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Multimodal ECG heartbeat 
classification method based 
on a convolutional neural network 
embedded with FCA
Feiyan Zhou 1,2,3* & Duanshu Fang 1,2,3

Arrhythmias are irregular heartbeat rhythms caused by various conditions. Automated ECG signal 
classification aids in diagnosing and predicting arrhythmias. Current studies mostly focus on 1D ECG 
signals, overlooking the fusion of multiple ECG modalities for enhanced analysis. We converted ECG 
signals into modal images using RP, GAF, and MTF, inputting them into our classification model. To 
optimize detail retention, we introduced a CNN-based model with FCA for multimodal ECG tasks. 
Achieving 99.6% accuracy on the MIT-BIH arrhythmia database for five arrhythmias, our method 
outperforms prior models. Experimental results confirm its reliability for ECG classification tasks.

Keywords ECG, Multi-modal fusion, Classification, Convolutional neural network, Frequency-channel 
attention

Cardiovascular diseases (CVDs) are a significant global health concern, responsible for an estimated 17.9 million 
deaths  annually1. The high prevalence of CVDs leads to substantial medical  expenses2. Electrocardiogram (ECG) 
analysis plays a pivotal role as a non-invasive diagnostic tool for cardiovascular  ailments3. An ECG signal typically 
showcases four fundamental waveforms: the P wave, QRS complex, T wave, and U  wave4. Nonetheless, due to 
the intricate and dynamic nature of ECG signals, classifying ECG heartbeats poses a challenge for  researchers5. 
As such, the development of intelligent diagnostic systems is paramount in advancing  cardiology6.

Early approaches to heartbeat classification using ECG signals relied on signal  processing7and statistical 
 techniques8for feature extraction. The strength of these conventional methods lies in their ability to segregate 
feature extraction from pattern classification. In recent years, deep learning has exhibited remarkable performance 
and brought about significant innovations across various domains, including computer  vision9, natural language 
 processing10, strategic  games11, and medical  fields12. Notably, research efforts have focused on leveraging deep 
learning techniques for automatic feature learning and ECG beat  classification13, utilizing models such as Deep 
Neural Networks (DNN)14, Convolutional Neural Networks (CNN)15, Recurrent Neural Networks (RNN)16, and 
Generative Adversarial Networks (GAN)17 to analyze arrhythmia and ECG signals. Yuanlu Li et al.18designed 
an improved residual network for arrhythmia classification and proposed an overlapping segmentation method 
to overcome the problem of inter-class data imbalance. Oh et al.19 proposed an automatic system that uses a 
combination of CNN and Long Short-term Memory (LSTM) for arrhythmia detection to handle ECG signals 
of different lengths. Yang, F et al.20 proposed a convolutional block called PDblock, which consists of pointwise 
convolutional layers and deep convolutional layers, and used a loss function to improve arrhythmia classification 
results, achieving good results on the MIT-BIH arrhythmia (MIT-BIH-AR) database. The aforementioned 
methods primarily focus on treating ECG data as a 1D time series. Nevertheless, some researchers have identified 
limitations in these conventional approaches. Few previous methods have explored how to integrate multiple 
modules to inherit the advantages of time series. Chen et al.21 introduced a cross-modal data processing method, 
which not only enhances model performance but also improves model robustness. In a similar vein, Han et al.22 
transformed ECG signals into GAF images, integrating them with the original ECG signals as multimodal inputs 
which enables the model to learn complementary information between different modalities. Furthermore, Yang 
et al.23 considered different leads as distinct views, effectively leveraging the diversity of the 12 lead features and 
achieving commendable outcomes in multi-label tasks.
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The above research results strongly indicate that the integration of multiple modalities in ECG analysis 
helps overcome the limitations of individual modalities, enhancing the accuracy of analysis and classification 
 tasks24. This study employs three distinct data conversion methods to transform 1D ECG signals into three 2D 
datasets, extracting valuable information and high-dimensional features suitable for nonlinear classifiers. A novel 
classification method for arrhythmia, combining deep residual CNN and frequency channel attention (FCA)25, 
is introduced to address the issue of insufficient channel attention information, thereby enhancing the ECG 
classification model’s performance. Various techniques like Noise Augmentation, Geometric Transformation, 
and other data augmentation methods are extensively employed in the realm of deep learning. Among these, 
SMOTE (Synthetic Minority Over-sampling Technique) stands out as a method that creates a new sample in 
each direction by randomly selecting the k nearest neighbors from the minority class. The fundamental concept 
underlying this approach is not to alter the data itself but to create fresh data derived from the original dataset. 
While the Borderline-SMOTE26 technique utilized in this study is conceptually akin to SMOTE, it only over-
sampling or reinforcing the minority instances situated at the borderline. The effectiveness of the proposed 
method is validated using the MIT-BIH-AR database, exhibiting significant enhancements in experimental 
results.

