
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8502  | https://doi.org/10.1038/s41598-024-59211-3

www.nature.com/scientificreports

Lifestyle factors, glycemic traits, 
and lipoprotein traits and risk 
of liver cancer: a Mendelian 
randomization analysis
Honglu Zhang 1,2 & Jiyong Liu 1,2*

The current state of knowledge on the relationship between lifestyle factors, glycemic traits, 
lipoprotein traits with liver cancer risk is still uncertain despite some attempts made by observational 
studies. This study aims to investigate the causal genetic relationship between factors highly 
associated with liver cancer incidence by using Mendelian randomization (MR) analysis. Employing 
MR analysis, this study utilized previously published GWAS datasets to investigate whether lifestyle 
factors, glycemic traits, and lipoprotein traits would affect the risk of liver cancer. The study utilized 
three MR methods, including inverse variance-weighted model (IVW), MR Egger, and weighted 
median. Furthermore, MR-Egger analyses were performed to detect heterogeneity in the MR results. 
The study also conducted a leave-one-out analysis to assess the potential influence of individual SNPs 
on the MR analysis results. MR-PRESSO was used to identify and remove SNP outliers associated with 
liver cancer. MR analyses revealed that 2-h glucose (odds ratio, OR 2.33, 95% confidence interval, 
CI 1.28–4.21), type 2 diabetes mellitus (T2DM, OR 1.67, 95% CI 1.18–2.37), body mass index (BMI, 
OR 1.67, 95% CI 1.18–2.37), waist circumference (OR 1.78, 95% CI 1.18–2.37) were associated with 
increased risk of liver cancer. On the contrary, apolipoproteins B (APOB, OR 0.67, 95% CI 0.47–0.97), 
and low-density lipoprotein (LDL, OR 0.62, 95% CI 0.42–0.92) were negatively related to liver cancer 
risk. Additionally, after adjusting for BMI, apolipoproteins A-I (APOA-I, OR 0.56, 95% CI, 0.38–0.81), 
total cholesterol (TC, OR 0.72, 95% CI, 0.54–0.94), and total triglycerides (TG, OR 0.57, 95% CI, 
0.40–0.78) exhibited a significant inverse correlation with the risk of liver cancer. This study supports a 
causal relationship between 2-h glucose, T2DM, BMI, and waist circumference with the increased risk 
of liver cancer. Conversely, the study reveals a cause-effect relationship between TC, TG, LDL, APOA-I, 
and APOB with a decreased risk of liver cancer.
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Liver cancer ranks fourth among the leading causes of cancer-related mortality worldwide. The incidence of 
liver cancer continues to rise annually, making it a major public health  concern1. Hepatocellular carcinoma and 
cholangiocarcinoma are the most common types of liver cancer, comprising 75–85% and 10–15% of all cases, 
 respectively2. As the principal metabolic organ of the human body, liver possesses the capacity to regulate nutri-
ent intake, eliminate toxins, modulate metabolism, and maintain metabolic homeostasis. Tumorigenesis often 
coincides with alterations in metabolic pathways, leading to metabolic  dysregulation3. Although an increasing 
number of treatments have been approved for liver cancer in the past decade, most of these treatments can only 
offer limited survival benefits due to the difficulty in diagnosing liver cancer at an early  stage4,5. Therefore, the 
identification of new risk factors and biomarkers can help us better understand the underlying mechanisms 
of liver cancer, develop more effective and personalized treatments, and ultimately improve the prognosis of 
patients.

Traditional observational studies have identified several possible risk factors for liver cancer, such as  obesity6–8, 
 T2DM9,10,  smoking11, and alcohol  consumption12,13, while HDL, and coffee consumption were reported to be 
protective  factors13–15. However, the results of traditional observational studies may be influenced by confounding 
factors. A meta-analysis of 24 cohorts indicates that T2DM is associated with an increased risk of liver cancer, but 
the results are significantly confounded by BMI and  smoking16. Furthermore, most studies are unable to elimi-
nate the potential interactions among risk factors, such as the correlation between BMI and blood lipid levels.

