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Ferroelectric capacitors 
and field‑effect transistors 
as in‑memory computing elements 
for machine learning workloads
Eunseon Yu 1,2, Gaurav Kumar K 1,2, Utkarsh Saxena 1 & Kaushik Roy 1*

This study discusses the feasibility of Ferroelectric Capacitors (FeCaps) and Ferroelectric Field‑Effect 
Transistors (FeFETs) as In‑Memory Computing (IMC) elements to accelerate machine learning (ML) 
workloads. We conducted an exploration of device fabrication and proposed system‑algorithm 
co‑design to boost performance. A novel FeCap device, incorporating an interfacial layer (IL) and 
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2
 (HZO), ensures a reduction in operating voltage and enhances HZO scaling while 

being compatible with CMOS circuits. The IL also enriches ferroelectricity and retention properties. 
When integrated into crossbar arrays, FeCaps and FeFETs demonstrate their effectiveness as IMC 
components, eliminating sneak paths and enabling selector‑less operation, leading to notable 
improvements in energy efficiency and area utilization. However, it is worth noting that limited 
capacitance ratios in FeCaps introduced errors in multiply‑and‑accumulate (MAC) computations. The 
proposed co‑design approach helps in mitigating these errors and achieves high accuracy in classifying 
the CIFAR‑10 dataset, elevating it from a baseline of 10% to 81.7%. FeFETs in crossbars, with a higher 
on‑off ratio, outperform FeCaps, and our proposed charge‑based sensing scheme achieved at least an 
order of magnitude reduction in power consumption, compared to prevalent current‑based methods.

The ubiquity of smart Internet of Things (IoT) devices, projected to surpass 29 billion by  20301, commands a 
transformative influence on diverse aspects of contemporary life. Empowered by sophisticated machine learning 
(ML) capabilities, these devices are progressively being used in various applications, optimizing functionalities 
from real-time analytics to complex decision-making processes. A pressing challenge in this evolution lies in 
effectively managing the formidable computational demands intrinsic to ML workloads. Standard von Neumann-
based hardware architectures have limitations in navigating these contemporary exigencies, chiefly manifested 
as the “memory-wall” or the “von Neumann  bottleneck2”. This bottleneck (Fig. 1), marked by a significant speed 
gap between processors and memory, necessitates a pivot towards more innovative and responsive architectural 
paradigms.

In response, In-Memory Computing (IMC)3 has emerged as a promising architectural solution where memory 
devices are organized within a crossbar  array4. This arrangement improves computational efficiency by enabling 
the parallel in-situ execution of essential neural network operations, particularly Matrix-Vector Multiplications 
(MVMs) and General Matrix Multiplications (GEMMs). Traditional CMOS memories, including Static Random 
Access Memory (SRAM) and Dynamic RAM (DRAM), do offer IMC solutions but come with their notable 
drawbacks. These include substantial static leakage and scalability issues, frequent refreshing, and the complex-
ity of peripheral circuitry. These factors ultimately hamper their overall effectiveness in managing complex ML 
workloads, leading to increased latency and energy consumption.

Emerging Non-Volatile Memories (NVMs), like Resistive RAM (ReRAM)5,6, Phase-Change Memory (PCM)7, 
and Magnetoresistive RAM (MRAM)8, offer promising solutions against the limitations of conventional CMOS-
based memories. Their reduced size and enhanced data retention capabilities make them favorable for IMC. For 
instance, ReRAMs can have a memory footprint approximately 3− 5× smaller than SRAMs and 1.5× smaller 
than DRAMs, for similar technology  nodes9,10. It’s worth noting that these ratios are calculated considering 
standard 2D layout geometries. Utilizing emerging 3D geometries in layout can significantly reduce the ReRAM 
cell area to ≤ 4F2 , providing ≥ 20× area benefit compared to standard  SRAMs11. However, the application of 
these NVMs in IMC presents complexities such as sneak path effects and crossbar parasitics (Fig. 1), challenging 
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their practical utility. To overcome these challenges in NVMs, a large selector device is incorporated for each 
memory cell. However, this inclusion raises concerns about scalability, energy overhead, and process complexity, 
potentially offsetting the intrinsic benefits of NVMs’ compactness. Thus, it is imperative to develop selector-less 
memory cells to harness their true potential in IMC crossbars.

Ferroelectric crossbars, which consist of Ferroelectric Capacitors (FeCaps) or Ferroelectric Field Effect Tran-
sistors (FeFETs), have emerged as a compelling alternative. Notable attributes, including minimal leakage cur-
rents for enhanced energy efficiency and the absence of selector devices, along with their innate high internal 
resistance, foster compactness, and support larger crossbars. They are also compatible for integration with CMOS 
 technology12.

FeCaps require a relatively lower operating voltage than FeFETs and have a compact two-terminal design, 
which allows for high memory density and a streamlined fabrication process. They embody the essence of tradi-
tional capacitors, mitigating DC current and reducing static power consumption, obviating the need for selector 
devices. In addition to the aforementioned benefits, FeFETs offer a high on-off ratio exceeding 104 . However, the 
integration of FeFETs and FeCaps in IMC comes with its own challenges. Despite these advantages, challenges 
arise when scaling the area of FeCap and FeFET devices due to the polycrystalline nature of the ferroelectric 
material, such as Hf0.5Zr0.5O2 (HZO). This can hinder the  performance14 and  reliability15 of the devices, neces-
sitating careful consideration in  design16 and sensing  periphery17. Additionally, for FeCaps, their inherent low 
ratio of high-capacitance state (HCS) to low-capacitance state (LCS) ( Cratio ) leads to computational errors, an 
aspect that has been somewhat neglected in previous  research18–20. On the other hand, FeFETs require high 
programming voltages and suffer from poor endurance performance.