The subsequent sections of this paper are organized as follows: “Material and method” delineates the proposed 
model structure, “Experiments” presents experimental details, “Result and discussion” discusses the results, and 
“Conclusion” concludes the study.

Material and method
Material
ECG database
This study utilizes the MIT-BIH-AR  database3. As shown in Table 1, The arrhythmias are categorized into five 
types based on the Association for the Advancement of Medical Instrumentation (AAMI)27 standard, which 
includs normal (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F), 
and unknown beat (Q)  categories28. The MIT-BIH-AR database comprises 48 half-hour-long ECG recordings 
sampled at a rate of 360 Hz from 47 different subjects. Over 110,000 annotations were independently reviewed 
and annotated by two or more cardiac experts. Furthermore, each recording includes two ECG derivations, with 
only lead II utilized in this study.

ECG preprocessing
Preprocessing the raw obtained ECG signals is necessary, as they are often contaminated by different types 
of noise, such as baseline drift, power line interference, and patient electrode motion  artifacts29. In order to 
enhance the signal-to-noise ratio (SNR) and streamline R-peak detection and heartbeat classification, this study 
preprocesses the raw ECG signals by employing a bandpass filter with a frequency range of 0.5 to 50 Hz to reduce 
noise levels. The waveforms of both the original and filtered ECG signals can be observed in Fig. 1.

Table 1.  AAMI recommended classes for heartbeats.

Class Symbol Members

Normal N

Normal beat
Left bundle branch block beat
Right bundle branch block beat
Atrial escape beat
Nodal(junctional)escape beat

Supraventricular Ectopic
Beat SVEB

Atrial premature beat
Aberrated atrial premature beat
Nodal (junctional) premature beat
Supraventricular premature or ectopic beat (atrial or nodal)

Ventricular ectopic beat VEB Premature ventricular contraction
Ventricular escape beat

Fusion beat F Fusion of ventricular and normal beat

Unknown beat Q
/Paced beat
Fusion of paced and normal beat
Unclassifiable beat

Figure 1.  The ECG signals from the MIT-BIH-AR database before and after filtering with the bandpass filter.
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We utilize the R-peak annotations from the MIT-BIH-AR database for heartbeat classification. Each R-peak 
annotation is associated with 324 samples, including 144 samples before and 180 samples after the peak, capturing 
the complete heartbeat. Subsequently, the filtered ECG signals undergo resampling to 224 Hz before proceeding 
to the subsequent stage for additional processing.

ECG signal to image transformation
The input for the proposed model involves converting the ECG signal heartbeats into RP, GAF, and MTF images.

Image formation by a recurrence plot (RP)
Recurrence networks, derived from nonlinear time series, can extract hidden features from complex dynamic 
systems. Among the main methods for analyzing nonlinear time series networks, the recursive network method 
is an important tool for studying such complex  systems30. Let q(t) ∈ Rd be a multivariate time series; then, a 
recurrence network can be defined as follows:

In Eq. (1), ε is the threshold and θ is referred to as the weight function. The heartbeat images transformed by 
RP are shown in Fig. 2.

Image formation by a gramian angular field
A gramian angular field (GAF) transforms 1D time series into 2D images through three steps, scaling, coordinate 
axis transformation, and trigonometric functions, thereby applying computer vision techniques to time series 
 analysis31. Assuming a time seriesX = {x1, x2, ...xi , ...xN } , first, X is normalized so that all its values are between 
[−1, 1] or [0, 1], which can be respectively expressed as:

Afterward, the scaled sequence data is transformed into a polar coordinate system according to Eq. (4), where 
the values are treated as the cosine values of the angles, and the timestamps are treated as the radii.

(1)RP = θ(ε − ||q(i)− q(j)||)

(2)x i
−1 =

(xi −max(X))+ (xi −min(X))

max(X)−min(X)
,

(3)x i
0 =

xi −min(X)

max(X)−min(X)
.

