
oe models with the start time 

correction △ t
op
os  and end time correction △ t

op
oe of the optimal air door opening and closing time series data Sopo  . 

R− △ t
op
os  and R− △ t

op
oe models with the start time correction △ t

op
fs  and end time correction △ t

op
fe  of the optimal 

air door opening and closing time series data Sopf  . In the training or testing of these regression models, the feature 
vector can be expressed using Eq. (13):

where Cl represents the feature vector, Top
o  is the duration of the optimal air door opening and closing time series, 

x
op
o  is the mean of the optimal air door opening and closing time series, σ op

o  is the mean of the optimal air door 
opening and closing time series, Top

f  is the start time of the optimal air door fix angle opening time series having 
a fixed angle, xopf  is the mean of the optimal air door fix angle opening time series, and σ op

f  is the mean of the 
optimal air door fix angle opening time series.

By applying four corrections for the time {�t
op
os ,�t

op
oe ,�t

op
fs ,�t

op
fe } , the four times 

{

t
op
os , t

op
oe t

op
fs , t

op
fe

}

 are 
corrected as 

{

t
op′
os , t

op′
oe , t

op′
fs , t

op′
fe

}

 . The air door opening and closing time series data Sop′o  can be located by 
[

t
op′
os , t

op′
oe

]

 . The air door opening stage Sop′oo  , air door fixed angle opening stage Sop′f  , and air door closing stage Sop′c  
can be characterized by [top′os , t

op′
fs ] , [top′fs , t

op′
fe ] , and [top′fe , t

op′
oe ] , respectively.

Experimental studies
In this section, some experiments are conducted to verify the effectiveness of the proposed method. This section 
includes three parts: (1) the experimental system and data description, (2) the evaluation indices of the proposed 
method, and (3) experimental studies on the identification and division of air door opening and closing times.

Experimental system and data description
This section is composed of two parts. The first part explains the principles of the experimental system design 
and the equipment configuration. The second part describes the experimental data.

Experimental system
The experimental model is designed according to the numerical simulation model and the flow similarity 
principle. To satisfy the geometric similarity between the experimental model and the original model, the overall 
similarity scale was taken as 1:16, and the rate of change in the length direction was taken as  230.

According to the  literature30–32, within two geometrically similar models, the flow field enters the second self-
simulation zone when the Euler number (EU) is independent of the Reynolds number (RE), satisfying the flow 
similarity principle. We explored the similarity between the EU and RE by changing the wind speed to obtain 
the relationship between them in the experimental model and the numerical simulation model. Figure 7 shows 
the results of the EU with the RE within the experimental and numerical simulation models.

(12)
IoUv

m =

nk
∑

k=1

(

ns
∑

s=1

Svm∩S
k
s

Svm∪S
k
s

)

ns · nk
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Figure 6.  An example of the preliminary identification results.
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Figure 7 shows that the Euler numbers of both the experimental and numerical simulation models do not 
change when the Reynolds number is greater than 0.75 ×  105. Therefore, when the inlet wind speed is greater than 
7.9 m/s in the numerical simulation model and greater than 0.49 m/s in the experimental model, the dynamics 
of the two flow fields can be considered similar.

According to the above, an experimental system with variable air door opening and closing parameters was 
designed, as shown in Fig. 8. Figure 8a shows the size and principles of the experimental system, whereas Fig. 8b 
is an entity diagram of the experimental system.

The experimental system included a parallel connection ventilation pipeline, an air supply system, a wind 
speed monitoring system, and an electric air door. The wind speed monitoring system was arranged according to 
the position regulations of the sensors in the mine. The parallel connection ventilation pipeline was made using 

Figure 7.  Curves of the variation in EU with respect to RE within the numerical simulation model and the 
experimental model.

Figure 8.  Experimental system.
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a 4.8 mm thick acrylic board. The air supply system consisted of two ventilation fans connected in parallel, with 
a maximum ventilation capacity and rotating speed of 2206  m3/h and 2350 r/min, respectively, for every fan. The 
wind speed monitoring system is composed of four ventilation meter (model TSI-9565). The electric air door’s 
maximum opening angle was 90°, and the fastest opening and closing speed was 15°/s.

Experimental data
There were four variable parameters for the experimental system: inlet wind speed, air door opening and closing 
speed, air door opening and closing angle, and air door fixed angle opening time. Under the premise that the air 
door starts opening at 10 s, experiments were carried out for 240 working conditions by arranging and combining 
the different values of the four parameters, as shown in Table 3.

Some of the working conditions are shown in Table 4, and their data are displayed in Fig. 9.
According to Fig. 9, the abnormal fluctuation time and amplitude of the wind speed data at each measurement 

point under different working conditions are different, but the trend is consistent with that of the flow field in 
the numerical simulation.