MR analysis, utilizing genetic variants robustly associated with exposures as instrumental variables, has 
emerged as a powerful approach to overcoming the confounding biases inherent in observational  studies17. In 
our study, we employed MR analysis to investigate potential causal associations between the risk of liver cancer 
and several modifiable risk factors, including abdominal obesity (measured by waist circumference), overall 
obesity (measured by BMI), T2DM, lifestyle factors (such as smoking, alcohol consumption, and coffee intake), 
glycemic traits (such as 2-h glucose, FI, FG, and HbA1c), and lipoprotein traits (such as HDL, LDL, TC, TG, 
APOA-I, and APOB).

Methods
Study design
In this study, we conducted a MR analysis to explore the potential causal effects of obesity, T2DM, glycemic 
traits, and lipid traits on the risk of liver cancer. The genetic instruments for the exposures were retrieved from 
published genome-wide association studies (GWAS). The instrumental-variable MR analysis was employed to 
simulate randomized controlled trials in offspring by randomly allocating single nucleotide polymorphisms 
(SNPs). This approach allowed us to eliminate the potential confounding factors in our analysis and increase 
the validity of our findings.

Exposure data
GWAS data for glycemic traits were obtained from the Meta-Analyses of Glucose and Insulin-related traits 
Consortium (MAGIC)18. The GWAS data included separate analyses for FG, FI, 2-h glucose concentration, and 
HbA1c among 200,622, 151,013, 112,283, and 146,806 participants, respectively. Adjustments for BMI, prin-
cipal components, and study-specific covariates were made for each glycemic  trait18. Similarly, the GWAS data 
for type 2 diabetes (T2DM) included 228,499 T2DM cases and 1,178,783 controls, and adjustments were made 
for age, gender, BMI, and the first ten genomic principal  components19. Additionally, candidate genetic instru-
ments for lipid traits were extracted from summary-level GWAS, which included data for HDL, LDL, TC, TG, 
APOA-I, and  APOB20. Lastly, genetic variants associated with lifestyles, including  smoking21, alcohol  drinking21, 
coffee  consumption22, waist  circumference23, and  BMI23, were obtained from corresponding GWAS. To reduce 
heterogeneity in the MR analysis, all GWAS data were sourced from population Caucasian. The methods used 
to measure the exposure data are shown in Supplementary Table S1.

Outcome data
The study obtained summary-level GWAS data for liver cancer (malignant neoplasm of liver and intrahepatic 
bile ducts, defined by the International Classification of Diseases-Tenth Revision code C22) from the FinnGen 
 consortium24. All FinnGen participants, including patients and control subjects, have provided informed con-
sent for biobank research under the Finnish Biobank Act. Individuals with ambiguous gender, high genotype 
missingness (> 5%), excess heterozygosity (± 4 SDs), other cancers, and non-Finnish ancestry were excluded 
from this dataset.

Genetic instrument selection
Genetic instruments for all exposures were selected at genome-wide significance threshold (p < 5 ×  10–8) from 
corresponding GWAS. Linkage disequilibrium (LD) for each risk factor’s SNPs was calculated using the PLINK 
clumping method with the 1000 Genomes LD reference panel for the European population. SNPs with an LD 
value of  r2 greater than 0.01 and a clump window of less than 10 kb were excluded, with only the SNP with the 
lowest p-value being retained.