Categories N S V F Q

Heartbeat

RP Images

MTF Images

GAF Images

Figure 2.  RP, MTF and GAF images of MIT-BIH-AR dataset according to the five different heartbeats.
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A Gramian angular summation field (GASF) and a Gramian angular difference field (GADF) are defined as 
follows:

Image formation by a Markov transition field
Markov chains can be used to model state-to-state transitions in a  system32. The Markov Transition Field is an 
improvement based on the first-order Markov chain, which overcomes the problem of insensitivity to sequential 
temporal correlations in the Markov transition matrix. Assume a time series X = {x1, x2, ...xi , ...xN }the values 
can be quantized in Q bins , and each xi can be allocated to a related qj(j ∈ [1,Q]) . By calculating the transitions 
among bins in the way of a first-order Markov chain along each time step, a matrix W of Q x Q size is obtained. 
wi,j is the probability that an element in qj is followed by an element in qi . After normalization by 

∑Q
j=1 wij = 1 , 

W is considered to be the Markov transition matrix. Since the matrix is not sensitive to the distribution of X and 
time steps ti , in order to reduce the loss of information, the Mij in the Markov transition field (MTF) is defined 
as follows:

The Markov transition field (MTF) then can be defined as follows:

The heartbeat images transformed by MTF are shown in Fig. 2.

FCA Block
FCA serves as an attention mechanism utilized in image processing to dynamically modify the weight of the input 
feature map, enhancing the extraction of information across various frequency channels. The configuration of the 
FCA mechanism is illustrated in Fig. 3. FCA is an extension of the channel attention mechanism with multiple 
spectral channels and proposes a “two-step” method for selecting different frequency domain components 
and different frequency combinations, which is used to extract different spectral features in different channels 
to achieve the purpose of obtaining richer information, which is consistent with the idea of converting one-
dimensional ECG signals into spectrograms adopted in this study. Meanwhile, to solve the problem of deep 
learning networks focusing on low-frequency information, 2D discrete cosine transform (DCT) is used to 
compress channels in the attention mechanism, which focuses on low frequency without discarding other 
frequency components. The ECG signal is a combination of low and high frequency signals and the spectrograms 
derived from this transformation will be useful. The Ablation Study section of the article compares it with several 

(4)
{

rclφ = arccos(xi ), 0 ≤ xi , xi ∈ X
r = ti

N , ti ∈ N

(5)GADFi,j = cos
(

φi − φj
)

, ∀i,j ∈ {1, 2, ..., n}

(6)GASFi,j = cos
(

φi + φj
)

, ∀i,j ∈ {1, 2, ..., n}

(7)Mij =
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Figure 3.  Schematic diagram of FCA structure.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8804  | https://doi.org/10.1038/s41598-024-59311-0

www.nature.com/scientificreports/

other attention mechanisms, which strongly supports the above argument. In the FCA mechanism, the input 
feature map undergoes decomposition into various frequency channels. Subsequently, each channel is inputted 
into a fully connected layer to produce a scalar weight represented by equation(9). These weights are then utilized 
to modulate the respective frequency channels and produce weighted feature maps.

The weighted feature maps are consolidated and transmitted to the subsequent network layer for additional 
processing, denoted by Eq. (10). The FCA mechanism offers the benefit of adaptively modifying the weights across 
diverse frequency channels to enhance model performance. Furthermore, it provides excellent interpretability 
by explicitly illustrating the model’s focus on various frequency channels.

Proposed model
The proposed network architecture, depicted in Fig. 4, comprises an image fusion module, residual blocks, FCA 
modules, an average pooling layer, and a fully connected layer. The initial ECG data undergo segmentation into 
individual heartbeats and denoising through bandpass filtering to generate the raw inputs for the network. Within 
the network, the image fusion module converts the initial data into three image variants (RP, GAF, MTF) and 
merges them along the channel axis for acquiring comprehensive high-dimensional feature data via channel-
wise concatenation. Subsequently, the processed data flows into ResBlocks post image fusion, comprising a 
convolutional layer, a pooling layer, and four convolutional blocks. The arrangement for each convolutional 
block is delineated in Fig. 5.