This article discusses ferroelectric memory-based IMC in three phases: the development of low operational 
voltage devices, the design and analysis of crossbar arrays, and the exploration of impending challenges and 
associated trade-offs. Finally, we introduce a device-system co-design and architecture solutions to address 
these challenges.

In the pursuit of energy-efficient IMC units, a critical consideration is the reduction of the operating voltage 
for these devices. Typically, HZO-based FeCaps incorporate a 10-nm-thick layer which facilitates operation 
at voltages of around 2 V or higher. Our work places particular emphasis on the development of low-voltage 
ferroelectric devices, leading to 1.2 V operation, achieved through interfacial layer (IL) engineering and a thin 
HZO layer. Furthermore, the inclusion of IL not only improves ferroelectricity, but also enhances retention per-
formance. The fabrication of proposed FeFET focuses on obtaining a sufficient memory window, demonstrating 
a 1-V memory window with conventional 10-nm HZO layer. The measured results of these fabricated devices are 

Figure 1.  Deep-learning (DL) applications, associated challenges, and the need for in-memory computing 
(IMC) with Non-Volatile Memory (NVM) devices. (a) Holistic view of DL applications, the architecture of a 
fully connected neural network, and the challenges that allow IMC to complement. (b) IMC and NVMs aimed 
at this purpose, featuring the characteristics of crossbar architecture characteristics based on memristor devices 
and capacitive crossbar array for its counterpart. The resistance plot shows the values of the Low Resistance 
State (LRS) and High Resistance State (HRS) for various NVMs, and the internal resistances of FeCaps obtained 
from our experimental data (at different HZO thicknesses of 4.5 nm and 9.5 nm). When the width of crossbar 
wire is scaled from 10 to 5  nm13, there is a notable increase in its resistance. This increase brings it into a 
range comparable to the LRS of ReRAMs, PCMs, and MRAMs, yet maintaining distinction from the internal 
resistances of FeCaps. Our key contributions are highlighted.
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fitted to a physics-based model to characterize their behavior for performing crossbar array analyses, particularly 
for essential operations like MVMs, crucial for various ML workloads.

We identified inherent limitations of FeCaps as IMC elements, incorporating errors in computations, primar-
ily stemming from their low Cratio . To address these challenges, we propose a device-circuit-algorithm co-design 
solution. This approach takes into account the impact of a small Cratio during the neural network training phase, 
thereby extracting acceptable performance in FeCap-based IMC crossbars at inference. Our proposed methodol-
ogy achieves an accuracy of 81.7% on the CIFAR-10 dataset using Resnet-20, compared to a mere 10.0% baseline 
accuracy in the absence of any pre-training. Moreover, we propose a modified crossbar architecture utilizing 
FeCaps that eliminates the need for pre-training, albeit with an additional cost in terms of area and power con-
sumption. Furthermore, we introduce a charge-based inference scheme in FeFET crossbars, enhancing energy 
and area efficiency. This is achieved by eliminating power-hungry transimpedance amplifiers (TIA) and bulky 
load capacitors, resulting in over an order of magnitude lower power consumption. Our comparative analysis 
highlights the promising attributes of ferroelectric solutions, advancing our understanding of their applicability 
in the ever-evolving landscape of memory technologies and IMCs.

The rest of the article is organized as follows: the Results section presents the measurement data obtained 
from the fabricated ferroelectric devices and discusses the fitting of the simulation model to the experimental 
data. We also showcase the practical application of FeCaps and FeFETs in crossbar arrays for IMC, before delv-
ing into operational principles, associated challenges, and potential opportunities. Moving forward, the Dis-
cussion section throws light into the findings and insights on employing FeFETs and FeCaps as IMC elements 
in crossbars. The Methods section depicts the fabrication process for FeCaps and FeFETs, along with device 
characterization, before discussing simulation and training methodology.

Results
Ferroelectric devices as IMC elements
Recent research on ferroelectric devices have focused on their applications within the IMC framework. While 
there exist some complementary features between FeCaps and FeFETs, both devices boast extremely high inter-
nal resistance values as their most advantageous attributes as shown in Fig. 1b. These characteristics collectively 
enable the creation of a selector-less cell. We examine both FeCaps and FeFETs in the context of IMC applications.

Device characteristics and memory operation of ferroelectric devices
To substantiate the promise of ferroelectric devices, we fabricated FeCap and FeFET devices. These devices incor-
porated HZO as ferroelectric material. In the fabrication of FeCap, we considered the reduction of operational 
voltage and process temperature, along with enhancements in  reliability21. Thinning the HZO layer can be a 
potent strategy for reducing operational voltage by leveraging the consistent coercive field of HZO material in 
various thicknesses. However, this exponentially increases the thermal budget required for ferroelectricity acti-
vation, which presents considerable  challenges22. Extending the Back-End-of-Line (BEoL) process temperature 
undermines the reliability and performance of integrated CMOS peripherals, which are crucial for optimizing 
the overall area efficiency through 3-dimensional (3-D) stacking. To that effect, there are previous approaches 
such as employing the plasma-enhanced ALD (PE-ALD)  method23, employing a material with a low thermal 
expansion  coefficient24,25, and implementing a surface treatment  technique26.

Our approach was tailored to balance these scaling considerations, simply leveraging a 1-nm IL using diverse 
materials such as HfO2 , ZrO2 , and Al2O3 in conjunction with a 4.5-nm or 9.5-nm HZO layer. The use of an IL 
demonstrated elevated ferroelectric performance, reduced the operational voltage, and reduced process tempera-
ture to 350 ◦ C (Fig. 2a)21. Notably, HfO2 and ZrO2 , outperformed Al2O3 , owing to their structural affinity with 
HZO, lower crystallization temperatures, and greater disparities in their thermal coefficients with HZO and/
or electrode materials (particularly, ZrO2 IL emerged as the leading candidate). These advancements represent 
significant improvements in FeCap technologies: (1) addressing the limitation imposed by the BEoL thermal 
budget of 400 ◦ C, given that an annealing temperature higher than 450◦ C is necessary to secure sufficient ferro-
electricity when the thickness of HZO is reduced below 4.8  nm22 and 5.6  nm27; (2) scaled the operational voltage 
from the baseline of 1.5 V to 1.2 V (typical 2 V or above observed in 10-nm HZO FeCap  devices22,28 attributed 
to the coercive field of ≥ 1.0 MV/cm); (3) improved the retention performance (Fig. S1).

