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Transcriptome 
and single‑cell analysis 
reveal disulfidptosis‑related 
modification patterns of tumor 
microenvironment and prognosis 
in osteosarcoma
Linbang Wang 1, Yu Liu 1, Jiaojiao Tai 2, Xinyu Dou 1, Hongjuan Yang 3, Qiaochu Li 4, 
Jingkun Liu 2*, Ziqiang Yan 2* & Xiaoguang Liu 1*

Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. 
Our study aimed to investigate disulfidptosis‑related modification patterns in OS and their 
relationship with survival outcomes in patients with OS. We analyzed the single‑cell‑level expression 
profiles of disulfidptosis‑related genes (DSRGs) in both OS microenvironment and OS subclusters, 
and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored 
the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome 
data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine 
models. In vitro and patient experiments validated our results. Three main disulfidptosis‑related 
molecular clusters were defined in OS, and immune infiltration analysis suggested high immune 
heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability 
of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. 
Our study systematically revealed the underlying relationship between disulfidptosis and OS at the 
single‑cell level, identified disulfidptosis‑related subtypes, and revealed the potential role of ACTB 
expression in OS disulfidptosis.
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OS is one of the most prevalent forms of malignant bone cancer and is primarily detected in teenagers and young 
 adults1. OS has poor prognosis owing to its high recurrence rate and distant metastatic  features2,3. Many advanced 
treatment strategies have been applied for OS, such as chemotherapy, surgery, amputation, and immunotherapy. 
However, the 5-year survival rate of patients with OS, which is approximately 60–70%, has not significantly 
improved over the past 50  years4,5. Owing to the high genetic heterogeneity of OS cells and lack of reliable and 
accurate biomarkers, a considerable number of patients with OS already have metastases upon diagnosis, which 
has become a great challenge for OS  management6. Therefore, the molecular mechanisms underlying OS pro-
gression and reliable prognostic OS biomarkers require further investigation.

Programmed cell death, including apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and  others7, is 
known as an essential physiological and pathological processes to remove damaged cells for tissue  homeostasis8–10. 
Recently, a novel cell death pathway known as disulfidptosis was reported by Liu et al.11, which is defined as rapid 
cell death caused by the abnormal accumulation of disulfide in SLC7A11 hyperexpressing cells and induced 
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disulfide stress under glucose starvation conditions. Previous studies have shown that the abnormal accumu-
lation of cystine and other disulfide compounds in cells induces disulfide stress and is highly toxic to  cells11. 
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) provides key reducing power to 
counteract disulfide bond stress and maintain cell  survival12,13. Cytoplasmic NADPH pools are mainly produced 
from glucose via the pentose phosphate pathway. In cancer cells with abnormal SLC7A11 expression, cystine 
uptake is high, and the reduction of cystine to cysteine, when combined with glucose starvation, depletes the 
NADPH pool, leading to a massive accumulation of intracellular disulfide molecules and rapid cell  death12,13. 
However, the mechanism underlying cell death in OS remains unclear.

Previous studies have shown that SLC7A11 is relatively overexpressed in OS  cells14, and its high expression 
level is positively correlated with the proliferation and invasion of OS  cells15; therefore, we investigated the role 
of DSRGs in predicting the prognosis of OS. In this study, transcriptome expression profiles downloaded from 
public databases, related clinical parameters, and single-cell transcriptome data of OS were analyzed. We first 
constructed a landscape of DSRGs expression features at both the microenvironment and tumor subcluster lev-
els by applying single-cell analysis and further established and validated a prognostic model based on DSRGs. 
Next, we identified the exogenous cytokine HMGB1, which may induce disulfidptosis, using further intercellular 
communication analysis. This study provides a novel approach for prognostic prediction of OS. In addition, we 
screened the key gene, ACTB, in the disulfidptosis process of OS cells and performed in vitro experiments to 
test its reliability as a biomarker in patient samples.

Materials and methods
Data acquisition
Single-cell RNA-sequencing data were obtained from the GEO database https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE15 2048. OS transcriptome sequencing data were downloaded from the Cancer Genome 
Atlas (TARGETs) https:// ocg. cancer. gov/ progr ams/ target.

Single‑cell transcriptome analysis
The scatter R package was used for quality control of single-cell RNA-seq  data16. The scimpute R and scran R 
packages were used for imputation and normalization, respectively. Anchors were then determined using the 
FindIntegrationAnchors function and passed to the Integrate Data function to form a Seurat object for down-
stream analysis. The subtypes of OS cells and other cell types in the OS microenvironment were individually 
identified using  SingleR17. AUCell scores were applied to analyze the different biological activities of cell clusters, 
and the org.Hs.eg.db R package enrichplot was used for functional analysis. The Monocle2 (version 2.4.0) package 
was used for single-cell pseudo-time trajectory construction and identification of gene expression changes during 
cell differentiation. Intercellular interactions between OS cells and other cell types in the tumor microenviron-
ment were investigated using  NicheNet18.