The primary objective of the initial convolutional and pooling layers is to extract fundamental features. 
Building upon the shortcut concept of ResNet, the Conv blocks define Identity = h(xi) , serving to not only 
deepen feature extraction but also avert gradient vanishing issues. Within each Conv block, the input data 
undergo convolution followed by batch normalization (BN). Feature weights are then determined utilizing the 
FCA mechanism, with the LeakyReLU activation function applied twice within the Conv block. The processed 
data proceed to the subsequent convolutional layer for further treatment involving batch normalization and 
activation, yielding f (xi ,Wi) . Following traversal through four distinct Conv blocks, the output is channeled into 
an average pooling layer before engaging in fully connected operations. To curtail overfitting, a dropout layer 
with a 0.5 probability accompanies the FC512 and FC64 layers. Ultimately, the fully connected layers’ output 
undergoes classification via a softmax function. During model training, a batch size of 128 is set, alongside the 
usage of label smoothing loss function and Adam optimizer. The training iterations are capped at 80, with the 
most accurate model saved for evaluation on the test set post-training.

(9)Ffca(X, θ) = σ(W2δ(W1[DCT(Group(X))]))

(10)Y = Ffca(X, θ)X

Figure 4.  The proposed model.
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Experiments
Experimental setup
Following the guidelines outlined in the ANSI/AAMI EC57:1998 standard, four recordings of patients with 
pacemakers were excluded from this study. A total of 100,630 heartbeats were collected from 44 recordings in 
the MIT-BIH-AR database.

The dataset was partitioned into two segments: 80,490 heartbeats were allocated for training the classification 
model, while 20,140 heartbeats were reserved for assessing the performance of the proposed approach, as detailed 
in Table 2. Borderline-SMOTE was employed to oversample the training set, resulting in a final training dataset 
comprising 324,285 heartbeats. A ten percent subset of the original training data was randomly chosen as the 
validation set for hyperparameter tuning. The model training was conducted on a workstation featuring an Intel 
12700 CPU, an NVIDIA GTX 3060Ti GPU, and 16 GB of memory.

Evaluation metrics
To assess the performance of the proposed model, this study employed four statistical performance metrics: 
accuracy (Acc), sensitivity (Se), positive predictivity (PPV), specificity (Sp) and F1 score. The equations defining 
these metrics are presented in Eqs. (11)–(14). Within a category, TP signifies the correctly identified beats, TN 
denotes the accurately unidentified beats, FP encompasses misclassified beats from different categories, and FN 
includes beats from a particular category falsely classified into other  categories33.

(11)Acc(%) =
TP + TN

TP + FP + TN + FN
∗ 100%

(12)PPV(%) =
TP

TP + FP
∗ 100%

(13)Se(%) =
TP

TP + FN
∗ 100%

Figure 5.  The structure of Conv block.

Table 2.  The ECG heartbeat division strategy in this paper.

N S V F Total number

Training-set 71,980 2224 5639 647 80,490

Test-set 18,072 544 1358 166 20,140
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Result and discussion
The performance of the proposed model on the MIT-BIH-AR database is shown in Fig. 6. The overall accuracy 
of the proposed model reaches 99.6% when performing 5-classification beat recognition, and it is easy to see that 
the misclassified beat types are mainly concentrated in classes N, S, and F. The misclassification between class N 
and class S may be because the feature vectors extracted by the neural network after converting 1D ECG signals 
into spectrograms are similar to a certain extent, which makes it easy to confuse the two types of beats that are not 
similar to each other, resulting in misclassification between the two types of beats. As mentioned earlier, there is a 
serious data imbalance in the MIT-BIH-AR database, and although Borderline-SMOTE was used to oversample 
the data in this study to reduce the imbalance between classes, there is still a large gap between the number of 
samples of different classes, and it is reasonable to assume that the main reason for the poor detection of class F 
is that the sample size of class F is too small. On the other hand, it is possible that the FCA is not sensitive to the 
feature information of class F when focusing on the channel dimensional features. In addition, due to the small 
sample size, although the number of misclassifications seems to be small, the proportion of misclassifications is 
significant. In conclusion, the proposed method has the potential for improvement in terms of feature extraction 
and sensitivity to feature information. The small number of Q-class heartbeats was the main reason for the 
misclassification effect, and Q-class heartbeats are generally unable to be identified and classified by doctors in 
practical applications, so they are not discussed in this paper.

