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Hypergraph regularized 
nonnegative triple decomposition 
for multiway data analysis
Qingshui Liao 1,2*, Qilong Liu 2 & Fatimah Abdul Razak 1*

Tucker decomposition is widely used for image representation, data reconstruction, and machine 
learning tasks, but the calculation cost for updating the Tucker core is high. Bilevel form of triple 
decomposition (TriD) overcomes this issue by decomposing the Tucker core into three low-
dimensional third-order factor tensors and plays an important role in the dimension reduction of data 
representation. TriD, on the other hand, is incapable of precisely encoding similarity relationships for 
tensor data with a complex manifold structure. To address this shortcoming, we take advantage of 
hypergraph learning and propose a novel hypergraph regularized nonnegative triple decomposition 
for multiway data analysis that employs the hypergraph to model the complex relationships among 
the raw data. Furthermore, we develop a multiplicative update algorithm to solve our optimization 
problem and theoretically prove its convergence. Finally, we perform extensive numerical tests on six 
real-world datasets, and the results show that our proposed algorithm outperforms some state-of-
the-art methods.

Keywords Nonnegative tensor decomposition, Triple decomposition, Hypergraph regularization, Data 
anaylsis

A massive amount of high-dimensional data has been accumulated in social networks, neural networks, data 
mining, computer vision, and other domains as data extraction technology has advanced. A number of issues 
arise when analyzing and processing high-dimensional data, such as the need for long computation times and 
large memory spaces. As a result, dimensionality reduction is commonly conducted prior to further process-
ing and analysis of these data. High-dimensional data is often vectorized to form a larger matrix. Matrix-based 
methods, such as principal component analysis (PCA)1, singular value decomposition (SVD)2, multiway exten-
sions of the  SVD3, and linear discriminant analysis (LDA)4, are then used for dimensionality reduction. How-
ever, the matrix-based dimensionality reduction methods ignore the internal structure of the data. Therefore, 
tensor decomposition techniques are used to gain a better understanding of data features. There are some widely 
used tensor decomposition methods, such as Eckart-Young  decomposition5, CANDECOMP/PARAFAC (CP) 
 decomposition6, Tucker decomposition (TD)7, and the family of principal component decomposition models 
related to  TD8–12. TD is the decomposition of a tensor into the product of the core tensor and some factor matrices 
in different directions. When the core tensor in TD is taken to be the unit tensor, it degenerates to CP decom-
position. Different from CP, multiway versions of principal component decompositions related to TD focus on 
underlining different numbers of main influence components for various multiway data via feature extraction 
along different modes of models.

TD has been successfully applied in the fields of pattern recognition, cluster analysis, image denoising, and 
image complementation. Due to the powerful data representation capabilities of TD, many TD variants have been 
developed in recent years based on reasonable assumptions such as  sparsity13,  smoothness14, and  convolution15. 
However, TD faces some challenges when dealing with high-dimensional data: (i) The size of the core tensor in 
TD grows rapidly as the order of the data increases, which may result in a high cost of calculation and estima-
tion complexity; (ii) TD does not consider the variability in each direction. This variability is widespread in 
some real data, such as traffic and internet data, where the three modes of the third-order tensor have strong 
temporal, spatial, and periodic  significance16. To remedy these shortcomings, Qi et al.17 proposed a bilevel form 
of triple decomposition (TriD). The triple decomposition for third-order tensors transforms a third-order ten-
sor into a product of three third-order factor tensors. Each factor tensor represents a different meaning and is 
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of lower dimension in two directions. TriD performs TD on a tensor and triple decomposes the Tucker core at 
the same time. The number of parameters in TriD is less than that of TD in substantial cases. Therefore, TriD is 
less costly than TD.

Although TriD has achieved better results in tensor data recovery experiments, it does not take into account 
the geometrical manifold structure of the data. In the past decade, manifold learning has been widely adopted 
to preserve the geometric information of original data. Cai et al.18 explored the geometrical information by 
constructing a k-nearest neighbor graph and proposed the graph regularized nonnegative matrix factorization 
(GNMF), which demonstrated promising performance in clustering analysis. To improve the robustness of 
GNMF, some variants of GNMF have been proposed as described in the  literatiures19–24. Li et al.25 introduced 
a manifold regularization term on the core tensor and proposed a manifold regularization nonnegative Tucker 
decomposition (MR-NTD) method. Qiu et al.26 proposed a graph regularized nonnegaitve Tucker decomposition 
(GNTD) method by applying Laplacian regularization to the last nonnegative factor matrix. Liu et al.27 presented 
a technique known as graph regularized Lp smooth NTD (GSNTD) via embedding graph regularization and Lp 
smooth constraint into the original model of NTD. Subsequently, Wu et al.28 proposed a manifold regularization 
nonnegative triple decomposition (MRNTriD) of tensor sets that takes advantage of tensor geometry informa-
tion. These graph-based manifold learning methods perform well in clustering. They, however, only consider 
the pairwise relationship between samples and ignore the high-order relationship among samples. Hypergraph 
learning is a good candidate for solving this problem.

Using a hypergraph to model the high-order relationship between samples will improve classification perfor-
mance. There are numerous significant methods combined with hypergraphs that work well in clustering tasks: 
Zeng et al.29 presented a hypergraph regularized nonnegative matrix factorization (HNMF) method. Wang et al.30 
introduced a hypergraph regularization to L1/2-NMF (HSNMF) for exploiting spectral-spatial joint structure of 
hypespectral images. Huang et al.31 constructed a sparse hypergraph for better clustering and proposed a sparse 
hypergraph regularized NMF (SHNMF) method. Yin et al.32 proposed a hypergraph regularized nonnegative 
tensor factorization (HyperNTF) method by incorporating hypergraph into nonnegative tensor decomposi-
tion. Zhao et al.33 introduced a hypergraph regularized term into the framework of the nonnegative tensor ring 
decomposition and proposed a hypergraph regularized nonnegative tensor ring decomposition (HGNTR). To 
reduce computational complexity and suppress noise, they applied the low-rank approximation trick to accelerate 
HGNTR (LraHGNTR)33. Huang et al.34 designed a method to dynamically update the hypergraph and proposed 
a dynamic hypergraph regularized nonnegative Tucker decomposition (DHNTD) method.

To the best of our knowledge, there is no method to consider higher-order relationships among data sample 
points in TriD. Inspired by the advantages of hypergraph learning and TriD, in this paper, we present a hyper-
graph regularized nonnegative triple decomposition (HNTriD) model. HNTriD can explore low-dimensional 
parts-based representations while preserving detailed complex geometrical information from high-dimensional 
tensor data. Then, we develop an iterative multiplicative updating algorithm to solve the HNTriD model. The 
following are the main contributions of this paper:

• HNTriD is a novel dimensionality reduction method by incorporating hypergraph learning into TriD. It is 
good at dealing with the clustering tasks for tensor data, and the computation cost and containment resources 
could be greatly reduced.

• HNTriD embraces the merit of the complex connections of observed samples while retaining raw data struc-
tural information in dimensionality reduction. We attribute this excellent performance to the hypergraph 
regularized term’s ability which can successfully approximate the inner relationships of original data.

• HNTriD makes sense for some practical applications, such as clustering tasks, because it performs well at 
multiway data learning and can successfully preserve the important characteristics in dimensionality reduc-
tion. Experimental results in some popular datasets, including COIL20, GEORGIA, MNIST, ORL, PIE, and 
USPS, show that HNTriD outperforms existing rival approaches in cluster analysis.

The remainder of this paper is organized as follows: Section 2 goes over some fundamental concepts, such as 
NTD, TriD, and hypergraph learning, that will be used in the subsequent sections. The objective function of the 
HNTriD model is proposed in Section 3, and we discuss the HNTriD optimization algorithm in detail, including 
the updating rules for the parameters of the model, the convergence analysis of the proposed method, and the 
computation complexity analysis of HNTriD. In Section 4, we present some experimental results that can be used 
to validate the efficacy and accuracy of our proposed method. The last section is the conclusion.

Related work
In this section, we briefly overview some basic definitions, including  NTD32,34,35,  TriD17,25, hypergraph 
 learning36–38. The notations used in this paper are listed in Table 1.