Unsupervised clustering of OS samples
Initially, a total of 24 DSRGs were obtained according to the previous report by Liu et al.11. Based on 24 DSRGs 
expression profiles, we used the unsupervised clustering analysis (“ConsensusClusterPlus” R package, version 
2.60) and classified the 98 OS samples into subclusters by applying the k-means algorithm with 1000 iterations. 
The maximum subtype number k (k = 9) was chosen and the optimal cluster number was evaluated based on the 
CDF curve and a consistent cluster score (> 0.9).

GO, KEGG, and single‑sample gene set enrichment analyses
Functional enrichment analyses of GO and KEGG pathways were conducted using the clusterProfiler R pack-
age (version 3.14.3) "to determine enriched biological processes (BPs), molecular functions (MFs), and cellular 
components (CCs); terms or pathways with P < 0.05 were regarded as statistically enriched. The GSVA and GSEA 
Base R packages were used to obtain the enrichment scores for hub gene functions in the OS transcriptome data.

Construction of predictive model based on multiple machine learning methods
The “caret” R packages (version 6.0.91) were used to establish machine learning models including RF and SVM. 
RF is a machine-learning approach that uses various independent decision trees for classification or regression 
 prediction19. The SVM algorithm generates a hyperplane in a characteristic space to identify positive and nega-
tive  instances20. The LASSO Cox regression model (R package “glmnet”) was then utilized to narrow down the 
candidate genes and to develop the prognostic model. A nomogram model was established using the “rms” R 
package (version 6.2.0). Calibration curve and DCA were used to estimate the predictive power of the nomogram. 
The ROC curve analysis was performed to verify the diagnostic value of the diagnostic model.

Immune cell infiltration and correlation analysis with DSRGs
The CIBERSORT algorithm (http:// ciber sort. stanf ord. edu/) was applied to estimate the of 22 types of immune 
cells in different groups on the gene expression data. Cell types with P-values < 0.05 were considered to be differ-
entially abundant immune cell fractions. To further demonstrate the association between DSRGs and OS-related 
immune cell properties, we analyzed the correlation coefficients between DSRGs expression and the relative 
percentage of immune cells. Spearman correlation coefficients with P-values below 0.05 represented a significant 
correlation. Finally, the results were exhibited using the “corrplot” R package (version 0.92).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152048
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152048
https://ocg.cancer.gov/programs/target
http://cibersort.stanford.edu/
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Drug sensitivity analysis
The R pRRophetic packages were applied to perform drug sensitivity analysis to screen potential therapeutic 
drugs for OS; P < 0.05 was set as the screening criterion.

In vitro experiment
OS cell line 143B was authenticated and tested for mycoplasmas (ATCC, Manassas, VA, USA). The 143B cell line 
was grown in complete DMEM medium (Gibco, Gaithersburg, MD) with 10% FBS (Gibco, Gaithersburg, MD), 
100 U/mL penicillin, and 100 μg/mL streptomycin (Invitrogen, Carlsbad, CA). Cells were cultured in 5%  CO2 
humidified incubator at 37 °C and treated with 300 ng/mL HMGB1 [recombinant HMGB1 protein, Abcam, cat. 
no. ab167718] in the HMGB1 group.

siACTB RNA interference
Cells at an appropriate density were incubated for 24 h. ACTB siRNA was transfected with Lipo3000 (31985070, 
Thermo Fisher Scientific, Waltham, MA, USA) in OPTI-MEM according to the manufacturer’s instructions. The 
supernatants were discarded 24 h later, and fresh medium was added Cells were harvested after 72 h for further 
experiments. The siRNA sequences used were as follows:

siACTB-specific siRNA:

• 5′-UAA UGU CAC GCA CGA UUU CCC-3′,

Non-sense siRNA:

• 5′-UUC UCC GAA CGU GUC ACG UTT-3′.

Cell viability assay
Cells were precisely inoculated into 24-well culture plates, and cells with 3 Wells were taken out of each group 
at fixed intervals for counting and calculating the mean value. The cell growth curve was described with culture 
time as the horizontal axis and cell number as the vertical axis.