Ablation study
The proposed model integrates a residual structure with an FCA module to enhance model depth for improved 
identification of VEB-class and SVEB-class heartbeats. It incorporates the Borderline-SMOTE technique to 
address data imbalance by oversampling the data and endeavors to fuse the three image types across various 
dimensions. To assess the efficacy of these techniques within the model, this section conducted a single-variable 
control experiment from four viewpoints: model depth, hyperparameters, loss functions, and transformation 
methods. To illustrate the compatibility between FCA and the proposed model, we juxtapose the experimental 
outcomes with those of alternative attention mechanisms such as CoordAttention (CA), Squeeze-and-Excitation 
(SE), and Convolutional Block Attention Module (CBAM), as presented in Table 3.

The FCA module, as demonstrated in the table, effectively identified heartbeats by adaptively adjusting 
the weights of different frequency channels. This adaptive feature led to enhanced accuracy in heartbeat 
identification. Deeper model architectures outperformed shallow networks in classifying heartbeats. The 
conversion of heartbeats into three-channel images proved more effective than using single-channel images alone. 
Combining three images in the channel dimension resulted in superior accuracy compared to using a single 
image or conducting fusion in the height dimension. Moreover, employing the Borderline-SMOTE technique 
for data oversampling positively impacted the model’s heartbeat identification prowess, as illustrated in Table 3. 

(14)F1 =
2 ∗ SE ∗ PPV

SE + PPV
∗ 100%

Figure 6.  Confusion matrix yielded by the proposed method.
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The experimental outcomes validated the efficacy of oversampling data with the Borderline-SMOTE technique 
in enhancing the model’s heartbeat identification capabilities.

Comparisons with classic machine learning models
The proposed model was compared with several other methods proposed  in34–36, etc. As shown in Table 4. 
The proposed model outperformed previous methods in terms of Acc, PPV and Se. Overall, the proposed 
method surpassed the existing VEB heartbeat recognition approach, achieving higher scores in F1, SPPV, and 
Se compared to other methods. The F1 score was 0.8% higher than the top method proposed by Liu et al.. 
Additionally, its PPV was higher than that of the currentbest method by 1%, and the Se score is also the highest. 
The insufficient recognition of class F, as discussed earlier in this section, can be attributed to a limited number of 
samples or high similarity among samples, hindering the model from comprehensively learning the characteristic 
information of this class during training. Furthermore, the proposed model may lack sensitivity to the feature 
information derived from converting class F heartbeats into spectrograms, leading to inadequate recognition of 
class F. In terms of SVEB heartbeat recognition, the Se has reached 98.0%, the F1 score was much higher than 
those of other centralized methods and 7.3% higher than the current best result. Therefore, when compared 
to other methods in a 5-class heartbeat classification task, the proposed approach not only achieved better 
classification performance for individual heartbeats but also yielded smaller gaps and exhibited better overall 
effectiveness.

Conclusion
This study introduces an architecture that integrates the FCA mechanism, a residual block, and multimodal image 
fusion. 1D ECG data were converted into three distinct images using RP, GAF, and MTF methods. Subsequently, 
these images were fused to capture both temporal and spatial information. The images served as inputs to an 
enhanced residual structure incorporating the FCA mechanism and shortcut connections to assign weights to 
feature information, thereby enhancing the model’s performance. The data then underwent processing through 
four residual and average pooling modules before entering a fully connected layer and being subjected to a 
softmax function for classification. The proposed model attained an accuracy rate of 99.6% on the MIT-BIH-AR 
database. Results from the ablation study (detailed in Table 3) highlighted that the combination of the FCA 
mechanism with the residual block led to heightened recognition accuracy for diverse heartbeats and improved 

Table 3.  The ablation study. Significant values are in bold.

Modalities

Overall N (%) SVEB (%) VEB (%) F (%)

Acc Se PPV F1 Se PPV F1 Se PPV F1 Se PPV F1

CA 99.3 99.5 99.8 99.6 96.4 91.6 93.9 98.6 98.4 98.5 89.4 80.9 84.9

SE 99.4 99.6 99.8 99.7 96.2 93.4 94.8 98.7 97.3 98.0 87.6 86.0 86.8

CBAM 99.3 99.6 99.8 99.7 96.6 93.1 94.8 98.6 98.0 98.3 88.8 82.2 85.4

Without Fca_1 99.1 99.7 99.5 99.6 89.4 95.8 92.5 97.8 96.8 97.3 79.5 82.6 81.0

Without Fca_2 99.2 99.8 99.5 99.6 89.9 96.0 92.8 98.1 97.2 97.6 73.3 92.9 81.9

Change number of ResBlock[1,1,1,1] 99.2 99.7 99.6 99.6 90.1 96.4 93.1 98.6 96.6 97.6 77.0 89.9 83.0