Nonnegative tensor decomposition (NTD)
TD is a popular class of methods for dimensionality reduction of high-dimensional  data7. The data collected in 
real life are usually nonnegative, so it makes more physical sense to add nonnegative constraints to all factors 
in TD. Therefore, we focus on the nonnegative tensor decomposition (NTD). In fact, NTD is a multiway exten-
sion of nonnegative matrix factorization (NMF)39, which imposes nonnegative constraints to the TD  model35, 
and it preserves the multilinear structure of data. Given a nonnegative third-order tensor X ∈ R

n1×n2×n3
+  , NTD 

can be expressed as a core nonnegative tensor X̂ ∈ R
r1×r2×r3
+  multiplied by three nonnegative factor matrices 

U ∈ R
n1×r1
+  , V ∈ R

n2×r2
+  , and W ∈ R

n3×r3
+  , and it can be formulated as
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If the smallest integers r1, r2, r3 such that (1) holds, then we call the vector (r1, r2, r3) the Tucker rank. In the 
process of solving the optimal solution, we usually use its transformation of the mode-n matricization, and (1) 
can be expressed in the following equivalent forms

where X(n) denotes the mode-n matricization of the tensor X  , “ ⊗ ” denotes the Kronecker product of two 
matrices.

Bilevel form of triple decomposition (TriD)
In the TD and NTD methods, the size of the core tensor grows rapidly as the order of data increases, which may 
result in a high cost of calculation. To overcome this shortcoming, Qi et al.17 recently proposed a new form of 
triple decomposition for third-order tensors, which reduces a third-order tensor to the product of three third-
order factor tensors.

Definition 1 17 Let X̂ = (x̂ijl) ∈ R
r1×r2×r3 be a nonzero tensor. We say that X̂  is the triple product of three third-

order square tensors A ∈ R
r1×r×r , B ∈ R

r×r2×r , and C ∈ R
r×r×r3 , triple product of the tensors is denoted by

where A , B , and C are named horizontally square tensor, laterally square tensor, and frontally square tensor, 
respectively. For i = 1, 2, . . . , r1, j = 1, 2, . . . , r2 , l = 1, 2, . . . , r3 , the elementwise definition of the triple product 
can be illustrated as

If

where “ mid{·} ” denotes the median, we call (3) is a low rank triple decomposition of X̂  . A,B , and C are the fac-
tor tensors of X̂  . The smallest value of r such that (4) holds is known as the triple rank of X̂  , which is denoted as 
TriRank(X̂)=r. The triple rank of a zero tensor is defined as zero.

If a third-order tensor is decomposed by TD, and its Tucker core is triple decomposed into three tensors 
simultaneously. Then we get a bilevel form of the triple decomposition, that is shown below.

Definition 2 17 Based on the definition of NTD shown in (1), if the core tensor X̂  has a triple decomposition 
X̂ = �ABC� , where TriRank(X̂)=r, A ∈ R

r1×r×r
+  , B ∈ R

r×r2×r
+  , and C ∈ R

r×r×r3
+  . Then X  can be represented as

We call (5) a bilevel form of the triple decomposition of X  , which is always referred as TriD. A , B , and C are the 
inner factor tensors.

From (1), the minimum number in parameters of NTD of the third-order tensor X  is 
n1r1 + n2r2 + n3r3 + r1r2r3 , where (r1, r2, r3) is the Tucker rank of X  . On the other hand, the number of param-
eters of TriD is n1r1 + n2r2 + n3r3 + (r1 + r2 + r3)r

2 , where r is the triple rank of X̂  . Generally, the triple rank 
of X̂  is far less than each of the Tucker rank’s components of the original tensor X  . Then there are substantial 
cases where the number of parameters of TriD is strictly less than that of the TD.

(1)X = X̂ ×1 U ×2 V ×3 W.

(2)X(1) = UX̂(1)

(

W ⊗ V
)⊤

,X(2) = VX̂(2)

(

W ⊗ U
)⊤

, andX(3) = WX̂(3)

(

V ⊗ U
)⊤

,

(3)X̂ = �ABC�,

(4)X̂ijl =

r
∑

p=1

r
∑

q=1

r
∑

s=1

AiqsBpjsCpql .

r ≤ mid{r1, r2, r3},

(5)X = �ABC�×1 U ×2 V ×3 W.

Table 1.  List of the notations relevant to this paper.

Notaions Descriptions Notations Descriptions

U A matrix X A tensor

� · �F Frobenius norm Tr(·) Trace

�·� Triple product Y(n) The mode-n matricization of tensor Y

⊗ Kronecker product Xijl The (i, j, l) element of a third-order tensor

⊛ Hadamard product vec(·) The operator vectorizes a subject into a vector

O(·) Computation cost ×n The mode-n product
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NTD and TriD are linear dimensionality reduction techniques that may miss the essential nonlinear data 
structure. Manifold learning, on the other hand, is an effective technique for discovering geometric structure in 
multiway data, and hypergraph learning is a promising manifold learning method.
Hypergraph learning
To improve clustering performance, it is necessary to maintain the internal hidden geometry structure infor-
mation, which can be detailed by the hypergraph learning. Given n3 grayscale image {X1,X2, . . . ,Xn3} , each 
grayscale image can be viewed as a matrix of size n1 × n2 . These n3 matrices are stacked to form a tensor X  of 
size n1 × n2 × n3 . The i-th frontal slice X (:, :, i) of the tensor X  is exactly the matrix Xi . In addition, we can build 
a hypergraph (V,E; S) to encode the geometrical structure of raw  data40. Each node vi ∈ V represents a related 
data Xi and every hyperedge ei ∈ E consists of several nodes that are clustered by some constraints. For each 
vertex vi , we form a hyperedge ei of vi and the k-neighbours of vi . For each hyperedge ei with a weight s(ei) which 
is used to measure the similarity of the contained image nodes. The weight s(ei) can be calculated as follows:

where σ = 1
kn3

∑n3
i=1

∑

j∈ei
�Xi − Xj�F denotes the mean distance among all vertices in hyperedge ei . In par-

ticular, we can construct an incidence matrix H as follows:

The degrees of a node vi and a hyperedge eq can be expressed as

and

respectively. We use Dv ,De , and Se to denote diagonal matrices whose elements are d(vi) , d(eq) , and s(eq) , 
respectively.

To make the hypergraph more visual, we show the spatial structure in Figure 1. Herein every vj(j = 1, 2, . . . , 9) 
represents a node, and each ei(i = 1, 2, . . . , 5) denotes a hyperedge.

If two matrix data Xi and Xj are similar in the original raw observation, it is reasonable to assume that their 
low-dimensional representations wi and wj are adjacent to each other. Combined with practical application 
and theoretical analysis of  hypergraph31–33, we can assume that wi and wj are the corresponding vectors that are 
related to the nodes vi and vj . Then, the following expression can be used to calculate the clustering similarity of 
the original data Xi and Xj in the low-dimensional approximation.

(6)s(ei) =
∑

Xj∈ei

exp

(

−�Xi − Xj�
2
F

σ 2

)

,

H(vi , eq) =

{

1, if vi ∈ eq,
0, if vi /∈ eq.

d(vi) =
∑

eq∈E,vi∈V

s(eq)H(vi , eq)

d(eq) = |eq| =
∑

vi∈V

H(vi , eq),

v1

v2

v3

v4

v5

v6

v7

v8

v9

e1

e2

e3

e4

e5

(a) Hypergraph

e1 e2 e3 e4 e5

v1 1 0 0 0 0
v2 1 1 0 0 0
v3 0 1 1 0 0
v4 1 0 0 1 0
v5 0 0 1 0 1
v6 0 0 0 1 0
v7 0 0 0 1 1
v8 0 0 1 0 1
v9 0 0 0 0 1

(b) Incidence matrix

Figure 1.  An example of hypergraph and its incident relationship.
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where L = Dv − S̄ is a hypergraph Laplacian matrix that characterizes the data manifold, and S̄ = HSeD
−1
e H⊤.

Hypergraph regularized nonnegative triple decomposition (HNTriD)
TriD is a significant tensor data dimensional reduction algorithm, but it ignores higher-order relationships 
between the inner parts of raw data and does not consider nonnegative constraints, which may result in a big 
gap in data clustering performance. Modeling the high-order relationship among samples will help to improve 
performance. Hypergraph learning is an effective tool for illustrating the inner complex connections of multiway 
data. By incorporating the hypergraph Laplacian regularized term into the bilevel form of triple decomposition, 
we get a new method named HNTriD, as shown in the following subsection.