Patients
OS tissues were surgically resected from nine patients at Honghui Hospital between January 2023 and March 
2023. The inclusion criteria were a pathological diagnosis of OS and resection. The exclusion criteria were patients 
with metastasis, recurrence, and incomplete clinical data. Adjacent tissue samples (n = 9) were collected from 
the same patient. Informed consent was obtained from all patients in this study. This study was approved by 
the Ethics Committee of Honghui Hospital and was conducted in accordance with the Declaration of Helsinki 
(Approval Number: 202303051).

qRT‑PCR
RNA was isolated from cultured OS cells and human tissues using a UNIQ column RNA Extraction Kit (Sangon 
Biotech, China). Reverse transcription was performed using the RR047 cDNA Synthesis Kit (TaKaRa, China). 
qRT-PCR was conducted in a 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA) using the 2× 
Power  SYBR® Green PCR Master Mix (Invitrogen, USA). Gene expression levels were normalized to GAPDH 
expression. The Wilcoxon test was used for comparisons between two groups. Statistical significance was set at 
P < 0.05. The following primer sequences were used:

ACTB-F (5′-GTG CTA TCC CTG TAC GCC TC-3′),
ACTB-R (5′-AAT GCC AGG GTA CAT GGT GG-3′),
GAPDH-F (5′-GCT GCT CTT GGC TCT CAA CT-3′), and
GAPDH-R (5′-GGC ATA GGG CTG GTA ATG CT-3′).

Western blotting
The protein expression level of ACTB is quantied by comparing with GAPDH. Treated cells of different group 
were washed with phosphate-buffered saline and homogenized in 300 μL of radio immunoprecipitation assay 
buffer supplemented with protease inhibitors and phosphatase inhibitors and then centrifuged at 18,000g for 
10 min at 4 °C. Protein concentration was determined by BCA assay (Pierce, Rockford, IL, USA) using bovine 
serum albumin as the standard. Proteins (20 μg/lane) were separated by sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes (Osmonics, Minnetonka, MN, 
USA). The membranes were incubated with specific primary antigen (ACTB, Affinity, cat no: AF7018, GAPDH, 
Affinity, cat no: AF7021) in tris-buffered saline (TBS) containing 0.05% Tween-20 (TBS-T) and 5% non-fat dry 
milk at 4 °C overnight. After three washes with TBS-T, the blots were incubated with peroxidase-conjugated 
IgG for 1 h at room temperature, visualized using enhanced chemiluminescence (Amersham Biosciences, Pis-
cataway, NJ, USA), photographed on a ChemiDoc system, and analyzed using the Image Lab Software (Bio-Rad 
Laboratories, Hercules, CA, USA).

Informed consent
Informed consent was obtained from all subjects involved in the study.
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Results
Overall profile of DSRGs expression in cell components of the OS tumor microenvironment (TME)
A scRNA-seq analysis of OS single-cell transcriptome data was implemented to reveal the landscape of cellular 
diversity. The quality control assessment was carried out firstly (Fig. S1), where cells were initially clustered 
into 16 major clusters. Chromosomal copy number variation (CNV) was subsequently calculated by inferCNV 
to identify malignant  cells21 (Fig. 1A). Seven main segregated cell clusters were next identified (Fig. 1B) using 
t-distributed stochastic neighbor embedding (t-SNE) analyses. The cell type of each cluster were identified by 
singleR according to expression  profiles17, including OS cells, B cells, cancer-associated fibroblasts (CAFs), 
endothelial cells, NK cells, tumor-associated macrophages (TAMs), and T cells. In order to further observe the 
disulfidptosis level of the osteosarcoma, profiles of DSRGs expression among the cellular clusters were illustrated 
by scatter plot (Fig. 1C) and dot plots (Fig. 1D). OS cells, endothelial cells, and TAMs had higher overall DSRGs 
expression, and particularly, the expression of ACTB, DSTN, MYL6, and NDUFA11 among all DSRGs was rela-
tively high in most cell clusters. Moreover, DSTN, PDLIM1, MYH10, and NDUFA11 were relatively overexpressed 
in OS cells. FLNA were relatively overexpressed in NK cells. MYH9, NCKAP1, and MYL6 were relatively over 
expressed in endothelial cells. ACTB and DSTN were relatively overexpressed in CAFs (Fig. 1D). The results of 
the cell cycle-related expression analysis showed that the expression of ACTB and MYL6 in G1 phase cells was 
relatively low, but was high in G2M and S phases (Fig. 1E,F), which suggests that disulfidptosis of OS may be 
potentially related with the expression of the cell cycle genes.