In the fabrication of our FeFET, securing enough memory window and low leakage current were our foremost 
objectives. Our fabricated FeFET demonstrated a 1-V memory window with a 10-nm HZO layer, as shown in 
Fig. 2b. The on-off current ratio was 4.9× 106 (Fig. S2). While the FeFET need not be exclusively p-type, we 
chose to employ our in-house fabricated p-type FeFET device. The experimental data from both FeCaps and 
FeFETs were fitted to the Preisach model for crossbar array  simulation29. Figures 2a,b and S2 showcase the results 
of the model fitting, highlighting the correlation between the experimental data and the simulation model for 
their respective devices.

The capacitances of FeCaps vary with electric field, and this facilitates the unique feature of selector-less 
cells in MVM operations. This capacitive crossbar array offers an advantage over resistive crossbar arrays, 
being more energy efficient by eliminating static power consumption. Based on the capacitance (C) equation 
( C/A = ǫ/tHZO ), the dielectric constant ( ǫ ) is the only variable since the device area (A) and the thickness of 
HZO ( tHZO ) are the physically fixed values. Figure 3a exhibits dielectric constant values of three FeCaps, back-
calculated from our capacitance measurement (Fig. S3). Ferroelectric devices have butterfly-shaped distinctive 
patterns arised from the change of its atomic structure in response to electric fields, an exclusive characteristic 
of the ferroelectric film. On the contrary, a paraelectric device showed a relatively consistent dielectric constant 
regardless of external electric fields.
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Although an ideal butterfly-shaped capacitance-electric field (E) curve is symmetrical, practical considerations 
such as trapped charges, defects, and oxygen vacancies introduce observed asymmetry and shift the cross-point 
of the positive and negative direction electric field sweeps at non-zero E (Fig. 3a). This asymmetrical C-E curve 
finds valuable application in MVM, facilitated by the charge equation Q = CV. After programming pulses, FeCap 
devices are read at varying capacitance values (C), with the charge output (Q) determined by the input voltage 
(V). Figure 3b depicts the maximum capacitance ratios observed in our fabricated devices, which encompassed 
a variety of IL materials, HZO thicknesses, and process temperatures. The highest C ratio s (= HCS/LCS) of 1.2 
and 1.29 were observed for 4.5-nm and 9.5-nm HZO samples, respectively. In other words, the differences 
between the maximum and minimum dielectric constants were 5.83× ǫ0 and 7.04× ǫ0 , respectively. Here, ǫ0 is 
the vacuum permittivity. For our simulation of the capacitive crossbar array, we used a FeCap device featuring 
a ZrO2 IL with a 4.5 nm HZO layer, demonstrating a low-voltage operation of 1.2 V.

Figure 4a shows write and read operations with voltage applications. Figure 4b,c illustrate the memory opera-
tion of a single FeCap and FeFET, respectively. Initially, a preset voltage is applied to align the polarization direc-
tion. Subsequently, a programming (write 1) pulse of 1.2 V and an erase (write 0) pulse of −1.2 V are applied, 

a

Figure 2.  Schematics and performances of our fabricated FeCaps and FeFET. (a) High-resolution transmission 
electron microscopy (HR-TEM) images of FeCaps having a 4.5-nm HZO layer without an IL (left) and with 
1-nm ZrO2 IL (right). Polarization-electric field plots of the FeCaps having different IL materials along with 
4.5-nm HZO (annealing temperature was 350 ◦C). Without IL, the HZO layer remained as paraelectric 
material under the given annealing temperature. Simulation model fitting results with 9.5-nm and 4.5-nm HZO 
thicknesses devices. (b) Optical microscope image of our fabricated die. Fitted FeFET transfer curve obtained 
from the simulation model compared with the experimental data (inset: Scanning Electron Microscope (SEM) 
image).

Figure 3.  FeCap capacitance characteristic. (a) Butterfly-shape dielectric constant vs. electric field curves from 
three different FeCap devices. Corresponding devices are denoted as i, ii, and iii in b. (b) Maximum observed 
capacitance ratio (Cratio ) across FeCap devices.
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followed by a read operation at 0.1 V for each. In the case of FeCap, the use of a low read voltage of 0.1 V, way 
below the coercive voltage (higher than 0.7 V), ensures a non-destructive read  operation28,30. This non-destructive 
read was confirmed by the unchanged polarization values of post-read operation (Fig. 4b).

FeFETs offer a significantly low leakage current with a high on-off ratio due to the superior switching charac-
teristics of the transistors. The ferroelectric layer as the gate oxide of the FeFET encodes data within its polariza-
tion state. This, in turn, modulates the threshold voltage of the FeFET, effectively controlling the conductance of 
its channel (Fig. 4c). For FeFET operation, the programming employs a gate voltage (VGS ) of -3 V and the erase 
uses +3 V of VGS , with a drain voltage (VDS ) of −1.0 V. During read, VGS = VDS = -0.1 V is used, ensuring a highly 
non-destructive read condition for the current polarization status of the FeFET. Based on the aforementioned 
operation conditions, we performed array simulations that will be explained in the following section.

Crossbar array analyses
FeCap‑based crossbar arrays for IMC
Based on the proposed FeCap devices, this work harnesses the inherent ferroelectric properties to encode infor-
mation via capacitance states. Programming a low-capacitance state (LCS) or a high-capacitance state (HCS), as 
shown in Fig. 3a, is achieved by applying electric fields. In a crossbar configuration, these capacitors can perform 
neural network operations, especially MVM using simultaneous activations of word lines. As mentioned previ-
ously, their low-voltage operation (1.2 V) and low process temperature allow for smooth incorporation into 3-D 
stacked MVM units with standard CMOS circuits.