Evaluation indices of time identification and stage division
To verify the identification effect of the proposed method on the air door opening and closing time, three 
indicators, namely, the accuracy ( AC ), precision ( PR ), and recall ( RE ), were selected. The average value of these 
indicators in every air door opening and closing stage was taken to evaluate the effect of the opening and closing 
stage division. These were calculated using the numbers of true positives ( TP ), true negatives ( TN ), false negatives 
( FN ), and false positives ( FP ). True positive (TP) refers to instances correctly identified as the event of interest. 
True negative (TN) refers to instances correctly identified as not being the event of interest. False negative (FN) 
refers to instances where the event of interest is not identified when it should have been. False positive (FP) 
refers to instances incorrectly identified as the event of interest when they are not. Equations (14)–(16) are the 
expressions used in these calculations.

Experimental studies
In this section, 960 experimental data points representing 240 working conditions and 4 speed measurement 
points were used as the dataset. Fifty per cent of the dataset was used as the training set for the classification 
model, 30% was used as the training set for the regression model, and 20% was used as the test set for the overall 

(14)AC =
TP + TN

TP + FP + TN + FN

(15)PR =
TP

FP + TP

(16)SE =
TP

TP + FN

Table 3.  Specific parameters of each component of the air door opening and closing factors.

Parameter Values

1 3°/s, 5°/s, 10°/s, 15°/s

2 5 s, 10 s, 20 s, 30 s, 40 s

3 45°, 60°, 75°, 90°

4 8.5 m/s, 9.5 m/s, 10.5 m/s

Table 4.  Setting of each parameter condition.

Work condition Parameter 1 Parameter 2 (s) Parameter 3 Parameter 4 (m/s)

1 3°/s 5 60° 9.5

2 0°/s 0 0° 10.5

3 3°/s 5 60° 10.5

4 10°/s 5 60° 10.5

5 3°/s 30 60° 10.5

6 3°/s 5 90° 10.5

7 10°/s 30 90° 10.5
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method. To avoid any experimental bias, 10 cross-validations of the method effect were performed after each 
parameter change.

A comparison of the effects of time identification and stage classification of the ten model combinations was 
conducted to select the optimal combination of the classification and regression models. Among the ten model 
combinations, the classification models that were used were  SVM33, random forest (RF)34, gradient boosting 
decision tree (GBDT)35, Bayesian network (BN)36, and backpropagation neural network (BPNN)37. The  LASSO38 
and elastic net regression (ENR)39 regression models were used.

A comparison of each indicator is shown in Fig. 10. The accuracy, precision, and recall of this method for 
air door opening and closing time identification and stage division are optimal when using the SVM model for 
classification and the LASSO model for regression.

To determine the optimal number of sliding windows, the effects of the method when the sliding window 
scale varied from 1 to 9 were compared. A comparison of all the indicators is shown in Fig. 11. The results show 
that when the number of sliding windows reaches 8, the accuracy, precision, and recall reach stability. Therefore, 
the optimal number of sliding windows is 8.

Through the above work, the optimal parameters of the method were obtained for air door opening and 
closing time identification and stage division. The accuracy, precision, and recall rate of the method using the 
optimal parameters for air door opening and closing time identification and stage division are above 90% and 

Figure 9.  Variation in the wind speed data at each position with different parameters.
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62%, respectively. Figure 12 shows the effect of the method on the time identification and phase classification 
for some data.

Conclusion
In this paper, a numerical simulation of the air door opening and closing process was conducted. The simulation 
results suggest the applicability of the proposed method in identifying the time of air door opening and closing, 
which can further be used for dividing the stages. Furthermore, this method was verified using an experimental 
approach. This can assist in realizing a basic theory for intelligent mine ventilation.

The proposed method in this study has four important implications. First, the method is based on single wind 
speed sensor data for air door opening and closing time identification and stage division, using less information 
to obtain more data while reducing the dependence on both the number and location of sensors. Second, 
the proposed feature extraction method, which is based on the DWT and statistical methods, can mine local 
fluctuation information and global information for subtime series data, and the extracted features are rich and 
interpretable. Third, the sequence of steps that need to be identified and then corrected can accurately solve 
the inconsistency between the air door opening and closing times and the flow field change time. Finally, with 
some additional improvements in the framework used in this method, it can be applied to the identification of 
other production activities that can cause abnormal fluctuations in wind speed monitoring data, such as mine 
car operation and cage hoisting.

The current method is suitable only for opening and closing air doors. Other production activities, time 
identification and stage division, and multiproduction activity classification are topics that should be considered 
in future investigations.

Figure 10.  Individual indicator comparative analysis of different method combinations when the number of 
sliding window scales is 8.

Figure 11.  Individual indicator comparative analysis of different sliding window scale numbers when the 
method combination is SVM-LASSO.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8622  | https://doi.org/10.1038/s41598-024-59334-7

www.nature.com/scientificreports/

Figure 12.  Part of the working conditions wind speed data time for air door opening and closing recognition 
and stage division effect diagram.
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Data availability
A summary of the data used in this study is included in the paper, and a detailed data sample will be available 
upon request by contacting the corresponding author (201613602@sdtbu.edu.cn).
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