Objective function of HNTriD
Suppose X ∈ R

n1×n2×n3
+  be a third-order nonnegative tensor which we stack the samples that are represented 

by n3 second-order data Xi ∈ R
n1×n2
+ (i = 1, 2, . . . , n3) as the elements of the third mode, each Xi represents an 

original data sample of the raw data. Note that X(3) = [vec(X1), vec(X2), . . . , vec(X3)]
⊤ , unfolding X  along the 

third mode we can simplify (1) into its matricization form that equals to the third equation of (2), which can 
be written as

Let W = [w1,w2, . . . ,wn3 ]
⊤ , each wk ∈ R

n3
+  can be regarded as a low-dimensional representation for the data 

Xk under the basis of (V ⊗ U)X̂⊤
(3).

To improve the multiway data representation ability and brush up operational efficiency, we propose the 
following HNTriD model, which incorporates the hypergraph constraint into the TriD model. For a given non-
negative tensor, X ∈ R

n1×n2×n3
+  , HNTriD aims to find three nonnegative tensors A ∈ R

r1×r×r
+  , B ∈ R

r×r2×r
+  , and 

C ∈ R
r×r×r3
+  and three nonnegative factor matrices U ∈ R

n1×r1
+  , V ∈ R

n2×r2
+  , and W ∈ R

n3×r3
+  such that

The first and second parts of (7) are the reconstruction error term and the hypergraph regularized term, respec-
tively. The reconstruction error term in (7) can be seen as a deep nonnegative tensor decomposition with two 
layers. The first layer is a TD in the following form

where Y ×1 U ×2 V denotes the set of multilinear bases of the original data X  and W denotes the encoding 
matrix of X  under this set of multilinear bases. The second layer is the triple decomposition, which takes the 
following form

where each factor tensor represents a different meaning in different application problems. For example, in social 
networks and transportation data, different characteristics such as temporal stability, spatial correlation, and traf-
fic periodicity may be reflected in each of these three factors. This two-layer decomposition not only reduces the 
computation required to update the core tensor, but also takes into account the respective advantages of the TD 
and the triple decomposition. The variable α is an adjustment parameter that is used to measure the importance 
of the hypergraph regularization term. The hypergraph regularization term preserves the multilateral relation-
ships among the data, so we establish model (7).

HNTriD is used to represent high-dimensional data in a low-dimensional form. To better show the implica-
tions of HNTriD, we draw a flowchart to provide a concise overview of the implementation procedure in Figure 2.

Optimization algorithm
When the parameters A,B, C,U,V , and W are considered simultaneously, the objective function fHNTriD of 
HNTriD in (7) is not convex. Therefore, obtaining the global optimal solution is difficult. To deal with it, we 

1

2

∑

eq∈E

∑

vi ,vj∈V

s(eq)H(vi , eq)H(vj , eq)

δ(eq)
�wi − wj�

2
2

=
∑

eq∈E

∑

vi∈V

s(eq)H(vi , eq)�wi�
2
2

∑

vj∈V

H(vj , eq)

δ(eq)

−
∑

eq∈E

∑

vi ,vj∈V

s(eq)H(vi , eq)H(vj , eq)

δ(eq)
w⊤
i wj

= Tr[W⊤(Dv −HSeD
−1
e H⊤)W]

= Tr(W⊤LW),

X⊤
(3) =

[

(V ⊗ U)X̂⊤
(3)

]

W⊤.

(7)
min

A,B,C,U,V,W
fHNTriD =

1

2
�X − �ABC�×1 U ×2 V ×3 W�2F +

α

2
Tr(W⊤LW),

s.t.A ≥ 0,B ≥ 0, C ≥ 0,U ≥ 0,V ≥ 0,W ≥ 0.

X ≈ Y ×1 U ×2 V ×3 W,

Y ≈ �ABC�,
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introduce an iterative algorithm that achieves a local minimum. To simplify the process of solving the optimal 
algorithm, we show two important lemmas that will be frequently used.

Lemma 1 17Let X̂ = �ABC� , we define three third-order tensors F ∈ R
r2×r2×r3
+  , G ∈ R

r1×r2×r3
+  , and H ∈ R

r1×r2×r2

+  
with entries

where k = q+ (s − 1)r , l = p+ (s − 1)r , and m = p+ (q− 1)r , respectively. Then

Lemma 2 Let M ∈ R
m×n , N ∈ R

n×p , P ∈ R
p×q , and Q ∈ R

m×q . Then

Proof According to

one has

(8)Fkjt =

r
∑

p=1

BpjsCpqt , Gilt =

r
∑

q=1

AiqsCpqt , and Hijm =

r
∑

s=1

AiqsBpjs,

X̂ = F ×1 A(1) = G ×2 B(2) = H×3 C(3).

(9)∂�Q−MNP�2F
∂N

= 2M⊤(MNP−Q)P⊤.

�Q−MNP�2F =Tr
[

(Q−MNP)⊤(Q−MNP)

]

=Tr
[

(MNP)⊤(MNP)

]

− 2Tr(PQ⊤MN)+ Tr(Q⊤Q),

Raw data X ∈ Rn1×n2×n3
+

Manifold learning

Tr(W�LW)

Triple decomposition

U

V

W

TD

TriD

Low-dimensioal representation

HNTriD

Figure 2.  A flowchart used to show the implementation process of HNTriD in data analysis.
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Combining it with

and

yields

Therefore, ∂�MNP−Q�2F
∂N

= 2M⊤(MNP−Q)P⊤ is obtained. This completes the proof.   �

Solutions of inner factor tensors
When the variables B, C,U,V , and W are fixed, then the objective function of HNTriD is equivalent to

The Lagrange function of the above optimization problem (10) is

The matricization form of (11) that along the mode-1 is

where F(1) is the unfolding form of F  that defined as (8). By Lemma 2, the gradient of LA with respect to A(1) 
is given by

According  to41, we can take advantage of the Karush-Kuhn-Tucker (KKT) conditions ∂LA
∂A(1)

= 0 and 
�1 ⊛ A(1) = 0 , then the following equation is satisfied,

Based on the above equation, we obtain the following updating rule for A , and

Using the same technique, updating rules for inner factor tensors B and C are obtained, which can be expressed as

and

∂�Q−MNP�2F
∂vec(N)

=
∂Tr

[

(MNP)⊤(MNP)
]

∂vec(N)
− 2

∂Tr(PQ⊤MN)

∂vec(N)
.

∂Tr
[

(MNP)⊤(MNP)
]

∂vec(N)
=
∂Tr

[

(MNP)⊤(MNP)
]

∂vec(MNP)
·
∂vec(MNP)

∂vec(MN)
·
∂vec(MN)

∂vec(N)

=2[vec(MNP)]⊤(P⊤ ⊗ Im)(Iq ⊗M)

=2[vec(MNP)]⊤(P⊤ ⊗M)

=2
[

vec(M⊤MNPP⊤)

]⊤

∂Tr(PQ⊤MN)

∂vec(N)
=

[

vec(M⊤QP⊤)

]⊤

∂�Q−MNP�2F
∂vec(N)

= 2vec
[

M⊤(MNP−Q)P⊤
]⊤

.

(10)min
A≥0

1

2
�X − �ABC�×1 U ×2 V ×3 W�2F .

(11)LA =
1

2
�X − �ABC�×1 U ×2 V ×3 W�2F − Tr(�1A

⊤
(1)).

LA =
1

2
�X(1) − UA(1)F(1)(W ⊗ V)⊤�2F − Tr(�1A

⊤
(1)),

∂LA

∂A(1)
= U⊤

(

UA(1)F(1)(W ⊗ V)⊤ − X(1)

)

(W ⊗ V)F⊤(1) −�1.

(

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

)

⊛ A(1) −
(

U⊤X(1)(W ⊗ V)F⊤(1)

)

⊛ A(1) = 0.

(12)[A(1)]ij ←− [A(1)]ij

[

U⊤X(1)(W ⊗ V)F⊤(1)

]

ij
[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

.

(13)[B(2)]ij ←− [B(2)]ij

[

V⊤X(2)(W ⊗ U)G⊤
(2)

]

ij
[

V⊤VB(2)G(2)(W ⊗ U)⊤(W ⊗ U)G⊤
(2)

]

ij
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respectively.