Figure 5a illustrates the IMC crossbar architecture with FeCaps as memory elements. Each column in cross-
bars employs an operational amplifier (OPAMP)-based charge summing amplifier to generate an analog value 
( Vout ). This output Vout reflects the result of the multiply-accumulate (MAC) operation, with the activations 
serving as inputs and the capacitance states of FeCaps acting as neural network weights. Hence, the generated 
MAC value, a summation of input-weight products, is a key operation for diverse ML workloads.

In the charge-based MAC computation process, two phases are involved. During the phase φ1 , the bit lines 
( BL1 , BL2 , ..., BLN ) are set to the common mode voltage ( VCM ), while the corresponding wordlines ( WL1 , WL2 , 
..., WLN ) are activated simultaneously to establish charges across the capacitors (pre-programmed to either HCS 
or LCS). In phase φ2 , the word lines (WLs) are connected to VCM , and the bit lines (BLs) to the summing capaci-
tor ( Cref  ) which connects the input and output terminals of the OPAMP. This inference operation in crossbars 
is expressed by Eq. 1.

Equation (1) encapsulates the charge accumulation process, where stored charges in the capacitors ( CFEi ) accu-
mulate over Cref  . It also highlights the multiplication operation between input signals (activations, WLi ) and 
ferroelectric capacitance (weights/parameters, CFEi ) in the MAC operation. Thus, the numerical values of the 
realized capacitance (HCS or LCS) represent the stored digital bit in the crossbar array. Figure 5b illustrates 
the analog MAC output voltage as a function of the number of activated WLs. In this scenario, all the FeCaps 
in a bitline j are programmed to an HCS. When the WLs are activated sequentially, the analog MAC voltage 
produced increases linearly with the number of WLs activated. The obtained result depicted in Fig. 5b is in line 
with previous studies that emphasize the substantial potential of FeCap crossbar arrays. Moreover, our analysis 

(1)Voutj =

∑N
i=1

(CFEi ×WLi)

Cref

Figure 4.  Memory operation and signalling schemes: (a) Write and read operation schemes in crossbar array. 
Timing diagram for (b) FeCap and (c) FeFET. Programming the FeCap requires an operating voltage of 1.2 V, 
whereas the FeFET programs at 3 V. The change in the polarization state controls the value of capacitance in 
FeCap and the value of conductance in FeFET.
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distinctively reveals that this instance shown in Fig. 5b and Ref.18,19 is realized under the most optimal condition 
for FeCap crossbar operation.

Challenges. Figure 5c presenting the timing diagram of a 4× 4 FeCap array illustrates an error occurrence 
during MAC operation. The diagram shows that when input activations are high (1111), and all weights are in 
LCS states (0000), the resulting accumulated output voltage is unexpectedly higher than in the scenario where 
the inputs and weights are set to an alternating pattern (1010). This indicates an erroneous output where the volt-
age corresponding to a digital ‘0’ (Vx ) is greater than that for a digital ‘2’ (Vy ). In other words, there is a random 
input-output correlation. This phenomenon presents a significant computational challenge and can lead to a 
reduction in the accuracy at the application level for DL tasks.

Our work has led to the important finding that computational errors are prevalent in many scenarios. The 
MAC output result, observed in Fig. 5b and in the previous  works18–20, is the only specific condition when the 
FeCap crossbar can operate linearly. However, such conditions are not representations of practical applications. 
These errors are mainly connected to the low Cratio of FeCaps. Based on our experiment and other HZO-based 
metal-ferroelectric-metal (MFM) structure capacitors, Cratio falls within the range of 1.1–1.4. Such a small Cratio 
makes it difficult to discriminate their low and high capacitance states while activating multiple cells simulta-
neously. However, achieving a high Cratio is particularly challenging in MFM structure FeCaps due to inherent 
limitations associated with the properties of ferroelectric materials. This is because the varying dielectric con-
stants of the FeCaps solely depend on the atomic-level dispersion between the atomic centers of positive and 
negative ions in ferroelectric materials.

Figure 6a illustrates the expected and obtained digital MAC outcomes for varying Cratio for a 8× 8 crossbar 
array, including Cratio values of 1.29 (the highest achievable from our experimental data), 5, and 10. Each instance 
(output) is derived from every 8-bit input and 8-bit weight sparsity pattern (i.e., 65,536 samples). These simula-
tions support our claim that there is no direct correlation between the obtained and ideal digital MAC outputs 
at practical Cratio value of 1.29. We also revealed that the sparsity of the input and weight influences the output 
MAC values. Here, sparsity quantifies the percentage ratio of zero-valued elements to the total element count. 
Specifically, the more cases with a higher incidence of ‘1’ s in the inputs (denoting lower input sparsity) com-
bined with ‘0’ s in the weights (denoting higher weight sparsity) are the more susceptible to errors. This finding 

Figure 5.  (a) FeCap-based IMC crossbar architecture for MVM computations. (b) Simulation results depicting 
the accumulated analog MVM (or MAC) output for 8× 8 array, where FeCaps programmed to HCS and a 
number of WL (input) activations are varied. (c) Timing diagram for a 4× 4 array to show the operation of 
crossbars, illustrating the different scenarios that lead to erroneous calculations, which result from the inherent 
low HCS/LCS ratio.
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is another cornerstone of our research. Figure 6b provides evidence that lower input sparsity and higher weight 
sparsity lead to an increased error. The low accuracy region corresponds to cases with higher weight sparsity (i.e., 
more LCS cells), while the red-colored area of higher accuracy correlates with scenarios featuring low weight 
sparsity and/or low input sparsity. Figure 6c presents the overall accuracy for output MAC values with varying 
numbers of input activations for different values of Cratio in a 8× 8 crossbar. As the number of activated WLs 
increases, accuracy drops quickly for lower Cratio . This shows that a higher Cratio is correlated with a reduced 
probability of errors, with a Cratio of 10 for an 8× 8 crossbar array ensuring error-free operations. Figure 6d 
depicts the optimal Cratio for error-free operations in different array sizes. This analysis further underscores that 
larger arrays require higher Cratio.