Identification of disulfidptosis clusters in OS with their functional enrichment and immune 
infiltration characteristics
To elucidate the disulfidptosis-related expression patterns in OS, transcriptome samples of OS were grouped 
based on the expression profiles of 24 DSRGs using a consensus clustering algorithm. The area under the cumu-
lative distribution function (CDF) curves exhibited difference when k = 2–9 (Fig. 2A,B). The number of clusters 
was most stable when the k value was set to four (k = 4, Fig. 2C). The results of the PCA demonstrated a signifi-
cant difference among the four clusters (Fig. 2D). As the sample size of cluster D (n = 3) was too small, it was 
excluded from further analysis.

To explore the different molecular characteristics between clusters, we first comprehensively assessed the dif-
ferentially expressed genes (DEGs) between the two groups; 24, 18, and 65 DEGs were detected between clusters 
A and B, clusters B and C, and clusters A and C, respectively, and the three DEG sets were subsequently combined 
as one main DEG set with 82 genes (Fig. 2E, supplementary file). Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses and according cnet plotting were performed to further explore the 
functions of the cluster-specific DEGs (SFigure 2). The results indicated that GO functions, including long-chain 
fatty acid metabolic process, epoxygenase P450 pathway, exogenous drug catabolic process, aromatic amino acid 
family catabolic process, ion channel complex, transmembrane transporter complex, transporter complex, cation 
channel complex, gated channel activity, and oxygen binding, were enriched (Fig. 2F,H). KEGG functions includ-
ing platinum drug resistance, bladder cancer, apoptosis, p53 signaling pathway, pancreatic cancer, Hepatitis B, 
ErbB signaling pathway, Apoptosis, IL-17 signaling pathway, and endocrine resistance were enriched (Fig. 2G,I). 
Moreover, the immune ion analysis results showed that an altered immune microenvironment existed among 
the three clusters; specifically, immune cells including resting CD4 T memory cells, activated CD4 memory T 
cells, monocytes, and resting dendritic cells were screened as significantly differently infiltrated types of cells 
(Fig. 2J–K).

Construction of DSRGs‑based OS prognostic model
To identify the high diagnostic value of DSRGs, three proven machine learning models, the random forest model 
(RF), support vector machine model (SVM), and LASSO regression method, were utilized based on the expres-
sion profiles of the OS cohort of 98 samples. We constructed the RF prediction model that included DSTN, ACTB, 
NDUFA11, IQGAP1, MYH10, and TLN1 as six DSRGs (Fig. 3A), and the SVM prediction model included the 
DSRGs DSTN, ACTB, NDUFA11, and IQGAP1 (Fig. 3B,C). Moreover, the LASSO prediction model included 
nine DSRGs, namely NDUFS1, TLN1, MYH1, OXSM, GYS1, DSTN, NCKAP, ACTB, and NDUFA11 (Fig. 3D,E). 
We evaluated the discriminative performance of the LASSO algorithms in the testing set by calculating receiver 
operating characteristic (ROC) curves (Fig. 3F). To further assess the predictive efficiency of the LASSO model, 
we constructed survival analysis (Fig. 3G,H) and a nomogram to estimate the risk of OS (Fig. 3I). The expression 
of prognosis-related DSRGs, risk score, and patients’ survival status between the high and low risk groups were 
further displayed (Fig. 3J–L). We identified key genes, including NDUFA11, DSTN, and ACTB, by intersecting 
the gene sets in the three prognostic models (Fig. 3M).

Identification and functional diversity of OS subclusters
The OS cells were further divided into three subgroups in order to investigate the disulfidptosis heterogeneity 
of OS cells (Fig. 4A), the pseudotime trajectory analysis showed that the OS subgroup 2 is located at the start 
of the cell differentiation (Fig. 4B–D). The marker genes expression heatmap showed a high heterogeneity of 
gene expression profile (Fig. 5A). Combined with the expression of cell markers and the result of singleR, we 
found that enriched functions of OS subgroup 1 included the IL-18 signaling pathway, response to oxygen levels, 
response to hormone, and positive regulation of cell death; thus, we defined them as immune regulation-related 
OS cells (Fig. 4E). The enriched functions of OS subgroup 2 included extracellular matrix organization, regulation 
of mitotic cell cycle, and ossification; thus, we defined them as extracellular matrix regulation-related OS cells 
(Fig. 4F). The enriched functions of OS subgroup 3 included response to hormone, VEGFA-VEGFR2 signal-
ing pathway, and response to growth factor (Fig. 4G); thus, we defined them as angiogenesis regulation-related 
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OS cells. The expression profiles of DSRGs in OS subclusters also illustrate highly heterogeneity, to be specific, 
the expression of ACTB was relatively low in OS subgroup 1, DSTN was relatively low in OS subgroup 1, and 
NDUFA11 was relatively low in OS subgroup 3 (Fig. 5B,C). The subsequent pseudotime trajectory analysis 

