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SCB‑YOLOv5: a lightweight 
intelligent detection model 
for athletes’ normative movements
Qing Du 1, Lian Tang 2,3* & Ya Li 3

Intelligent detection of athlete behavior is beneficial for guiding sports instruction. Existing mature 
target detection algorithms provide significant support for this task. However, large‑scale target 
detection algorithms often encounter more challenges in practical application scenarios. We propose 
SCB‑YOLOv5, to detect standardized movements of gymnasts. First, the movements of aerobics 
athletes were captured, labeled using the labelImg software, and utilized to establish the athlete 
normative behavior dataset, which was then enhanced by the dataset augmentation using Mosaic9. 
Then, we improved the YOLOv5 by (1) incorporating the structures of ShuffleNet V2 and convolutional 
block attention module to reconstruct the Backbone, effectively reducing the parameter size while 
maintaining network feature extraction capability; (2) adding a weighted bidirectional feature 
pyramid network into the multiscale feature fusion, to acquire precise channel and positional 
information through the global receptive field of feature maps. Finally, SCB‑YOLOv5 was lighter by 
56.9% than YOLOv5. The detection precision is 93.7%, with a recall of 99% and mAP value of 94.23%. 
This represents a 3.53% improvement compared to the original algorithm. Extensive experiments 
have verified that our method. SCB‑YOLOv5 can meet the requirements for on‑site athlete action 
detection. Our code and models are available at https:// github. com/ qingD u1/ SCB‑ YOLOv5.
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The movements of aerobic gymnasts must be standardized, as this directly impacts their safety. Scientific and 
standardized movements can reduce or even eliminate the risk of injury. The new development stage of digital 
sports embodies the deep integration and interaction of “digital” and “sports”1. Detecting and analyzing the 
behavior of aerobic athletes can help promote innovation in sports education, including actively promoting 
sports image  recognition2, 3D motion modeling  analysis3, and live  streaming4.

In recent years, human action recognition based on deep  learning5–8 has found extensive applications in smart 
cities, industrial production, intelligent transportation systems, and other fields. The analysis of automated video 
content holds the potential to significantly advance monitoring capabilities, encompassing action recognition, 
target tracking, and pedestrian re-identification. Such advancements offer a practical approach to recognizing 
athletes’ actions.

Precisely categorization and assessment of athlete behavior through visual data involves leveraging com-
puter vision technology to predict action categories and evaluate action quality. Existing object detectors serve 
as important references for recognizing athlete behavior. However, deep neural models have a large number of 
model parameters, and their calculations are complex, imposing high demands on hardware computing capa-
bilities, memory bandwidth, and data storage. This makes it costly to use them for practical sports education. 
Given the specialized and standardized nature of athletes’ movements, further research is needed on existing 
recognition methods.

In summary, we have proposed a lightweight intelligent detection model: SCB-YOLOv5. This model is capable 
of analyzing human behavior in video images, identifying various types of actions, and responding promptly to 
specific circumstances, as illustrated Fig. 1.

We summarize the main contributions are as follows:
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• We collect images of aerobic athletes, classify their actions anew, and establish the ANBD dataset for recog-
nizing their behavior.

• In terms of model optimization, the SCB-YOLOv5 model is proposed. It features a more lightweight backbone 
and incorporates a weighted BiFPN to enhance the performance of the original model.

• We compared and analyzed comprehensive experiments with several approaches. The quality metrics of the 
target detectors were evaluated to validate the effectiveness of our approach.

Related works
Target detection algorithms
Target detection algorithms rely on convolutional  operations9. Based on their framework structure, these algo-
rithms can be categorized into two types: one-stage and two-stage models, as depicted in Fig. 2. One-stage algo-
rithms generally prioritize high real-time performance and simplicity, often at the expense of detection accuracy. 
Conversely, two-stage algorithms utilize the regional proposal network (RPN) to generate suggestions and then 
employ a fully connected layer to produce category predictions and bounding boxes, resulting in higher detec-
tion accuracy. Despite having fewer network layers, some one-stage  algorithms10–12 have recently outperformed 
two-stage networks in both accuracy and speed, and are widely employed in automated detection applications.

Actions recognition
Deep learning-based algorithms for recognizing athletes’ normative actions, encompassing classification and 
detection. These capture video sequence images of athletes’ movements and employ convolutional neural net-
works for model training to predict their actions. Numerous scholars have delved into human action recognition 
from a kinesiology perspective.