In array operations, ensuring disturb-free operation is important for the feasibility of FeCap, especially in 
selector-less cells. Despite the possibility of a small voltage read for non-destructive  read30, there remains a risk 
that multiple read operations could lead to the destruction of the polarization states in FeCaps. This risk depends 
on various factors such as read conditions and device characteristics. Importantly, write operations are more 
vulnerable to disturbances compared to  reading31. To alleviate this issue, several approaches such as utilizing 
recovering pulses, careful device development, and optimizing the write voltage could be a viable option.

FeFET crossbar arrays for IMC
Our fabricated FeFET device showed an off/on resistance ratio exceeding 104 , a leakage current below 10−12 
amperes, and 1-V memory window, presenting FeFETs as an alternative for memory devices to ensure effective 
inference. Furthermore, like FeCaps, they can be accessed without the need for selectors, which contributes to 
improved memory density.

Previous studies mainly employed a current-based sensing scheme in FeFET crossbar  arrays32,33. In this 
approach, the current drawn by each FeFET is integrated across a resistor, leading to an output voltage given by 
( Vout = Itotal × R ). This summation is facilitated by a current-summing TIA in each column of the crossbar, a 
design reminiscent of the FeCap architecture as illustrated in Fig. 5a. While TIA is a necessity for a current-based 
sensing scheme, it introduces energy-intensive active circuitry, inevitably escalating the power demands, and 
reducing overall efficiency. Recent studies aimed to circumvent the need for a TIA by integrating current across 
the load capacitor to accumulate  voltage34,35. However, this approach requires an additional capacitor in each 
column of the crossbar and requires large enough capacitance to counter wire parasitics, ultimately increasing 
chip footprint.

In this work, we proposed a charge-based approach in FeFET crossbars. This offers an alternative to TIA for 
current-to-voltage conversion and eliminates the need for extra bulky and area-intensive capacitors, achieving 
an energy-efficient and area-efficient design. Figure 7a provides an overview of the FeFET IMC crossbar and 
other auxiliary computing elements. The proposed method occurs in two phases. During the first phase φ1 , the 
BLs are precharged to a potential denoted as Vprecharge . In phase φ2 , the WLs representing the input activations 

Figure 6.  8× 8 size FeCap crossbar array, operation schemes, and its performance. (a) Comparison of 
anticipated digital MAC output with obtained digital output from FeCap-based crossbars at Cratio = 1.29, 5.0, 
and 10. Cases with low Cratio exhibit considerable error in obtained MAC output originated from leakages 
during the activation of LCS. (b) Heatmap of accuracy with respect to input and weight sparsities at 1.29 of 
Cratio . (c) Accuracy of MAC output for different Cratio and increasing number of activated WLs. (d) Minimum 
value of Cratio required for varying FeCap-based crossbar array sizes.
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are enabled simultaneously. At the same time, the source lines (SLs) are connected to a lower potential (VSS). 
This configuration allows the BLs to discharge linearly based on the stored data (programmed FeFET state) and 
input activations. Consequently, this arrangement facilitates a MAC operation through integration along the BL. 
In this crossbar array, the Vprecharge applied to the BL and the voltage on the SL are crucial factors in regulating the 
current through the FeFETs during readout and directly influencing the discharge rate of the BLs. Additionally, 
careful sizing of the precharging PMOS transistor is required to ensure that the maximum current flow through 
the BLs is not constrained by the precharging circuit.

Figure 7b illustrates the simulated output MAC values for an 8× 8 crossbar array. This setup is similar to 
the one used in Fig. 5b, where the WLs are sequentially activated while the FeFETs are programmed to 1 (high). 
Note that the issues observed in FeCaps crossbars (Fig. 6) do not apply here due to the high on-off ratio. The 
accompanying timing diagram in Fig. 7c, designed for a 4× 4 array for simplicity, elucidates the operational 
principle of the FeFET-based crossbar array.

Challenges. The implementation of FeFETs, despite their impressive on-off ratio characteristics, comes with 
the challenge of demanding higher programming operating voltages, typically in the range of 3–5 V. This neces-
sitates the integration of separate charge-pumping circuits, especially as supply voltages continue to decrease 
in line with advancements in technology nodes. Moreover, unlike highly reliable FeCaps, FeFETs endurance 
on Si channels experience degraded endurance performance. This limits the number of training cycles, which 
prohibits on-chip learning.

In FeFET crossbars, increasing the number of parallel WL activations exacerbates non-idealities, as shown 
in Fig. 7b. These non-idealities arise from the non-linear I‑V characteristics of FeFET, due to large discharge 
currents and reduced BL voltage. Such non-linearity becomes evident when activating multiple rows containing 
FeFETs programmed to ’1’ simultaneously with WLs ’1’ activations. Limiting the current helps avoid this issue, 
but reduces the resolution between subsequent output MAC levels, thereby imposing more precise performance 
for the subsequent peripheral sensing circuit.