Figure 1.  Overall profile of DSRG expressions in cell components of osteosarcoma tumor microenvironment. 
(A) The hierarchical heatmap illustrating CNVs in lesions from the osteosarcoma sample. (B) The t-SNE plot 
showing the seven cell clusters including one malignant cluster from the osteosarcoma sample. (C) Scatter 
plot showing the overall expression feature of DSRGs in each cell cluster. (D) Dotplots showing the 24 DSRGs 
expression across the seven cellular clusters, where the size of dots represents the proportion of cells expressing 
the genes and the color spectrum indicates the mean expression levels of the genes. (E) Scatter plot showing the 
recognized cell cycle of each cell. (F) The ridge plot illustrating the correlation between DSRGs expression and 
the cell cycle, the red one represent the cell amount in G1 phase, the green one represent the cell amount in S 
phase, the blue one represent the cell amount in G2M phase.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9186  | https://doi.org/10.1038/s41598-024-59243-9

www.nature.com/scientificreports/

Figure 2.  Identification of disulfidptosis-related molecular clusters in OS. (A) Representative cumulative 
distribution function (CDF) curves for sample clustering. (B) CDF delta area curves. (C) Consensus clustering 
matrix when k = 4. (D) PCA showing the distribution of four subtypes. (E) The intersection of differentially 
expressed genes among three main disulfidptosis-related molecular clusters. (F) Circle plot of GO pathway 
activities of the intersections genes, the shade of the color shows the increasing of the z-score, the blue dot 
illustrate the downregulated ones and the red dot illustrate the downregulated ones. (G) Circle plot of KEGG 
pathway activities of the intersections genes, the shade of the color shows the increasing of the z-score, the 
blue dot illustrate the downregulated ones and the red dot illustrate the downregulated ones. (H) Heatmap of 
GO pathway activities of the intersections genes, the shade of the color shows the increasing of the logFC. (I) 
Heatmap of KEGG pathway activities of the intersections genes, the shade of the color shows the increasing of 
the logFC. (J) Identification of molecular and immune characteristics among the three disulfidptosis-related 
molecular clusters. (K) Boxplots showing the infiltration scores of immune cells among the disulfidptosis-related 
molecular clusters.
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Figure 3.  Construction and evaluation of RF, SVM, and LASSO machine models. (A,B) Error graph of the 
random forest (RF) models, the genes are screened as meanDecreaseGini increases. (C) Support vector machine 
(SVM) models, the gene number of 4 is decided as RMSE (cross-validation) went the lowest. (D) Coefficients in 
the LASSO regression. (E) Cross-validation for tuning parameter selection in the proportional hazards model, 
the gene number of 9 is decided as Partial likelihood deviance went the lowest. (F) ROC analysis of LASSO 
models. (G,H) Survival analysis of different groups assessing the independence of the signatures. (I) Nomogram 
for predicting the proportion of patients. (J–L) The expression of prognosis-related DSRGs, risk score, and 
patients’ survival status between the high and low risk groups, the shade of the color illustrates the expression 
value of the genes. (M) VENN plot showing the intersection of genes screened by three machine models.
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Figure 4.  Subgrouping OS cells. (A) The t-SNE plot showing the three subclusters of osteosarcoma cells. (B) 
Pseudotime trajectory scatter plot showing pseudotime state of OS subclusters. (C,D) Pseudotime trajectory 
scatter plot showing cell types of OS subclusters in the shape of the pseudotime state. (E) Circle plot showing the 
GO enrichment function of cell markers in OS cluster1, different color represent each category of the ontology, 
(F) circle plot showing the GO enrichment function of cell markers in OS cluster2, (G) circle plot showing the 
GO enrichment function of cell markers in OS cluster3.
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(Fig. 4G,H) showed that the expression patterns of DSRGs can be divided into six different clusters; for exam-
ple, DSRGs including MYL6, FLNA, SLC3A2, ACTN4, MYH9, TLN1, IQGAP1, ACTB, CAPZB, and CD2AP 
were highly expressed in the early stage of OS differentiation, whereas expression of NUBPL, NCKAP1, FLNB, 
PDLIM1, and MYH10 was relative low in the early stage of OS differentiation (Fig. 5D).