Solutions of factor matrices
When the variables A,B, C,U , and V are fixed, then the objective function of HNTriD is equivalent to

The Lagrange function of the optimization problem (15) is

By using a transformation of the mode-3 matricization of the tensor X  and X̂  , (16) is obtained as follows

By Lemma 2, the gradient of LW with respect to W is given by

Using the Karush-Kuhn-Tucker (KKT) conditions ∂LW
∂W

= 0 and �3 ⊛W = 0 , the following equation is satisfied,

Based on the above equation, we obtain the following updating rule for W , and

Using the same technique, updating rules for the inner factor matrices U and V are obtained, which can pre-
sented as

and

respectively.

Convergence analysis theorically
In this subsection, the convergence of the iterative updating algorithm is investigated. Our proof will make use 
of an auxiliary function that is defined as below.

Definition 3 42 G(x, x̃) is an auxiliary function for F(x) if the conditions

are satisfied.

The auxiliary function is of great help due to the key property that is shown as follows:

Lemma 3 42 If G(x, x̃) is an auxiliary function of F(x) , then F(x) is non-increasing under the update

(14)[C(3)]ij ←− [C(3)]ij

[

W⊤X(3)(V ⊗ U)H⊤
(3)

]

ij
[

W⊤WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)

]

ij

,

(15)min
W≥0

1

2
�X − �ABC�×1 U ×2 V ×3 W�2F +

α

2
Tr(W⊤LW).

(16)LW =
1

2
�X − �ABC�×1 U ×2 V ×3 W�2F +

α

2
Tr(W⊤LW)− Tr(�3W

⊤).

LW =
1

2
�X(3) −WC(3)H(3)(V ⊗ U)⊤�2F +

α

2
Tr(W⊤LW)− Tr(�3W

⊤).

∂LW

∂W
=

(

WC(3)H(3)(V ⊗ U)⊤ − X(3)

)

(V ⊗ U)H⊤
(3)C

⊤
(3) + αLW −�3.

(

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

)

⊛W

−
(

X(3)(V ⊗ U)H⊤
(3)C

⊤
(3) + αS̄W

)

⊛W = 0.

(17)Wij ←− Wij

[

X(3)(V ⊗ U)H⊤
(3)C

⊤
(3) + αS̄W

]

ij
[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

.

(18)Uij ←− Uij

[

X(1)(W ⊗ V)F⊤(1)A
⊤
(1)

]

ij
[

UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)A
⊤
(1)

]

ij

(19)Vij ←− Vij

[

X(2)(W ⊗ U)G⊤
(2)B

⊤
(2)

]

ij
[

VB(2)G(2)(W ⊗ U)⊤(W ⊗ U)G⊤
(2)B

⊤
(2)

]

ij

,

G(x, x̃) ≥ F(x) and G(x, x) = F(x)
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Now, we are going to show that the update rule for A(1) shown in (12) is exactly the same as that shown in (20) 
with a proper auxiliary function. Considering the ith row and jth column entry [A(1)]ij in A(1) , we use Fij to denote 
the part of the objective function (7) that is relevant only to [A(1)]ij . The first and second derivatives of Fij are

and

respectively.

Lemma 4 The function

is an auxiliary function for Fij , which is only relevant to [A(1)]ij.

Proof Since G(x, x) = Fij(x) is obvious, we only need to show that the condition G(x, [A(1)]
t
ij) ≥ Fij(x) holds. 

To achieve this, we take into consideration the Taylor series expansion of Fij(x) which can be formalized as

Comparing (21) with (22), we can get that G(x, [A(1)]
t
ij) ≥ Fij(x) is satisfied as long as

holds, which can be expressed as

Since

which implies (23) holds, then G(x, [A(1)]
t
ij) ≥ Fij(x) is satisfied. This completes the proof.   �

Theorem 1 The objective function of the HNTriD model (7) is non-increasing under the updating rule A(1) repre-
sented as (12).

Proof Replacing the auxiliary function G(x, xt) of (20) with (21) yields

(20)xt+1 = argmin
x

G(x, xt).

F
′
ij =

[

U⊤
(

UA(1)F(1)(W ⊗ V)⊤ − X(1)

)

(W ⊗ V)F⊤(1)

]

ij

F
′′
ij = (U⊤U)ii

(

F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

)

jj
,

(21)

G(x, [A(1)]
t
ij) =Fij([A(1)]

t
ij)+ F

′
ij([A(1)]

t
ij)(x − [A(1)]

t
ij)

+

[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

2[A(1)]
t
ij

(x − [A(1)]
t
ij)

2

(22)Fij(x) = Fij([A(1)]
t
ij)+ F

′
ij([A(1)]

t
ij)(x − [A(1)]

t
ij)+

1

2
F
′′
ij([A(1)]

t
ij)(x − [A(1)]

t
ij)

2.

[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

2[A(1)]
t
ij

≥
1

2
F
′′
ij([A(1)]

t
ij)

(23)

[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

≥ [A(1)]
t
ij(U

⊤U)ii

(

F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

)

jj
.

[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

=

r1
∑

i2=1

r2
∑

i3=1

(U⊤U)ii2 [A(1)]i2i3 [F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)]i3j

=

r1
∑

i2=1,i2 �=i

r2
∑

i3=1,i3 �=j

(U⊤U)ii2 [A(1)]i2i3 [F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)]i3j

+ [A(1)]
t
ij(U

⊤U)ii

(

F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

)

jj

≥ [A(1)]
t
ij(U

⊤U)ii

(

F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

)

jj
,

[A(1)]
t+1
ij = argmin

x
G(x, [A(1)]

t
ij).
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According to

we have

Then we can see that (24) agrees with (12), and the Lemma 4 guarantees that (21) is an auxiliary function of Fij . 
Based on this, in conjunction with Lemma 3, we can get that fHNTriD is non-increasing under the update rule of 
(12). The proof is then finished.   �

We are going to state that the update for W expressed as (17) is equal to the update (20) with an appropriate 
auxiliary function. Considering the ith row and jth column entry Wij in W , we use F̂ij to denote the part of the 
objective function (7) that is only relevant to Wij . The first and second derivatives of F̂ij are shown below

and

respectively.

Lemma 5 The function

is an auxiliary function for F̂ij , which is only relevant to Wij.

Proof Since Ĝ(x, x) = F̂ij(x) is obvious, we only need to illustrate that the condition Ĝ(x, x) ≥ F̂ij(x) holds. To 
achieve this, we take into consideration the Taylor series expansion of F̂ij(x) which can be expressed as follows

Combing (25) with (26) we can find that Ĝ(x,Wt
ij) ≥ F̂ij(x) is equivalent to

And the above equation can be rewritten as

Since

∂G(x, [A(1)]
t
ij)

∂x

= F
′
ij([A(1)]

t
ij)+

[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

[A(1)]
t
ij

(x − [A(1)]
t
ij) = 0,

(24)[A(1)]
t+1
ij = [A(1)]

t
ij

[

U⊤X(1)(W ⊗ V)F⊤(1)

]

ij
[

U⊤UA(1)F(1)(W ⊗ V)⊤(W ⊗ V)F⊤(1)

]

ij

.

F̂
′
ij =

[(

WC(3)H(3)(V ⊗ U)⊤ − X(3)

)

(V ⊗ U)H⊤
(3)C

⊤
(3) + αLW

]

ij

F̂
′′
ij =

[

C(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3)

]

jj
+ αLii ,

(25)

Ĝ(x,Wt
ij) =F̂ij(W

t
ij)+ F̂

′
ij(W

t
ij)(x −Wt

ij)

+

[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

2Wt
ij

(x −Wt
ij)

2

(26)F̂ij(x) = F̂ij(W
t
ij)+ F̂

′
ij(W

t
ij)(x −Wt

ij)+
1

2
F̂
′′
ij(W

t
ij)(x −Wt

ij)
2.

[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

2Wt
ij

≥
1

2
F̂
′′
ij(W

t
ij).

(27)

[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

≥ Wt
ij

[

C(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3)

]

jj
+ αWt

ijLii .
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which implies (27) holds, and Ĝ(x,Wt
ij) ≥ F̂ij(x) is satisfied. This completes the proof.   �

Theorem 2 The objective function of the HNTriD model (7) is non-increasing under the updating rule W repre-
sented as (17).