Figure 7.  FeFET-based MAC operation. (a) Crossbar architecture with FeFETs as memory elements, tailored 
for IMC applications, utilizes a charge-based computational approach to execute MVM operations efficiently. 
(b) Simulation results for an 8× 8 crossbar array, showcasing variable input activation levels, with all FeFETs 
programmed to a state of 1. (c) Timing diagram illustrating the operation of a 4× 4 array, where all input 
elements are activated simultaneously.
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Opportunities for FeCaps and FeFETs in IMC
FeCaps
In pursuit of mitigating the Cratio constraints inherent to FeCaps, an effort has been devoted to exploring asym-
metric structural configurations. One study employed different top and bottom electrode materials, achieving 
a memory window of 8.0× ǫ0 , with a maximum Cratio below 1.3536. While these efforts hold potential, our 
analysis (Fig. 6d) suggests that they may not yet meet the requirement for effective use in IMC. Recently, nano-
laminate or superlattice structures have emerged as compelling means for enhancing the dielectric constant of 
 devices37–39. These structures could offer the potential to mitigate the Cratio constraints by increasing the sensing 
margin. Another approach incorporated a semiconductor layer to draw extra charges (dQ), akin to FeFETs. This 
resulted in relatively high Cratio of 2.019,  2540, and  12541. However, this approach, while achieving higher Cratio s, 
demands notably higher programming voltages, such as 20  V19, 3.5  V40, and 6.5  V41, respectively. Additionally, it 
exhibits limited endurance compared to  FeCaps41. Hence, there remains a compelling need for further explora-
tion to push the boundaries of Cratio of MFM type FeCaps while maintaining low voltage operation and superior 
endurance characteristics. Beyond device engineering considerations, our research reveals that larger FeCap 
crossbar arrays tend to accumulate more errors compared to their smaller counterparts, as illustrated in Fig. S4. 
This observation may be attributed to the higher number of possibilities for the presence of LCS in larger arrays, 
emphasizing the impact of array size and weight sparsity on error accumulation. However, it is essential to note 
that this reduction in array size also comes at the cost of increased operation latency.

Approach 1: Pre-training with non-idealities of the existing FeCap crossbar array. Recognizing the constraints 
of FeCaps in achieving a larger Cratio and errors in IMC crossbars, our work aims to harness the superior char-
acteristics of FeCaps, low-voltage operation, and enhanced reliability. To this end, we propose a pretraining 
approach designed to effectively train the crossbar architecture. This method strategically maps the data to the 
crossbar preemptively minimizing error-inducing scenarios, reducing the overall impact of LCS cells to a signifi-
cant extent at the time of inference. By doing so, we substantially reduce the inaccuracies posed by LCS states, 
enabling the integration of FeCaps into IMC applications feasible.

This training approach, motivated by our previous  works42,43, maps the neural network model to FeCap 
crossbars and trains the workload with weight, activation and partial sum quantization. Figure 8a shows a rep-
resentative mapping of a convolution layer to crossbars, which involves converting the convolution operation 

Figure 8.  Pretraining approach for FeCaps-based neural network. (a) Convolution layer mapping to FeCap 
crossbars using Im2Col transform. (b) Demonstration of bit-slicing on input activations and stored weights for 
FeCap-based crossbars. (c) Neural network architectural layout of LeNet and Resnet-20 models. (d) Simulation 
results on MNIST and CIFAR-10 datasets for LeNet and Resnet-20 models comprised of FeCap and FeFET 
crossbars. FeCap crossbars based on Quantization-Aware Training (QAT) indicate lower accuracy. Accuracy 
evaluation of FeCap crossbars using our pretraining approach demonstrates significant accuracy improvement 
in FeCap-based neural network, comparable to the FeFET baseline. Note that QAT represents the training 
approach that only trains for quantization without considering the leakage of FeCaps.
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into an MVM operation via Im2Col transform. Further, bit-slicing44 is introduced to extend the scalability of 
the training approach to accommodate multi-bit weight and activation precision. Quantized N-bit weight val-
ues are divided into N 1-bit bit-slices and stored in different FeCap crossbars, while quantized activations are 
bit-sliced to 1-bit values and applied on the crossbar across multiple compute cycles as shown in Fig. 8b. In our 
case, we consider Cratio of FeCaps to be 1.29, which means that ‘0’ weight values once mapped to the crossbar 
are represented as ‘0.77’ to emulate the LCS states introduced by the small Cratio of FeCaps. We compare the 
accuracy numbers obtained with two baselines: (1) a Quantization-Aware Training (QAT) approach which 
only trains for quantization without considering leakage of FeCaps, and (2) a FeFET baseline with near-ideal 
on/off characteristics trained with ‘0’ and ‘1’ weight only. The training approach is validated on commonly used 
computer vision datasets, MNIST, and CIFAR-10 datasets for different weight (W) and activation (A) precisions 
(Fig. 8d). Our observations indicate that the QAT approach, which is oblivious to low Cratio in FeCaps, achieves 
a catastrophically low accuracy, making the ML model unusable in practical scenarios. However, with our pre-
training approach, we achieve accuracy approaching the FeFET baseline, benefiting from its high on-off ratio 
that effectively distinguishes between ‘0’ and ‘1’. For a smaller-scale MNIST dataset, we achieve accuracy within 
1% of the ideal FeFET baseline. On the more challenging CIFAR-10 dataset, the accuracy degradation is 6.1% 
compared to the FeFET baseline with 3 bits of weight and activation precision.

Approach 2: Modified architecture with a dummy column of LCS. Including an additional dummy column 
of FeCaps, programmed for LCS, can also effectively mitigate the impact of leakage when activating LCS cells, 
a prevalent issue discussed in detail in earlier sections. Figure 9 illustrates the modified architecture with the 
dummy column. The dummy column operates in parallel with the other columns in the crossbars, sharing the 
WLs and input activations. Subsequently, the output of the dummy column undergoes subtraction from the out-
put of each column of the crossbar before being fed to the ADC for digitization and further processing. To obtain 
the required MAC output, the OPAMP-based subtraction circuit is required as depicted in Eq. 2.