Zhang et al.23 proposed a method that relies on multimodal sequence fitting to detect the behavior of college 
basketball players. This method combines motion patterns and visual motion features captured by cameras. 
Integrating global and local motion patterns can significantly improve the performance of group behavior rec-
ognition. Julian Fritsch et al.24 introduced an intelligent detection algorithm for recognizing the post-scoring 
emotions of volleyball players, achieving a precision rate of 80.09%. Zhao et al.25 focused on deep video analysis, 
extracting frame sequences as inputs for a 3D convolution-based deep neural network. This algorithm automati-
cally captures spatio-temporal features of athlete behavior, thereby enhancing the accuracy of recognizing body 
movements.

Figure 1.  Our intelligent detection system for athlete normative behavior, including RGB cameras, clients, and 
alarms.

Figure 2.  Existing target detection algorithms based on deep learning, where one-stage include YOLO 
 series13–17,  SSD18,  RetinaNet19, etc. and two-stage networks include Faster-RCNN20, Mask-RCNN21, Cascad-
RCNN22, etc.
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Our dataset
Deep learning-based target detectors necessitate a substantial number of pre-labeled samples to enhance accuracy 
and generalization  capability26. We categorized movement classification based on fundamental body postures, 
basic techniques, and coordination. To create the athlete normative behaviors dataset (ANBD), we utilized 
pictures and video footage captured by members of a university aerobics team in Hunan Province, China. These 
videos were edited to extract one frame every 5 s, resulting in a collection of 2121 images showcasing various 
athletes in different scenes and angles.

The determination of whether a movement constitutes a standardized action relies on the varying ampli-
tudes of the athlete’s arm, elbow, leg, and other movements, as illustrated in Fig. 3. Among these, (a) depicts the 
standardized correct action, labeled “correct”; (b) illustrates the wrong hand action, labeled “wronghand”; (c) 
portays the wrong leg action, labeled “wrongleg”.

Method
SCB‑YOLOv5 model
All the images used in this research were obtained from the Hunan Institute of Engineering in Xiangtan, China, 
with 216 individuals, comprising 19 teachers and 197 students. All volunteers who participated in the photo 
shoots were informed about the data usage and provided consent for the research presented in this paper.

The overall structure of the SCB-YOLOv5 is derived from YOLOv5 and mainly consists of five components: 
input, Backbone, Neck, Head, and Predict. The specific structure is shown in Fig. 4. ShuffleNet  v227 servers as 
the backbone to achieve a more lightweight design, integrating the CBAM at the base layer to capture additional 
feature information. The Neck component comprises BiFPN, which integrates semantic information from the 
deep network into the shallow network. Finally, the output predicts image features and generates the bounding 
box with the highest confidence based on the size of the target.

Mosaic‑9
The mosaic data enhancement in  Yolov414 randomly selects four images from the training set and combines their 
contents to create synthesized images directly used for training. This data augmentation method could enhance 
the ability of YOLOv4 to recognize objects in complex backgrounds. Therefore, we employ the Mosaic-917 
enhancement in YOLOv5, as illustrated in Fig. 5. Initially, a batch of images is randomly selected from the dataset, 
followed by the random selection of nine images from the extracted set. These pieces are then cut and stitched 
together to create a new image. This process is repeated batch size times (batch size refers to the number of images 
extracted from the dataset), resulting in an enhanced image of the specified batch size.

ShuffletNet V2
ShuffleNet  V227 introduces new enhancements to the structure of ShuffleNet  V128. The ShuffleNet V2 network 
structure is illustrated in Table 1. A 1 × 1 convolutional layer is incorporated to blend the features before the global 
average pooling. Efficient utilization of each stage enables an increase in feature channels and enhances network 
capacity. Notably, half of the feature channels in each block are directly transmitted to the subsequent one. This 
mechanism resembles feature reuse, akin to the concepts of  DenseNet29 and  CondenseNet30. Such a structure 
enables information communication between different channel groups and enhances reliability.

Figure 3.  Classifying the movement behaviors of aerobics players, we categorized the common movements of 
the participants as follows: (a) the red box in the middle indicates that the athlete’s arms and legs are straight, 
demonstrating standard movements; (b) the green box in the middle indicates that the athlete’s hands are bent 
at the elbows, which is an incorrect movement that does not meet the normative requirements; and (c) the blue 
box in the middle indicates that the athlete’s calves are bent, which is an incorrect movement that does not meet 
the standard movements.
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Convolutional block attention module
Replacing the YOLOv5 backbone with the lightweight ShuffleNet  V227 results in the loss of certain image fea-
ture information. To preserve more high-level semantic information,  CBAM18 is added after the ShuffleNet V2, 
thereby directing more attention towards the significant aspects of the image. The CBAM attention mechanism 
is illustrated in Fig. 6.