Figure 5.  DSRGs expression profiles of OS subclusters in cell components of the OS TME. (A) Heatmap shows 
the top differentially expression genes in each OS cluster. (B) t-SNE scatter plot showing the expression level 
of each DSRG in OS subclusters. (C) Violin plot showing the expression level of DSRGs in OS subclusters. (D) 
Heatmap shows expression patterns of DSRGs in a pseudotime trajectory profile, the genes are classified into 6 
clusters according to the expression pattern.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9186  | https://doi.org/10.1038/s41598-024-59243-9

www.nature.com/scientificreports/

DSRGs targeted‑intercellular crosstalk in OS
To examine DSRGs-related intercellular crosstalk between OS cells and niche cells in OS TME, NicheNet was 
used to specifically predict the ligand-receptor pairs that potentially regulate transcriptome expression of DSRGs 
in OS. We first identified the top 20 ligands in the OS TME that potentially affect the expression of DSRGs; inter-
estingly, the ligand HMGB1 had the most profound impact on most of the DSRGs, and the expression of ACTB, 
MYH9, and SLC3A2 among other DSRGs seemed to be affected the most (Fig. 6A). We also screened the top 20 
ligands that affected OS cells and confirmed the presence of HMGB1 (Fig. 6B). Next, we predicted the signaling 
pathway from HMGB1 to DSRGs, which showed that TP53, ETS1, NFKB1, and HNF4A were involved in the 
regulation of HMGB1 to ACTB axis, this provided an insight into the molecular mechanism of the exogenous 
regulation of disulfidptosis (Fig. 6C, SFigure 4A–M).

Screening and characterization of DSRGs hub genes
We validated the correlation between hub genes and infiltration of immune cells, which revealed that the expres-
sion of NDUFA11 was positively correlated with resting dendritic cells, M1 macrophages, and monocytes and 
negatively correlated with M0 macrophages (Fig. 7A–E). The expression of ACTB was positively correlated with 
M0 macrophages and T regulatory cells (Tregs) and negatively correlated with resting mast cells and eosino-
phils (Fig. 7F). The expression of DSTN was positively correlated with Tregs (Fig. 7G). Furthermore, the cor-
relation between the hub genes and the potential drugs were validated. AMG-900, CUDC-305, deforolimus, 
denileukin diftitox (Ontak), irofulven, JNJ-38877605, oxaliplatin, palbociclib, and XAV-939 were screened as 
potential drugs that target ACTB in OS (Fig. 7H–P). We then performed a differential functional annotation 
analysis between ACTB-high expression groups and ACTB-low expression groups of transcriptome data. The 
top GSEA-GO enrichment analysis results included amyloid fibril formation, atrioventricular valve develop-
ment, endodermal cell differentiation, epithelial to mesenchymal transition involved in endocardial cushion 
formation, histone h4 acetylation, positive regulation of nitric oxide metabolic process, ribosomal large subunit 

Figure 6.  DSRGs-related intercellular communication analysis between OS cells and the niche cells in OS TME. 
(A) Heatmap of ligand–target DSRGs interaction in the niche cells-OS cells communication, the darker of the 
color indicate the higher regulation potential of the ligand to the gene. (B) Top ligand–receptor interaction pairs 
in the niche cells-OS cells communication, the darker of the color indicate the higher interaction potential of the 
ligand to the gene. (C) Predicted signaling pathways of HMGB1-ACTB axis.
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assembly, translational elongation, vascular endothelial growth factor signaling pathway, and intramolecular 
transferase activity (Fig. 8A). The top GSEA-KEGG enrichment analysis results included aldosterone-regulated 
sodium reabsorption; basal transcription factors; Ecm receptor interaction; epithelial cell signaling in H. pylori 

Figure 7.  immune and drug sensitive analysis of hub genes. (A–G) Correlation analysis between ACTB and 
infiltration scores of immune cells, the red ones indicate significant differences. (H–P) Correlation analysis 
between ACTB and different drug sensitive scores, the positive number of R shows the positive correlation and 
the negative number of R shows the negative correlation.
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infection; focal adhesion; glycosaminoglycan degradation; histidine metabolism; selenoamino acid metabolism; 
small cell lung cancer; and valine, leucine, and isoleucine degradation (Fig. 8B).

In vitro siACTB or HMGB1 treatment regulates survival of OS cells
To determine whether ACTB expression and exogenous HMGB1 are involved in the survival of OS cells, siACTB 
and exogenous HMGB1 were separately applied to the culture system of 143B cells. The western blot result 
showed that the expression of ACTB significantly decreased after siACTB treatment (with P value of 0.0075, 
SFigure 3). Cell activity was observed by plotting cell growth curve, the result showed that tumor cell viability 
of 143B cells decreased after siACTB treatment and increased after HMGB1 treatment (Fig. 8C).

Higher expression of ACTB in tumors from patients with low immunity scores
The expression levels of ACTB in each patient were determined using qRT-PCR. The expression of ACTB in 
OS tissue (nine cases) and the low immunity score group (four cases) was significantly higher than that in the 
adjacent tissue (nine cases) and the higher immunity score group (five cases, Fig. 8D,E).