Proof Using (25) to replace the G(x, xt) that lies in (20), we obtain

According to

we have

It is worth noting that (28) is consistent with (17). Lemma 5 ensures that (25) is an auxiliary function of F̂ij , 
which combined with Lemma 3 results in fHNTriD being non-increasing under the update rule (17). This brings 
the proof to a close.   �

Applying the same techniques to parameters B, C,U , and V to check the convergence of HNTriD. To sum-
marize, we can obtain that fHNTriD is non-increasing under each of the update rules for inner factor tensors and 
matrices A,B, C,U,V , and W while fixing the others. Before imposing our algorithm on real-world datasets for 
clustering tasks, it is necessary to simplify the calculation formulas of the parameters A,B, C,U,V , and W , as 
in the following Remark.

Remark 1 From the form of updating rules of A,B, C,U,V , and W , it is a fact that each update needs to calculate 
the Kronecker products which requires costly storage resources. To simplify the produce of updating for men-
tioned parameters, we take advantages of the tensor property of the mode-n unfolding. Then, we get

and

which means that (12) and (18) can be transformed as

and

[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

=

r3
∑

k=1

Wik

[

C(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3)

]

kj
+ α(Dv)iiW

t
ij

=

r3
∑

k=1,k �=j

Wik

[

C(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3)

]

kj

+Wt
ij

[

C(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3)

]

jj
+ αLiiW

t
ij + αS̄iiW

t
ij

≥ Wt
ij

[

C(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3)

]

jj
+ αWt

ijLii ,

Wt+1
ij = argmin

x
Ĝ(x,Wt

ij).

∂Ĝ(x,Wt
ij)

∂x

= F̂
′
ij(W

t
ij)+

[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

Wt
ij

(x −Wt
ij) = 0,

(28)Ut+1
ij = Ut

ij

[

X(3)(V ⊗ U)H⊤
(3)C

⊤
(3) + αS̄W

]

ij
[

WC(3)H(3)(V ⊗ U)⊤(V ⊗ U)H⊤
(3)C

⊤
(3) + αDvW

]

ij

.

X(1)(W ⊗ V) = (X ×2 V
⊤ ×3 W

⊤)(1)

F(1)(W ⊗ V)⊤(W ⊗ V) = (F ×2 V
⊤V ×3 W

⊤W)(1),

(29)[A(1)]ij ←− [A(1)]ij

[

U⊤(X ×2 V
⊤ ×3 W

⊤)(1)F
⊤
(1)

]

ij
[

U⊤UA(1)(F ×2 V
⊤V ×3 W

⊤W)(1)F
⊤
(1)

]

ij
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respectively. According to

and

(13) and (19) can be calculated as

and

Similarly, (14) and (17) can be further rewritten as

and

respectively.

Hence, the learning rules for the objective function are obtained via the multiplicative update methods 
described as above. Specifically, we randomly initialize the tensors and factor matrices A , B , C , U,V , and W , 
then iterate them by (29), (31), (33), (30), (32), and (34). Each iteration ends when the stopping criterion is met. 
After completing all iterations, we record the operations of the model and examine the convergence at the end 
of each iteration. The pseudo-code for HNTriD is given in Algorithm 1.

(30)Uij ←− Uij

[

(X ×2 V
⊤ ×3 W

⊤)(1)F
⊤
(1)A

⊤
(1)

]

ij
[

UA(1)(F ×2 V
⊤V ×3 W

⊤W)(1)F
⊤
(1)A

⊤
(1)

]

ij

,

X(2)(W ⊗ U) = (X ×1 U
⊤ ×3 W

⊤)(2)

G(2)(W ⊗ U)⊤(W ⊗ U) = (G ×1 U
⊤U ×3 W

⊤W)(2),

(31)[B(2)]ij ←− [B(2)]ij

[

V⊤(X ×1 U
⊤ ×3 W

⊤)(2)G
⊤
(2)

]

ij
[

V⊤VB(2)(G ×1 U
⊤U ×3 W

⊤W)(2)G
⊤
(2)

]

ij

(32)Vij ←− Vij

[

(X ×1 U
⊤ ×3 W

⊤)(2)G
⊤
(2)B

⊤
(2)

]

ij
[

VB(2)(G ×1 U
⊤U ×3 W

⊤W)(2)G
⊤
(2)B

⊤
(2)

]

ij

.

(33)[C(3)]ij ←− [C(3)]ij

[

W⊤(X ×1 U ×2 V)(3)H
⊤
(3)

]

ij
[

W⊤WC(3)(H×1 U
⊤U ×2 V

⊤V)(3)H
⊤
(3)

]

ij

(34)Wij ←− Wij

[

(X ×1 U ×2 V)(3)H
⊤
(3)C

⊤
(3) + αS̄W

]

ij
[

WC(3)(H×1 U
⊤U ×2 V

⊤V)(3)H
⊤
(3)C

⊤
(3) + αDvW

]

ij

,
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Input: Data tensor X ∈ Rn1×n2×n3
+ . The number of nearest neighbors k. The algorithm

parameters r1, r2, r3, r, and regularization parameter α. The stopping criterion ε,
and the maximum number of iterations maxiter. Let [fHNTriD]0 = 0.

Output: Factor inner factor tensors A, B, C, and factor matrices U,V, W;
1: Randomly initialize A ∈ Rr1×r×r

+ , B ∈ Rr×r2×r
+ , C ∈ Rr×r×r3

+ , U ∈ Rn1×r1
+ ,

V ∈ Rn2×r2
+ , W ∈ Rn3×r3

+ ;
2: Calculate the matrix Dv, De, Se, and H. Calculate the matrix S̄ using S̄ =

HSeD−1
e H�, and calculate the matrix L = Dv − S̄;

3: for t = 1, 2, · · · ,maxiter do
4: Compute matrix F as (8) by updated tensors B and C
5: Update the low-rank tensor A as (29)
6: Update the factor matrix U as (30)
7: Compute matrix G as (8) by updated tensors A and C
8: Update the low-rank tensor B as (31)
9: Update the factor matrix V as (32)

10: Compute matrix H as (8) by updated tensors A and B
11: Update the low-rank tensor C as (33)
12: Update the factor matrix W as (34)
13: Compute [fHNTriD]t by updated tensors A,B, C and factor matrices U,V,W.
14: if |[fHNTriD]t−[fHNTriD]t−1|

[fHNTriD]t−1
≤ ε then

15: Return A,B, C,U,V,W.
16: end if
17: end for

Algorithm 1.  HNTriD algorithm
Computational complexity analysis
In this subsection, we analyze the computational complexity of the proposed HNTriD model. First, we con-
sider the calculation cost for the tensor-tensor product in (8). In the process of computation tensors F ,G , 
and H takes O(r3r2r3) , O(r3r1r3) , and O(r3r1r2) operations, respectively. It requires O(n1r

2
1 + n2r

2
2 + n3r

2
3) 

operations to calculate symmetric matrices U⊤U , V⊤V , and W⊤W . It takes O(n1n2n3r2 + n1n3r2r3 + n1r
2r2r3) 

operations for calculating (X ×2 V
⊤ ×3 W

⊤)(1)F
⊤
(1) . It takes O(r2r22 r3 + r2r2r

2
3 + r4r2r3 + r4r1 + n1r

2r1) 
operations to calculate UA(1)(F ×2 V

⊤V ×3 W
⊤W)(1)F

⊤
(1) .  Since (X ×2 V

⊤ ×3 W
⊤)(1)F

⊤
(1) and 

UA(1)(F ×2 V
⊤V ×3 W

⊤W)(1)F
⊤
(1) are available, the computational cost for each term, including 

U⊤(X ×2 V
⊤ ×3 W

⊤)(1)F
⊤
(1) , U

⊤UA(1)(F ×2 V
⊤V ×3 W

⊤W)(1)F
⊤
(1) , (X ×2 V

⊤ ×3 W
⊤)(1)F

⊤
(1)A

⊤
(1) , and 

UA(1)(F ×2 V
⊤V ×3 W

⊤W)(1)F
⊤
(1)A

⊤
(1) , is equal to O(n1r

2r1) . Then, the cost of computing the update rules of 
A in (29) is about O(r2r1) . Assume that integers r1, r2, r3 , and r are of the same order of magnitude and they are 
much smaller than n1, n2 , and n3 . We claim that the total computational cost of computing the update rule of A 
in (29) and U in (30) is approximately

Similarly, the total computational cost of computing updating rules for B in (31) and V in (32) is about

The total computational cost of updating the rules for C in (33) and W in (34) is approximately

Therefore, we can get the total calculation cost of the HNTriD algorithm approximately as

Experiments
To check the validation of our proposed HNTriD algorithm for clustering data with dimensionality reduction, 
we run experiments on six popular datasets and compare the results of (7) with that of the related state-of-the-art 
methods, including  NMF42,  GNMF18,  HNMF29,  HSNMF31,  SHNMF43,  HGNTR33,  LraHGNTR33,  HyperNTF32, 
and  TriD17. All the simulations will be performed on a desktop computer equipped with an Intel (R) Core (TM) 
i5-10400F CPU at 2.90 GHz and 16 GB of memory, running MATLAB 2015a in Windows 10.