CBAM comprises a channel attention module and a spatial attention module. It can effectively prioritize 
information crucial to the current task goal, enhancing the relevance of the extracted features from convolutional 
layers, capturing more comprehensive high-level semantic information, and improving target recognition. The 
calculation formula is as follows:

(1)F′ = MC(F)⊗ F

(2)F ′′ = MS(F′)⊗ F′

Figure 4.  In the SCB-YOLOv5 structure, we primarily updated the backbone network and the Neck part of the 
YOLOv5.

Figure 5.  Mosaic-9. Using this strategy can effectively increase the amount of data, and our experiments verify 
that it has a positive effect on the subsequent model training.
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while, F ∈ RC∗H∗W is the input feature, MC ∈ RC∗1∗1 is the one-dimensional convolution of the channel attention 
module, MS ∈ R1∗H∗W is the spatial attention module, F ′ is the output feature after passing through the channel 
attention module, and F ′ ′ is the final output feature.

Fusing the neck part of the BiFPN
The significance of analyzing images at multiple scales arises from the inherent complexity of images. Real-world 
scene images encompass a multitude of large and small target objects, each bearing diverse information such as 
size, position, color, and other attributes. Hence, relying solely on the bottom-up FPN pyramid structure has the 
potential to overlook information across different scales. To address this issue, Mingxing Tan et al.10 proposed 
BiFPN, a straightforward and efficient feature pyramid network, as depicted in Fig. 7.

The multi-scale feature fusion of BiFPN aims to aggregate features with different resolutions. Because the input 
features have different resolutions, BiFPN uses a band-weighted feature fusion method (Fast Normalized Fusion).

where ∈ = 0.0001 is used to avoid numerical instability, and w is a learned parameter, similar to an attention 
mechanism, used to distinguish the significance of various features in the feature fusion process.

(3)O =

∑
i

wi

∈ +
∑

jwj
· Ii

Table 1.  ShuffleNet V2 structure, for each stage, its first block is required to be doubled, and the step size 
strips are all equal to 2.

Layer Out size KSize Stride Repeat

Output channels

0.5 × 1 × 1.5 × 2 × 

Image 224 × 224 3 3 3 3

Conv1
MaxPool

114 × 114
56 × 56

3 × 3
3 × 3

2
2 1 24 24 24 24

Stage2 28 × 28
28 × 28

2
1

1
3 48 116 176 244

Stage3 14 × 14
14 × 14

2
1

1
7 96 232 352 488

Stage4 7 × 7
7 × 7

1
3 192 464 704 976

Conv5 7 × 7 1 × 1 1 1 1024 1024 1024 2048

GlobalPool 1 × 1 7 × 7

Figure 6.  Structure of CBAM.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8624  | https://doi.org/10.1038/s41598-024-59218-w

www.nature.com/scientificreports/

Experimental results and discussion
Experiment settings
All our experiments were conducted using the Windows 10 system, utolizing the PyTorch deep learning frame-
work. The processor employed is Intel(R) Core(TM) i5-10400F CPU @ 2.90 GHz, with 16 GB of RAM, and the 
GPU model is NVIDIA GeForce RTX 1650 graphics card with 4 GB of memory.

The dataset utilized for the experiments is ANBD, which consists of 2121 images as detailed in our dataset. 
The dataset is divided into training and validation sets in an 8:2 ratio. Model training encompasses 100 epochs, 
with a batch size set to 2, and the initial learning rate set to 0.01.

Model performance evaluation metrics
Average precision (AP) and mean average precision (mAP) are commonly used in target detection to evaluate 
the detection algorithms. The calculation formulas are presented in Eqs. (4) and (5):

where AP is the average precision of a single category, mAP is the mean of the AP values of all categories, F1 is the 
reconciled mean of P and R, P is the precision rate, R is the recall rate, and k is the number of detected categories.

AP is a common metric for evaluating the overall performance of a detector. However, excessive emphasis on 
labeled positive samples while pursuing AP can result in a high number of false detections. In practical evalu-
ations, the F1-Score is employed as the evaluation criterion, offering a more balanced and effective measure of 
overall performance. Following 100 epochs of training, a relatively high confidence threshold (confidence = 0.5) 
is usually set to filter out a large number of false detection frames. Subsequently, the performance is analyzed 
using the F1-SCORE. As shown in Fig. 8.