Discussion
Chemical resistance is one of the main obstacles in OS treatment. Therefore, it is important to identify methods to 
effectively induce cell death and overcome chemical resistance during OS treatment. Various types of cell death, 
including programmed and  unprogrammed22, play important roles in the development and killing of  tumors23. 
In recent years, the concept of programmed cell death has expanded, which includes apoptosis, autophagy, 
necrotic apoptosis, and  others24–26. Recent studies have suggested a potential relationship between ferroptosis 
and malignant growth in OS; according to Isani et al., OS cell lines show ferroptosis with iron-dependent and 

Figure 8.  GSEA analysis of ACTB and in vitro experiment. (A) GSEA-GO analysis of ACTB, (B) GSEA-KEGG 
analysis of ACTB. (C) 143B cell viability after treatment with siACTB, detected by a cell growth curve plotting 
experiment. (D) The ACTB expression level in OS and normal tissue. (E) ACTB expression levels in higher and 
lower immunity groups. “High” represents the higher immunity group and “low” represents the lower immunity 
group.
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non-apoptotic  features27. Ferroptosis sensitization can be induced by inhibiting STAT3/Nrf2/GPx4 signaling, 
which enhances the sensitivity of OS cells to  cisplatin28. Reportedly, necroptosis signaling pathway also con-
tributes in the chemotherapy treatment of OS, and the anti-tumor effects of shikonin on OS were partly due to 
induction of RIP1 and RIP3 dependent necroptosis; indicating that shikonin could be a potential anti-tumor 
agent for the treatment of primary and metastatic  OS29. Two compounds (doxorubicin and staurosporine) selec-
tively target OS cells, induce caspase 3 and 7 activity in U3OS cells, and promote apoptosis in OS cell  line30. In 
addition, various cell death-related gene signatures have been constructed to predict the prognosis of patients 
with OS, including proptosis-related lncRNA-based and anoiki-based prognostic  signatures31,32.

Identification and characterization of regulatory cell death mechanisms could enhance our understanding 
of cell homeostasis in physiological states and provide insights into the treatment of many diseases, including 
 cancer33. Liu et al. suggested that actin-cytoskeletal proteins can be affected by disulfide stress caused by the exces-
sive accumulation of disulfide molecules in cells, resulting in the formation of abnormal disulfide bonds between 
actin-cytoskeletal proteins, which if left unrepaired, lead to the breakdown of the actin network and ultimately 
lead to a novel cell death known as disulfidptosis. However, in cells with high SLC7A11 expression and glucose 
starvation, homocysteine uptake and insufficient NADPH supply lead to NADPH depletion. This combination 
induces abnormal disulfide binding in actin cytoskeletal proteins, ultimately leading to actin network breakdown 
and subsequent  disulfidptosis11. Thus, GLUT suppression-induced disulfidptosis may be an effective treatment 
strategy for SLC7A11 high-expression tumor  cells14. Our results further uncovered the disulfidptosis feature of 
OS, which has been characterized by high SLC7A11  expression15. Inhibition of SLC7A11 reduces glutathione 
production, thereby promoting OS cell death and inhibiting OS growth and  metastasis34. We then detected its 
potential roles in both TME and OS subcluster and found a relatively high disulfidptosis level in OS cells, TAMs, 
and endothelial cells. TAMs are crucial components involved in tumor immunity and affect the efficacy of tumor 
immunotherapy through their polarization. Previous studies have shown that inhibiting ferroptosis in tumors 
can regulate the immunosuppressive phenotype of TAMs. In addition, we found that multiple DSRGs, including 
ACTB and MYL6, regulate the cell cycle-specific expression features. It has been reported that the cytoskeleton 
system is highly involved in the regulation of the cell  cycle35,36. Our study revealed a potentially important role 
of the cell cycle in disulfidptosis.

Cell death may activate the tumor immunity through releasing dead cell antigens, which further leads to 
“immunogenic cell death” (ICD)37. For example, several cytotoxic antineoplastics stimulate tumor immunity by 
inducing cancer cell  death38. Our correlation analysis results indicated that immune cells, including resting CD4+ 
memory T cells, activated CD4+ memory T cells, monocytes, and resting dendritic cells, may play important 
roles in ICD after OS disulfidptosis,. Studies have shown that OS could reduce the proliferation rate of T cells, 
increase the regulatory (FoxP3+) CD4+ phenotype, and reduce the expression of the activation marker CD8+ 
on CD25+ cells through multiple  approaches39. Interestingly, our intercellular communication analysis indicated 
a crucial role of HMGB1 in communication-induced disulfidptosis-related gene expression regulation. HMGB1 
protein is usually present in the nucleus and is translocated to the cytoplasm for cell death-associated release; 
it acts as a controlled universal DAMP that regulates ICD through its abundance and oxidation  status40, and 
extracellular HMGB1 assists the induction of immune tolerance in antigen-presenting cells and promotes the 
expression of immune checkpoint  molecules41,42. Thus, our results indicated a crucial function of HMGB1 in 
disulfidptosis-induced ICD.