Focal_Loss 99.1 99.7 99.6 99.6 89.6 96.9 93.1 98.4 96.2 97.3 79.5 82.6 81.0

RP only 99.2 99.8 99.5 99.6 89.6 96.5 92.9 98.5 97.4 97.9 78.9 90.7 84.4

GAF only 99.1 99.7 99.5 99.6 89.9 95.1 92.4 97.8 96.5 97.1 80.7 89.0 84.6

MTF only 98.8 99.7 99.2 99.4 85.8 96.0 90.6 95.2 95.9 95.5 76.4 84.2 80.1

Proposed 99.6 99.9 99.9 99.9 98.0 96.6 97.3 99.1 98.9 99.0 90.7 94.2 92.4

Table 4.  The performance of our propose method compared with the previous methods. Significant values are 
in bold. 

Method

Overall N (%) SVEB (%) VEB (%) F (%)

Acc Se PPV F1 Se PPV F1 Se PPV F1 Se PPV F1

Liu et al.34 99.2 97.3 95.1 96.2 90.5 91.1 90.8 98.5 97.9 98.2 98.3 100 99.1

Oliveira et al.35 95.3 97.1 97.8 97.4 76.1 56.6 64.9 93.0 95.0 – – – –

Chen et al.36 93.1 98.4 95.4 96.9 29.5 38.4 33.4 70.8 85.1 77.3 – – –

Kung et al.37 98.6 – - – 75.4 88.7 81.5 96.7 97.4 97.0 – – –

Ince et al.38 98.3 – – – 63.5 53.7 58.1 84.6 87.4 86.0 – – –

Shi et al.39 94.2 95.3 98.9 97.1 90.7 47.9 62.7 92.9 84.5 88.5 – – –

Xie et al.40 96.5 94.3 87.7 90.0 79.7 90.6 84.8 97.1 96.2 96.6 90.8 74.1 81.6

Zhai et al.41 96.1 87.9 92.0 89.9 76.8 74.0 75.4 93.8 92.4 93.1 62.4 79.6 70.0

Proposed 99.6 99.9 99.9 99.9 98.0 96.6 97.3 99.1 98.9 99.0 90.7 94.2 92.4
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classification performance. Consequently, the proposed approach proves to be dependable and efficient for ECG 
classification tasks. Nevertheless, the study is not without limitations.

The transformation of raw ECG data into images through three distinct methods and their subsequent fusion 
lead to increased computational costs and complexities. Calculations show that using ECG as 1D data input 
results in a model with 9,276,493 parameters, 1.63 GFlops of Floating Point Operations (FLOPs), and 78.1M of 
MemR+W (MemRead + MemWrite). However, after converting the input into images created through the fusion 
of RP, GAF, and MTF methods, the total parameter count rises to 11,642,701, reflecting a significant increase 
of 2,366,208 parameters compared to the 1D data. Moreover, MemR+W increases to 4.88 GB, and FLOPs reach 
104.18 GFlops, marking a more than 60-fold increase compared to working with 1D data.

The data presented above strongly supports the initial assertion in this paragraph, highlighting that while 
transforming 1D signals into images can enhance model classification accuracy, it also introduces considerable 
computational complexity that cannot be disregarded. Therefore, our upcoming research will focus on reducing 
the computational demands and complexities associated with converting 1D electrocardiographic data into 
images, as well as optimizing the model structure to minimize the number of parameters. Given the pervasive use 
of smartphones and smart wearable devices in contemporary society, there is a growing trend towards adopting 
lightweight methods that can be seamlessly integrated into wearable technology. Moreover, the importance of 
interpretability cannot be overstated. Tools and techniques prioritizing interpretability play a crucial role in 
facilitating users’ comprehension of model operations and decision-making processes. Nonetheless, while simpler 
model structures are favored for their interpretability, they may compromise performance quality. Striking a 
balance between interpretability and performance optimization stands as a key focus for future research.

Data availability
The datasets analysed during the current study are available in the MIT-BIH-AR database, https:// www. physi 
onet. org/ conte nt/ mitdb/1. 0.0/.
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