Figure 9.  Approach 2, modified architecture for FeCap crossbars, incorporating a dummy column of LCS. 
The dummy column serves to subtract the leakage effects when activating LCS cells before digitizing. The table 
illustrates the different MAC outputs obtained by different architectures, highlighting the challenges of the 
reported architecture and demonstrating the effectiveness of the architecture in Approach 2.
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This architectural modification effectively eliminates the issues of leakage observed in previous works, leading 
to higher accuracy in computations (similar accuracy as with the FeFET case, shown in Fig. 8). However, it is 
essential to note that this method introduces additional TIA and subtractor circuits, thereby increasing design 
complexities, as well as the power and area requirements. For example, in a 8× 8 crossbar array, the architecture 
requires approximately 25% higher power due to the TIAs, which consume significant power. Note that this over-
head is reduced for larger crossbar arrays. Another important implication is the reduction of the signal margin 
due to subtraction, as depicted in the table shown in Fig. 9. This reduction may limit subsequent sensing circuits 
to operate on reduced margins, potentially extending the power budget.

FeFETs
The challenges of FeFETs are high-voltage operation and degraded endurance characteristics, which relate to 
energy efficiency and training capability. Notably, our observation of the FeCap structure (Fig. 2a) suggests that 
the operational voltage of FeFETs can potentially be mitigated by scaling the HZO thickness with an IL. Although 
this approach holds promise, it necessitates careful consideration of interfacial conditions between the Si channel 
and HZO layer or 1-nm IL layer. Despite the requirement for high voltage, which is applied to the gate electrode, 
FeFETs generally feature HZO thickness exceeding 4 nm. Consequently, the gate current drawn by high voltage 
remains significantly low (Fig. 4c). This exerts a negligible impact on the overall energy consumption of the 
system; however, additional circuit units are required to generate such high voltages. Furthermore, we made an 
effort on energy-efficient FeFET crossbar array by eliminating power-hungry and area-consuming components, 
i.e., TIAs and load capacitors. Our simulations show that a single OPAMP used as a TIA consumes 200 µ W of 
power (with a load cap of 200 fF and an operating frequency of 20 MHz). In contrast, our proposed charge-based 
scheme consumes approximately 10 µ W of power for each column of an 8× 8 array. This power consumption 
is orders of magnitude lower than that of the current-based sensing scheme when applied to a complete 8× 8 
array, which would necessitate eight such TIAs for iso-latency operations. Additional details on the TIA design, 
along with its power characteristics, are included in the supplementary information (Figs. S5 and S6).

The degraded reliability of FeFETs can be improved through several approaches. One method is to insert a 
high-dielectric constant material between the silicon channel and the HZO layer. This helps reduce the electric 
field across their interface, enhancing  reliability45. Another approach involves substituting the channel material 
with alternatives like oxide semiconductors that can form cleaner interfaces with the HZO layer, potentially 
improving  reliability46. Optimizing the programming pulses represents a promising approach to enhance the 
number of training iterations available for FeFETs. The endurance of ferroelectric devices is closely related to 
the electric field and its frequency during programming cycling, with shorter stress times leading to improved 
device endurance. To extend the potential for additional training cycles, it may be beneficial to employ a smaller 
electric field or shorter training pulse widths, thus increasing the reliability and longevity of FeFETs. Researchers 
have also put forward an off-chip/offline training  approach47,48. This approach pertains to a situation in which 
a particular software is responsible for computing the optimal weight values for the DNN in a server during 
the training phase. These computed weights are subsequently transferred into the hardware for its subsequent 
inference processes to reduce the number of write-read-erase cycles. Similar strategies could also be applied to 
enhance the performance of FeFETs.

From a circuit perspective, activating a larger number of cells storing 1’s can drastically lower BL voltages, 
introducing nonidealities due to the non-linear characteristics of FeFETs. To mitigate this issue, sparsity of input 
activations and stored weights or limiting the discharge current through FeFETs can significantly minimize non-
linearity in the analog MAC output. Notably, IMC architectures often employ tiling and bit-slicing techniques for 
both input activations and stored weights, thereby enabling MVMs to be performed in a bit-serial  manner49. This 
bit-serial approach naturally introduces additional sparsity, increasing the proportion of zeros in both weights 
and inputs. Specifically, inputs are streamed in a bit-serial manner, while weights are sliced into bits and stored in 
the array cells. This arrangement is key for realizing high-precision MVMs, as elaborated in Fig. 8b. For example, 
such weight slicing can yield a bit-level sparsity of at least 60%50. This increased sparsity helps activate a greater 
number of rows during MAC operations and reduces the occurrence of sensing inaccuracies by the nonidealities.

Discussion
In this study, we investigated the capabilities of FeCaps and FeFETs for executing ML workloads using IMC. Both 
FeCaps and FeFETs demonstrate robust selector-less operation while providing high internal resistance compared 
to wire resistances in crossbars. This mitigates the effects of IR drop and sneak paths, improving area and energy 
efficiency. At the device level, strategic innovations were realized through the integration of an IL with thin 
HZO for low-voltage operation, low-temperature process, and improved reliability of FeCaps. This integration 
signifies an important step towards energy-efficient devices, compatible with CMOS technology voltage scaling.

A physics-based model is used to characterize our fabricated devices to evaluate their performance in IMC 
crossbars. To ensure accurate computations, it is essential to ensure high Cratio . However, due to the inherent 
properties of ferroelectric materials, it is difficult to achieve a high Cratio . Consequently, we encountered a deg-
radation in accuracy in the FeCap crossbars. To address this problem, we propose two approaches: (i) a system-
algorithm co-design solution, which considers the effect of inherent low Cratio of FeCaps during the training 
phase of the neural network, resulting in an improvement in accuracy from 10.0% to 81.7% for the CIFAR-10 
dataset, and (ii) an architectural solution, which introduces an additional dummy column that subtracts the 

(2)Voutj =

∑N
i=1

([CFEi − CLCSdummy
] ×WLi)

Cref
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leakage effect from active columns before digitizing. However, this solution comes at the cost of increased area 
and power budget.