O(n1n2n3r + n1n3r
2 + n1r

4 + r6)

O(n1n2n3r + n2n3r
2 + n2r

4 + r6).

O(n1n2n3r + n1n2r
2 + n3r

4 + r6).

O(n1n2n3r + (n1n3 + n2n3 + n1n2)r
2 + (n1 + n2 + n3)r

4 + r6).
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Datasets
The clustering performance is evaluated on six widely used datasets, including COIL20, GEORGIA, MNIST, 
ORL, PIE, and USPS. The general statistical information of the datasets is summarized in Table 2, including the 
samples, sizes, and categories that were used in the numerical modeling tests of this paper. A brief overview of 
the mentioned datasets is presented below.

• COIL20 (https:// www. cs. colum bia. edu/ CAVE/ softw are/ softl ib/ coil- 20. php): It is a grayscale image data-
set comprised of photographs taken from 20 different individuals, and each person was photographed 72 
pieces of images from different angles. After resizing each image to 32× 32 , we can get a third-order tensor 
Y ∈ R

32×32×1,440
+ .

• GEORGIA (http:// www. anefi an. com/ resea rch/ face_ reco. htm): It is a colored JPG image dataset, every image 
was drawn from 50 people and each person was photographed 15 pieces of images with cluttered back-
grounds. The images used in this paper have been converted to grayscale and resized to 32× 32 . We can 
obtain a tensor of third order, which defined as Y ∈ R

32×32×750
+ .

• MNIST (http:// yann. lecun. com/ exdb/ mnist/): It is a handwritten digit image dataset, and each image is 
28× 28 in size. More than 60,000 digit images were collected in the MNIST dataset range from “0” to “9”. 
In the numerical tests of this paper, we chose 100 images randomly for each single digit. Thus, the chosen 
images can be presented as a third-order tensor Y ∈ R

28×28×1,000
+ .

• ORL (https:// github. com/ saeid 436/ Face- Recog nition- MLP/ tree/ main/ ORL): It is a dataset that includes 
400 grayscale face images of 40 different people collected from different facial expressions, various facial 
details, and varying lighting, and each image is in size of 112× 92 . A third-order tensor can be defined as 
Y ∈ R

112×92×400
+ .

• PIE (http:// www. ri. cmu. edu/ proje cts/ proje ct_ 418. html): It is a dataset containing over 40,000 facial images 
collected from 68 different individuals. These images were taken in a variety of poses, lighting conditions, 
and expressions. We randomly selected 53 people with 22 different facial images for our numerical tests. 
We converted them to gray-level and resize them to 32× 32 . Then the selected images can be expressed as a 
third-order tensor Y ∈ R

32×32×1,166
+ .

• USPS (https:// www. csie. ntu. edu. tw/ cjlin/ libsv mtools/ datas ets/ multi class. html# usps): It is a dataset that 
includes 11,000 grayscale handwritten digits (from “0” to “9”) that are 16× 16 in size. In the simulation tests 
of this paper, we chose 100 images at random for each digit. On this basis, we can build a third-order tensor 
Y ∈ R

16×16×1,000
+ .

 Evaluation metrics
Clustering analysis groups samples only according to the sample data itself and its aim is to group different objects 
into different groups according to the controlled conditions. The way to evaluate the efficiency of the clustering 
methods is that objects within groups are similar to each other, while objects differ from group to group. The 
greater the similarity within the group, the greater the difference between the groups, the better the clustering 
effect. As we know, the ACC, NMI, and PUR are widely used assessment  criteria44,45 of clustering algorithm. The 
accuracy (ACC) can be defined as

where n is the number of samples in datasets, x̄i and xi denote the cluster sample and the original sample, respec-
tively. The symbol map(·) indicates the matchup relationship mapping function, which is responsible for matching 
the cluster samples and original samples. The symbol δ(·, ·) is the delta function shown as follows

In general, the agreement between two clusters can be measured with the mutual information ( MI ), which is 
widely used in clustering applications. Given two discrete random variables X̄ and X which stand for the cluster 

ACC(x̄i , xi) =
1

n

n
∑

1

δ(x̄i ,map(xi)),

δ(x̄i ,map(xi)) =

{

1, if xi is mapped into x̄i ,
0, otherwise.

Table 2.  Descriptions of the relevant six datasets used in this paper.

Item

Dataset

COIL20 GEORGIA MNIST ORL PIE USPS

Sample 1,440 750 1,000 400 1,166 1,000

Size 32× 32 32× 32 28× 28 112× 92 32× 32 16× 16

Category 20 50 10 40 53 10

https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.anefian.com/research/face_reco.htm
http://yann.lecun.com/exdb/mnist/
https://github.com/saeid436/Face-Recognition-MLP/tree/main/ORL
http://www.ri.cmu.edu/projects/project_418.html
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/multiclass.html#usps
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label sets and true label sets, x̄ and x are selected arbitrarily from X̄ and X, respectively. Then, the MI can be 
measured by

where p(x̄) and p(x) are the edge probability distribution function which denote the probabilities of the samples. 
The p(x̄, x) denotes the joint probability distribution function of X̄ and X which means that the object belongs 
to category X̄ and category X at the same time. To force the score to have an upper bound, we take the NMI as 
one of the evaluation criterion, and the definition is

where T(X̄) and T(X) are the entropy of the cluster label set X̄ and the entropy of the true label set X. In this way, 
the score ranges of NMI(X̄,X) is from 0 to 1.

The purity ( PUR ) of a clustering algorithm is a simple assessment format which only have to calculate the 
proportion of the correct clustering to the total. In other words, the PUR is to scale the degree of correctness 
of measurement, the PUR score of a cluster is observed by a weighted sum of the PUR values of the respective 
clusters, which is denoted by

where X̄ = (x̄1, x̄2, . . . , x̄k) is the cluster category set, the x̄i denotes the ith cluster set. X = (x1, x2, . . . , xk) is the 
original datasets that need to be clustered, xi represents the ith original object. The total number of the objects 
is n that need to be clustered and the function | · | denotes the cardinality of a set.

Algorithms for comparison
To ensure the clustering performance, we compare the proposed HNTriD model with the following state-of-
the-art clustering algorithms.

• NMF42: It incorporates nonnegative constraint into two factor matrices decomposed from the original matrix.
• GNMF18: It imposes the graph constraint to the coefficient matrix of the NMF method.
• HNMF29: It incorporates the hypergraph constraint into the coefficient matrix of the NMF method.
• HSNMF30: It imposes the hypergraph constraint on the coefficient matrix based on the L1/2-NMF method.
• SHNMF31: It takes the sparse hypergraph as a regularization and adds it to the NMF framework.
• HGNTR33: It includes the hypergraph constraint on the last TR core tensor and a nonnegative constraint on 

TR factor tensors.
• LraHGNTR33: It is the low-rank approximation of HGNTR.
• HyperNTF32: It imposes a hypergraph constraint on the last factor matrix of the CP model and limits all 

factor matrices to be nonnegative.
• TriD17: It is a bilevel form of the triple decomposition of a third-order tensor.

 Parameters selection
To achieve the best performance, some critical parameters in the experimental simulations needed to be adjusted. 
In all tests, let ǫ = 10−5 and the maximum number of iterations be 1000 unless otherwise specified. We set the 
regularized term α at the grid of {10−3, 10−2, 10−1, 1, 10, 100, 1000} , and the k-nearest neighbors are chosen 
from {3, 4, 5, 6, 7} . The parameters r1 and r2 are integers empirically chosen from {3, 4, . . . , 32} , and the integer 
r is chosen from {2, 3, . . . , 20} . Furthermore, we choose the third mode, r3 , as the number of categories in the 
related datasets, as shown in Table 2. In our experiments, we let one of the parameters r1, r2, r, k,α varies in the 
grid given above, and the rest of the parameters were fixed, and the parameters corresponding to the maximum 

MI(X̄,X) =
∑

x∈X

∑

x̄∈X̄

p(x̄, x) log

(

p(x̄, x)

p(x̄)p(x)

)

,

NMI(X̄,X) =
MI(X̄,X)

max(T(X̄), T(X))
,

PUR(X̄,X) =
1

n

k
∑

j=0

max
i

|x̄j ∩ xi|,

Table 3.  List of parameters’ values corresponding to the maximum NMI of HNTriD on six datasets.