Comparison with detectors results
Extensive experiments were conducted, including multi-group visual quality comparisons and image quality 
assessment, as shown in Table 1. (1) Among the original models, we found the YOLOv8 delivers the best detection 

(4)AP =

∫
1

0

PdR

(5)mAP =

∑k
i=1

APi

k

Fig.7.  BiFPN Node Diagram. The purple curve connects input nodes and output nodes within the same layer. 
The blue curve conveys semantic information of high-level features, while the red curve conveys positional 
information of bottom-level features.
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performance. However, it comes with a significantly larger number of model parameters compared to YOLOv5, 
albeit offering a comparable detection performance at a slightly highter cost. Therefore, the experiment aims to 
enhance YOLOv5. (2) SCB-YOLOv5 greatly reduces the network parameters and minimizes hardware computa-
tion. The mAP reaches 94.23%, which is 3.53% higher than YOLOv5.

Detection demos
The detection demos are shown in Fig. 9, corresponding to the data in Table 2. In the SSD algorithm figures a-ii, 
b-ii, c-ii, f-ii, and g-ii miss the detection of “wronghand” behavior. Figure a-iv has the highest sensitivity with a 
detection confidence of 100%. Conversely, the YOLOX and RetinaNet algorithms are less effective in detecting 
the “wrongleg” behavior. Figures b-iii and e-iii demonstrate the mission of “wrongleg”. Finally, SCB-YOLOv5 
achieves accurate detection results.

In developing the SCB-YOLOv5, we meticulously documented the impact of each adjustment in the experi-
ment, with a specific focus on the changes in Precision, Recall, and mAP. As shown in Fig. 10, the black line 
graph demonstrates that SCB-YOLOv5 outperforms the other methods in each performance metric after train-
ing stabilization.

Ablation study
To evaluate the effectiveness of the improved module on the SCB-YOLOv5, the ablation study was performed on 
our dataset. The results are shown in Table 3. After replacing the original backbone with the ShuffleNet V2 net-
work, there was a decrease due to the reduced complexity of the model. This was done to maintain the detection 
performance of the model. Consider incorporating an attention mechanism after the ShuffleNet V2 backbone, 
and subsequently integrating BiFPN across multi-scale features to improve SCB-YOLOv5. Through extensive 
experiments, it has been proven that the adopted optimization strategy can enhance the accuracy of detecting. 
The mAP value has increased by 3.53 percentage points compared to the original.

Conclusion
In this study, we introduce a dataset for detecting the actions of aerobic athletes. A lightweight algorithm SCB-
YOLOv5 is designed to recognize and regulate actions. To innovate the application of digital sports teaching 
processes.

The results of multiple sets of experiments show that the enhanced model has a more significant impact on 
recognizing athletes’ irregular hand and leg movements, outperforming other detectors. This finding holds major 
significance in promoting the sustainable and healthy development of “Internet + Education”.

Figure 8.  The F1-SCORE of detectors, where SCB-YOLOv5 has the highest F1-SCORE, while the other 
detectors exhibit less favorable detection results for the classification of wronghand, again confirming Table 2 
above.
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Figure 9.  Detection demos with SSD, YOLOv5, YOLOX, YOLOv7, and YOLOv8 are shown in the figures i-iv 
depict diagrams of athlete behavior in various scenarios. Hand irregularities are marked in the red circles, foot 
irregularities in the yellow circles, and iv showcases correct behavior demonstrations. In figures a-i to f-iv, each 
detection box displays the detection confidence level, where higher values indicate greater confidence in the 
results of that detection.
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Figure 9.  (continued)

Table 2.  Comparison of the detector results. The best experimental results are labeled in bold, and the second-
best results are indicated in italic.

Model Backbone
Params
(M)

AP Recall

mAPcorrect wronghand wrongleg

SSD VGG 97.89 79.44 93.62 86.77 90.32

RetinaNet ResNet50 34.0 95.90 81.53 92.03 81.06 89.82

EfficientDet Efficientnet 6.6 91.64 80.83 82.30 89.18 84.92

YOLOv5 CSPDarknet53 7.2 96.15 84.04 91.92 89.16 90.70

YOLOX Darknet-53 9.0 96.10 89.92 84.98 89.16 90.33

YOLOv7 E-ELAN 37.2 96.80 81.50 90.80 99.00 89.70

YOLOv8 CSPDarknet53 11.2 97.09 84.53 93.18 98.00 91.56

SCB-YOLOv5 ShufleNet-v2 3.1 95.20 93.00 94.50 99.00 94.23
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Data availability
Datasets generated and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.

Code availability
Our code and models are available at https:// github. com/ qingD u1/ SCB- YOLOv5. Our model code is open data. 
However, the data set used in this article is not available, and the authors can be contacted if necessary.
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