On the contrary, FeFETs benefit from their high on-off ratio, leveraging the superior switching properties of 
transistors. Our analysis indicates that FeFETs outperform FeCaps in IMC crossbars and achieve higher network-
level accuracy (89.1% on CIFAR-10). However, they demand higher programming voltages and compromised 
reliability compared to FeCaps. Note that these higher programming voltages do not significantly impact overall 
energy consumption, but may necessitate additional interfacing circuitry, such as charge-pumping circuits. 
Also, our proposed charge-based computing scheme considerably reduces energy consumption in the FeFETs 
crossbar by eliminating power-intensive TIAs for current-to-voltage conversion and bulky capacitors for volt-
age accumulation as used in previous approaches. In conclusion, this work provides comprehensive exploration 
and analyses, enhancing our understanding of the potential and challenges of employing FeCaps and FeFETs in 
IMC for advanced ML applications.

Methods
FeCap fabrication
The device fabrication started with cleanings of p+-doped Si substrate. The cleanings were composed of four 
stages: (1) piranha cleaning (H2SO4 : H 2 O = 3: 1) at 120◦ C for 10 min, (2) SC1 cleaning (NH4 OH : H 2O2 : 
deionized (D.I.) water = 1 : 1 : (5) at 80 ◦ C for 10 min, (3) SC2 cleaning (HCl : H 2O2 : D.I. water = 1:1: (6) at 80 
◦ C for 10 min, (4) DHF cleaning (HF:D.I. water = 1:100) at room temperature for 30 sec and extra few seconds 
more for completely sheet off the native oxide (made completely hydrophobic surface). Immediately following 
the cleaning, the samples were moved to N 2 glove box and Atomic Layer Deposition (ALD) depositions were 
processed. The 1-nm ALD IL materials of HfO2 , ZrO2 , and Al2O3 were deposited at 200 ◦ C, using [(CH3)2N]4 Hf 
(TDMAHf), [(CH3)2N]4 Zr (TDMAZr), ( CH3)3 Al (TMA) and H 2 O for the precursors Hf, Zr, Al and O, respec-
tively. The ALD Hf0.5Zr0.5O2 (HZO) film was deposited by alternatively depositing one cycle of HfO2 and one 
cycle of ZrO2 at 200 ◦ C in the same chamber of ALD IL. After the deposition of HZO/IL dielectric stacks, the 
20-nm ALD TiN is deposited for a capping layer. Subsequently, three cycles of toluene, acetone, and IPA clean-
ings were conducted right before the Rapid-Thermal Annealing process (RTA). The cleaned samples underwent 
a post-metal annealing process for 1 min in N 2 ambient by RTA. The temperatures for the Post-Metal Annealing 
(PMA) (TPMA ) were 275, 300, 350, 400, and 500 ◦ C. The photolithograph processes were conducted to form 
capacitor patterns. Then, 180 nm Al was deposited by e-beam evaporator and soaked in acetone solution for 12 
hours for lift-off. For device isolation, dry etching was performed for TiN etching.

FeFET Fabrication
On the silicon-on-insulator (SOI) wafer, initial cleanings (SC1, SC2, and DHF) and SOI layer thinning through 
dry oxidation to 35 nm were performed followed by channel doping. Active isolation and source/drain implanta-
tion were proceeded followed by RTA at 1000 ◦ C for 30 sec. Before HZO deposition, H 2O2 cleaning for 90 sec 
was conducted to form a SiO2 interfacial layer. Right after the cleaning process, 2-nm Al2O3/10-nm HZO/1-nm 
Al2O3 were serially deposited by ALD. The first Al2O3 layer effectively quenches Hf ions from diffusing into SiO2 
layer, which could result in soft phonon scattering. Thereafter, Ni was deposited for ohmic contacts, and the fer-
roelectricity activation and silicide were performed together by RTA at 500 ◦ C for 30 s. Metal gate and contact 
pads were formed followed by forming gas annealing.

Device measurement and characterization
P-E measurement, endurance, and retention were carried out with a Radiant RT66C with an aid of pulse genera-
tor Agilent 33220A. J-E measurement was done with a Keysight B1500A. For the C-E measurement, an Agilent 
E4980A LCR meter was used.

Circuit simulation methodology
The entire simulation is performed in a commercial SPICE simulator, Cadence Spectre, which includes analyzing 
the device characterization and crossbar analysis for Read/Write and MVM operations with ferroelectric devices. 
These ferroelectric devices are modeled using a Presiach-based model, which is fitted to our experimental/
measurement results from our fabricated devices. We analyzed the polarization and realized capacitance values 
in different scenarios to fit the Presiach model to the measurement data. To support high-voltage operation for 
FeFETs, we have used an I/O transistor from the TSMC 65nm technology library, which is connected to the 
FeCap model to form the FeFET cell, which is the building block for all FeFET-based crossbar array simulations, 
while the standalone FeCap model is used for FeCap-based simulations. Other auxiliary blocks, like amplifiers, 
PMOS precharging blocks, etc. also are built in the 65-nm technology nodes. To perform an extensive crossbar 
analysis, we have coded a script in Python to generate different patterns of input and weight sparsity for varying 
Cratio . The values of Cratio and capacitance at LCS used in the Python script are first set to values obtained from 
fabricated devices to ensure proper replication of results from SPICE simulations.

Neural network training methodology
The training of neural networks on CIFAR-10 and MNIST is performed in Pytorch. For incorporating crossbar 
specific computations including Im2Col operation and bit-slicing, we implemented a custom implementation 
of convolution and linear layers in Pytorch. The weight and activation quantization functions are adopted from 
 LSQ51. The LeNet model is trained on the MNIST dataset for 100 epochs, while the ResNet-20 model is trained 
on CIFAR-10 for 200 epochs. For both models, we use an initial learning rate of 0.1 and use cosine annealing 
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learning rate scheduler. The models are trained using a Stochastic Gradient Descent (SGD)  optimizer52 with a 
momentum of 0.9 and weight decay of 10−4.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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