Dataset

Optimal parameter

r1 r2 r3 r k α

COIL20 17 17 20 4 4 1000

GEORGIA 5 5 50 5 3 0.01

MNIST 15 32 10 15 5 10

ORL 11 11 40 11 5 0.01

PIE 8 6 53 19 6 0.01

USPS 3 16 10 2 4 100
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values of NMI in the experiments were recorded. The optimal parameters corresponding to each dataset are 
given in Table 3.

In Figure 3, we show the effect of the parameters α and k on the three indicators ACC, NMI, and PUR on dif-
ferent datasets. In subplots (a), (c), and (e) of Figure 3, the remaining parameters except α are taken as in Table 3. 
In subplots (b), (d), and (f) of Figure 3, the remaining parameters except k are taken as in Table 3.

From Figure 3, we can conclude that when the parameter α is set to 103, 10−2, 10, 10−2, 10−2 , and 102 , the 
ACC, NMI, and PUR all perform better in clustering tasks on COIL20, GEORGIA, MNIST, ORL, PIE, and USPS 

Figure 3.  The clustering performance of the HNTriD model varies with different α and the number of nearest 
neighbors k.
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datasets. The parameter k is set to 4, 3, 5, 5, 6, and 4, the ACC, NMI, and PUR achieve better results on COIL20, 
GEORGIA, MNIST, ORL, PIE, and USPS datasets, respectively.

Convergence study experimentally
In Section 3.3, we demonstrated that our HNTriD algorithm is non-increasing in theory. Here, we validate it 
using six HNTriD convergence curves tested from six related datasets, which are shown in Figure 4. There are 
two important key features that can be identified from Figure 4. First, as the number of iterations increases, the 
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Figure 4.  Convergence report of the proposed algorithm on six datasets.
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objective function value of HNTriD decreases. Second, the convergence report states that the curve declines 
rapidly and reaches a relatively stable state within thirty iterations. To summarize, HNTriD experiments show 
that our method works well on the six datasets mentioned above.

Experimental comparison
To validate the effectiveness of the proposed HNTriD method, we compare it to some state-of-the-art 
methods under the assessment criteria ACC, NMI, and PUR. For HNTriD, the parameters are selected as 
in Table 3. For each method embodied with manifold learning, we set the regularized term α at the grid of 
{10−3, 10−2, 10−1, 1, 10, 100, 1000} , and the k-nearest neighbors are chosen from {3, 4, 5, 6, 7}. For methods 
based on TD, such as TriD and HyperNTF, we take the dimension of the third direction of the core tensor to be 
the class number of the original data. For methods based on tensor ring decomposition, such as HGNTR and 
LraHGNTR, we take the product of the first order and the third order to be the class number of the original 
data. The remaining parameters in the comparison algorithm are adjusted on the grid taken by HNTriD. First, 
we run a number of numerical tests to compare the clustering effect across different datasets. Second, statistical 
significance comparison is performed on COIL20 and MNIST using the t-test. Third, we present 2-D visualiza-
tions of different methods for clustering results on the COIL20 dataset and then complete the comparison tests 
by means of the t-SNE  technique46. Finally, we compare the amount of time they took to finish clustering tasks 
on six related real-world datasets.

Numerical comparison results
All experiments are run on the same sub-raw datasets, which are chosen at random from the corresponding 
database. Each experimental result is obtained only after the process has been repeated 100 times. The numerical 
tests, in particular, are performed in two steps. The first step is to choose a group of objects at random from the 
raw data and then decompose them into corresponding sub-raw data based on the parametric form of the model. 
To ensure that the experimental results are as accurate as possible to the real-world data clustering situation. 
We repeat the first step 10 times to obtain 10 groups of sub-raw data. In the second step, we use the K-means 
method to compute the evaluation index value for each group of sub-raw data. As before, we repeat the second 
step 10 times to obtain 10 evaluation values for each group of sub-raw data. Throughout the experiment, we can 

Table 4.  Quantitative clustering (ACC%±std%) of different methods on six datasets. Significant values are 
bold.

Method

Dataset

COIL20 GEORGIA MNIST ORL PIE USPS

NMF 57.51±4.84 40.52±1.90 48.42±3.72 66.34±3.72 65.62±3.46 41.62±3.18

GNMF 69.32±3.45 41.54±2.10 49.35± 5.78 68.29±3.61 64.84±4.07 44.64±3.35

HNMF 75.13±3.11 41.88±1.69 46.33±5.96 68.61±3.05 64.33±3.45 44.84±3.69

HSNMF 74.59±3.01 38.19±1.83 45.29±5.74 41.28±1.65 76.65± 1.96 40.73±2.52

SHNMF 58.03±4.88 40,52±1.84 48.25±3.59 66.67±3.66 65.63±4.08 41.39±2.43

HGNTR 75.97±3.24 35.79±2.35 44.90±6.42 65.91±3.59 58.90±4.51 50.65±3.21

LraHGNTR 75.61±3.07 43.61± 1.53 43.86±6.27 64.35±3.17 46.32±3.51 47.56±2.99

HyperNTF 77.15± 4.04 41.86±1.51 45.41±4.40 71.78± 2.23 52.34±2.74 52.66± 4.52

TriD 50.57±4.18 31.50±1.53 43.62±4.08 54.30±3.10 74.54±4.25 50.96±5.15

HNTriD 82.11± 2.53 47.32± 2.06 48.66± 6.14 72.99± 2.64 83.85± 3.27 52.13± 4.08

Table 5.  Quantitative clustering (NMI%±std%) of different methods on six datasets. Significant values are 
bold.

Method

Dataset

COIL20 GEORGIA MNIST ORL PIE USPS

NMF 70.82±2.06 60.03±1.13 45.71±2.34 82.77±1.79 85.33±1.39 38.08±2.30

GNMF 82.92±2.58 60.94±1.19 52.02± 4.58 84.57±1.62 84.75±1.80 46.08±3.56

HNMF 87.81±1.52 61.32±1.02 49.92±4.55 84.98±1.52 84.69±1.45 46.18±2.97

HSNMF 87.65±1.60 57.74±1.04 49.26±4.52 61.52±1.09 90.56±0.67 37.08±1.69

SHNMF 72.40±2.37 60.02±1.11 45.66±2.48 83.04±1.82 85.19±1.80 38.30±2.27

HGNTR 88.24±1.43 56.07±1.67 49.42±0.58 82.53±1.64 82.81±1.81 52.33±2.30

LraHGNTR 88.15±1.29 62.47± 0.91 49.57±4.82 82.18±1.51 75.84±2.23 50.16±2.19

HyperNTF 88.71± 7.12 60.78±0.95 48.40±4.18 85.27± 0.87 79.19±1.24 54.07 ± 2.49

TriD 66.60±2.42 52.10±1.24 38.35±3.39 73.84±2.13 90.98± 1.69 45.82±4.31

HNTriD 91.04 ± 0.83 65.29± 1.35 53.22± 4.23 86.44 ± 1.22 94.12± 1.05 53.95± 2.42
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receive 100 evaluation index values and calculate the average value as the performance result for each method. 
Finally, we report the average performance in Tables 4, 5, and 6. Simultaneously, we record the time spent by 
each method performing clustering tasks on each dataset, and the results are shown in Figure 6.

Tables 4, 5, and 6, present experimental results demonstrating correlation algorithm clustering performance 
on six datasets. The advanced clustering method can be found in the tables under the quantitative clustering 
rules. For ease of observation, we highlight the best data in bold and the second ones in a slight underline. The 
experimental results presented above lead us to the following conclusion: (i) In terms of clustering performance, 
as measured by ACC, NMI, and PUR, our proposed method outperforms others in the majority of cases, and our 
experimental results are second-best, if not the best. (ii) The best experimental results in the mass are located in 
tensor-based methods. Because tensor methods consider more information from the raw data. (iii) The HNTriD 
method outperforms other tensor-based decomposition methods in most cases. Because it inherits the previous 
algorithm’s excellent characteristics, including TriD, and preserves the data’s multi-linear structure. Experiments 
show that the proposed HNTriD algorithm performs well in clustering tasks.