We further screened three genes related to OS disulfide death, including NDUFA11, DSTN, and ACTB, by 
combining the results of multiple machine learning algorithms. NDUFA11 encodes a subunit of membrane-
bound mitochondrial complex I. Inhibition of complex I activity has been reported to enhance ROS produc-
tion and promote cancer cell migration and  invasion43. Complex I subunits play a key role in ROS generation. 
Studies have proven that silencing of NDUFA11 inhibits superoxide and ROS production in breast cancer cells. 
Furthermore, upregulation of complex I subunits in RORα-silenced mammary epithelial cells is accompanied by 
higher oxygen consumption rate, indicating that increased expression of NDUFA11 in mammary epithelial cells 
enhances electron leakage in  mitochondria44. DSTN belongs to the actin-binding protein (ADF)/cofilin family 
of proteins. This family of proteins is responsible for enhancing the turnover rate of actin in vivo45 and partici-
pates in multiple cellular biological processes, such as cell division, proliferation, and membrane  trafficking46,47. 
Studies have shown that actin dynamics and its regulation of target proteins are critical to the development and 
function of healthy cells. As a member of the ADF/cofilin protein family, relatively few studies have focused on 
DSTN, which have reported that DSTN expression affects the migration and invasion of colon  cancer48. High 
expression of DSTN is also associated with pancreatic cancer growth and perineural  invasion49. Recent studies 
have shown that overexpressed DSTN can upregulate the activity of Wnt/β-catenin signaling pathway by promot-
ing the nuclear translocation of β-catenin and the interaction between β-catenin and TCF4, thereby promoting 
tumor proliferation and  metastasis50. We then focused on ACTB, which encodes an actin protein involved in cell 
motility, structure, integrity, and intercellular signaling. ACTB upregulation in cancer may regulate tumor cell 
proliferation, phenotype, and metastasis, thereby further affecting tumor malignancy and prognosis in patients 
with tumor. Compared with that in the normal tissues, the expression of ACTB is increased in head and neck 
cancer, leukemia, pancreatic cancer, and other cancers. Moreover, the expression of ACTB in stage III and IV of 
various cancers is higher than that in stage I and  II51. Our study has shown that ACTB may play a specific role in 
regulating the immune microenvironment of OS by revealing a significant correlation between ACTB expres-
sion and the level of infiltration of M0 macrophages, Tregs, resting mast cells, and eosinophils cells. Previous 
studies have shown that ACTB expression exerts a synergistic effect on immune checkpoint members and other 
immune modulators in various  cancers51. Consistent with previous studies, our results suggest that ACTB is a 
potential target for immunotherapy. Subsequently, we performed a single-gene functional enrichment analysis of 
hub genes, including ACTB, in OS and revealed that ACTB has multiple functions that are potentially related to 
the mechanism of cancer development, including epithelial-to-mesenchymal transition involved in endocardial 



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9186  | https://doi.org/10.1038/s41598-024-59243-9

www.nature.com/scientificreports/

cushion formation. We further screened for drugs that could potentially target ACTB in OS. Oxaliplatin (OXA) 
is a widely used clinical antineoplastic drug. OXA can activate anti-tumor immunity by inducing ICD of tumor 
cells, and can also induce the accumulation of cytotoxic T  lymphocytes52. Palbociclib, as a cyclin-dependent 
kinase (CDK) inhibitor, can inhibit the growth of patient-derived orthotopic xenograft (PDOX) in OS, Ewing 
sarcoma, dedifferentiated liposarcoma, and peritoneal metastatic leiomyosarcoma  significantly53. However, the 
targeting effect of these drugs against ACTB remains unclear. Thus, the relevant mechanisms need to be further 
explored to develop new combination therapies against disulfidptosis.

Conclusions
Our study on disulfidptosis provides key insights for understanding and further targeting this unique cell death 
type mechanism for the treatment of OS.

Data availability
Restrictions apply to the availability of these data. Single-cell RNA-sequencing data were obtained from the GEO 
database https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 2048. OS transcriptome sequencing data 
were downloaded from the Cancer Genome Atlas (TARGETs) https:// ocg. cancer. gov/ progr ams/ target.
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