Statistical significance comparison
A t-test is a statistical technique used to determine if there is a significant difference between two groups of data. 
It functions as an important tool in hypothesis testing and aids researchers in determining whether two groups 
are genuinely  distinct47,48. Subsequently, we examine the statistical significance of the disparity between HNTriD 
and some typical approaches using t-test. Similar  to49, we take the significance level of p < 0.05 in the t-test to 
draw the difference. If our approach outperforms a compared method in a comparison test and the difference 
is statistically significant (t-test, p < 0.05 ), we record it as significant better or worse for one time. If the dif-
ference between our approach and a compared method is not statistically significant, then we say that they are 
comparable. We use (a, b, c) to display comparison results. Three integers inside the brackets respectively cor-
respond to the number of times that the performance of our method is significantly better than, comparable to, 
significantly worse than a related method. We compare 10 algorithms (including HNTriD) on both the COIL20 

Table 6.  Quantitative clustering (PUR%±std%) of different methods on six datasets. Significant values are 
bold.

method

Dataset

COIL20 GEORGIA MNIST ORL PIE USPS

NMF 60.33±3.91 43.27±1.69 52.60±3.33 71.11±2.83 72.09±2.51 43.83±2.63

GNMF 75.21±2.83 44.41±1.80 55.10± 5.29 73.25±2.76 71.31±3.05 47.34±3.17

HNMF 80.52±2.29 44.71±1.55 52.10±5.03 73.69±2.34 70.83±2.56 47.39±2.89

HSNMF 80.20±2.31 40.75±1.65 51.25±4.71 44.02±1.94 80.48±1.53 43.32±2.29

SHNMF 61.12±4.06 43.46±1.70 52.62±3.33 71.48±3.11 71.96±2.96 43.33±2.21

HGNTR 81.19±2.25 38.77±2.15 50.50±6.14 69.98±3.04 64.40±3.63 53.60±2.66

LraHGNTR 81.06±2.05 46.71± 1.41 50.00±5.75 68.67±2.59 51.16±3.41 50.18±2.62

HyperNTF 81.80± 3.30 45.90±1.20 51.20±4.15 74.84± 1.70 59.16±1.99 56, 73± 3.54

TriD 54.16±3.40 34.25±1.51 47.27±3.96 59.55±2.73 80.64± 3.17 52.70±4.97

HNTriD 85.65± 1.64 52.33± 1.62 54, 72± 5.32 76.36± 2.00 87.63± 2.35 55.55± 3.55

Table 7.  The t-test comparison results of different methods on COIL20.

Metrics NMF GNMF HNMF HSNMF SHNMF HGNTR LraHGNTR HyperNTF TriD

HNTriD

ACC (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (9,1,0)

NMI (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0)

PUR (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0)

overall (30,0,0) (30,0,0) (30,0,0) (30,0,0) (30,0,0) (30,0,0) (30,0,0) (30,0,0) (29,1,0)

Table 8.  The t-test comparison results of different methods on MNIST.

Metrics NMF GNMF HNMF HSNMF SHNMF HGNTR LraHGNTR HyperNTF TriD

HNTriD

ACC (3,5,2) (3,5,2) (5,3,2) (10,0,0) (2,4,4) (3,6,1) (7,2,1) (7,1,2) (5,5,0)

NMI (9,1,0) (6,3,1) (7,2,1) (10,0,0) (8,2,0) (7,2,1) (9,1,0) (8,1,1) (10,0,0)

PUR (6,4,0) (6,3,1) (6,6,2) (10,0,0) (4,4,2) (3,6,1) (6,4,0) (9,0,1) (9,1,0)

overall (18,10,2) (15,11,4) (18,7,5) (30,0,0) (14,10,6) (13,14,3) (22,7,1) (24,2,4) (24,6,0)
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and MNIST datasets. In each comparison, we run all the compared algorithms 10 times, and we repeat each 
group of comparison experiments 10 times. Specifically, the statistical test results are presented in Tables 7 and 8.

According to comparison tests show in Table 7, our method is significantly superior to the compared methods 
on the COIL20 dataset. The experimental results on MNIST demonstrate a clear decline in performance com-
pared to the experimental findings on COIL20. However, from the overview of all metrics’ evaluation, the results 
still demonstrate a high level of performance when compared to other approaches. Based on the information 
provided in Tables 7 and 8, it is evident that our method demonstrates significant statistical advancements com-
pared to the listed methods in most cases. The statistical test findings indicate that our method has a significantly 
bigger advantage over the other compared ones.

Visualization on clustering tasks
In order to visually demonstrate the clustering performance of HNTriD, we present cluster visualizations of 
several comparable approaches to assess the data learning capability of HNTriD. In this experiment, we choose 
the COIL20 dataset as a representative example to conduct comparative tests on clustering tasks. We specifically 
select 10 categories of data for analysis. The data analysis is shown in a two-dimensional space using t-SNE, and 
the cluster results are displayed in Figure 5 for visual comparison.

Figure 5 demonstrates that the HNTriD method, when applied to the mulitiway dataset, is capable of effec-
tively discerning the differences between data samples. HNTriD outperforms other approaches in visually sepa-
rating sample clusters in the COIL20 dataset, while some methods fail to completely separate samples from other 
clusters. This strategy enhances the reliability of the clustering data comparison experiment mentioned above 
and confirms that the inclusion of HNTriD improves the learning capability of multiway data.

Running time comparison
From the previous experimental results (including numerical experiments, statistical significance comparison, 
and visualization on clustering tasks), the HNTriD model shows better data analysis performance. However, it 
is important to take into account the time cost when applying mathematical models in real-life situations. This 
means that if we can improve the efficiency of calculations while preserving the quality of data analysis, the 
mathematical model will be more effective in practical applications. Based on this background, we figure out the 
time cost and use Figure 6 to record the running time of clustering tasks for each method on six related datasets. 
On each dataset, we compare the computational time required by each method to complete the same numeri-
cal tests described in Subsection 4.6. Each bar in the Figure 6 represents the total time needed for a method to 
complete the cluster analysis of a dataset, and different colors represent different algorithms. For example, for 
each dataset, the time cost of HNTriD is represented in yellow.

We can deduce the following statements from the bar graph: (i) Matrix-based decomposition methods are 
almost always faster than tensor-based ones. Matrix-based methods have an obvious advantage in terms of run-
ning speed for there are few factors that needed to be updated due to their special arithmetic expression. (ii) 
When compared to general methods, manifold learning ones take longer to complete clustering tasks in most 
cases. This occurs because manifold learning algorithms require updating more parameters in clustering data. 
(iii) When compared to matrix-based algorithms, the HNTriD algorithm takes longer to cluster tasks. Given 
the computational complexity of the algorithm, the experimental results are consistent with our expectations. 
The increase in computational time is due to the construction of the hypergraph and the depiction of raw data. 
(iv) Among the tensor-based methods, the HNTriD algorithm’s computation speed does not fall behind while 
maintaining its superior performance.

Conclusions
In this paper, the proposed HNTriD method performs well in multiway data learning because it combines the 
advantages of hypergraph learning and TriD. By constructing hypergraphs, it can reveal the complex structural 
information of more complex variables hidden among raw data. When combined with the TriD model, it can 
retain the multi-linear structure of high-order data while mining the potential information within the data and 
has strong data clustering abilities. Furthermore, we use the multiplicative update method to optimize the pro-
posed HNTriD model, and experiments show that the new algorithm is convergent. The proposed algorithm is 
applied to six real-world datasets for clustering analysis, including COIL20, GEORGIA, MNIST, ORL, PIE, and 
USPS, and the data clustering results are compared to those of several existing algorithms. The experimental 
results demonstrate that the proposed HNTriD method is efficient and saves time in data analysis. In our current 
work, our hypergraph does not change once it is generated, which may result in a less-than-ideal hypergraph 
learned in some data with unexpected noise. The solution to this problem, however, is outside the scope of our 
current work, and we hope to improve it in the future.
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Figure 5.  2-D visualizations of the clustering results of several algorithms using t-SNE on the COIL20 
dataset. (a) NMF. (b) GNMF. (c) HNMF. (d) HSNMF. (e) SHNMF.  (f) HGNTR. (g) LraHGNTR. (h) 
HyperNTF. (i) TriD.  (j) HNTriD.
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