The relevant information was extracted: chromosome, effect allele (EA), other allele (OA), effect allele fre-
quency (EAF), effect sizes (β), standard error (SE), and p-value. Subsequently, we calculated the explained 
variance  (R2) and F-statistic parameters to determine whether the identified IVs were strongly associated with 
exposure. Generally, SNPs with F-statistic parameters > 10 are considered strong  instruments25. In our study, 
 R2 = 2 × EAF × (1 − EAF) × β2/(2 × EAF × (1 − EAF) × β2 + 2 × EAF × (1 − EAF) × N ×  SE2), where N is the sample 
size of the GWAS, and F =  R2 × (N − 2)/(1 −  R2)26.
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Mendelian randomization analyses
Three distinct methods of MR analysis were conducted in this study, including random-effects inverse-variance 
weighted (IVW), MR Egger, and weighted median. These methods were implemented to account for variant 
heterogeneity and the pleiotropy effect. IVW was considered the primary outcome due to its ability to combine 
the Wald ratio of each SNP on the outcome, the slope of the weighted regression of the SNP-outcome effects on 
the SNP-exposure effects (with an intercept of zero), and provide an estimated result. Weighted median allows 
the use of invalid instruments under the assumption that at least half of the instruments used in the MR analysis 
were  valid27. To strengthen the IVW estimates, we employed both the weighted median and MR-Egger, as they 
offer more robust estimations a broader set of scenarios, despite producing broader  CIs28. We also utilized MR-
PRESSO to identify and remove SNP outliers associated with liver cancer.

For significant estimates, the horizontal pleiotropy was assessed by MR-Egger intercept test, and the Cochran’s 
Q test was used to identify heterogeneity. Funnel plots are similar to the methods used to assess publication 
bias in meta-analysis and were used to assess possible directional pleiotropy. The causal relationship between 
exposure and outcome was investigated using leave-one-out analysis to determine if a single SNP influenced 
the relationship. The Multivariable IVW considers multiple exposure factors simultaneously. It limits the effects 
of SNP-exposure on their corresponding effects on the characteristics of other assumed risk factors along an 
indirect pathway by regaining the summary genetic associations resulting from genetic associations with expo-
sure and risk factors in a weighted regression  model29. A multivariable random-effects IVW model was used 
to adjust for BMI in the analysis of waist circumference, HDL, LDL, APOA-I, APOB, TC, and TG. All analyses 
were performed using the R package TwoSampleMR and MVMR in R version 4.3.030.

Generally, IVW is more robust in statistical power than other MR  methods31. The CI were calculated from 
the same equations that generated p-values. MR-Egger often had wider CI and non-significant p-values than 
IVW due to a loss of power, which was also evident in the present study. Consequently, IVW was the preferred 
method to screen for significant causal  results32. However, the IVW estimates may be biased if horizontal pleiot-
ropy existed. In this situation, it is advisable to consult the MR-Egger estimates, as this method adjusts the IVW 
analysis by accommodating the horizontal pleiotropic effect across all SNPs o be unbalanced or  directional33. In 
addition, studies have emphasized the necessity of consistent beta direction across all MR approaches in most 
MR studies, which was also adhered to in our  study34,35.

Utilizing a large number of cases from GWAS data and MR design, our study can simulate randomized 
controlled trials within an observational setting. Randomized controlled trials are recognized widely as a valid 
method for studying causality. However, they can be costly and often unfeasible to conduct. The MR approach 
mitigates confounding bias since SNPs are randomly assigned during conception, thus effectively circumventing 
the issue of reverse causality compared to observational studies.

Results
An overview of the study design and the assumptions underlying MR analysis are illustrated in Fig. 1. The main 
information of SNPs, including effect allele, other allele, p value, beta, and standard error, was collected sys-
tematically for MR analysis. All genetic instruments in this study had F statistics greater than the conventional 
threshold of 10, signifying no evidence of weak instrument  bias36. Table 1 contains detailed information on the 
GWAS data sources utilized in our study. Three MR analytical methods, IVW, weighted median, and MR Egger, 
were employed to estimate the causal effects of exposures on the risk of liver cancer. In IVW method, the ORs of 
liver cancer were 2.33 (95% CI 1.28–4.21) per 1-SD increase in 2-h glucose, 1.31 (95% CI 1.13–1.52) for 1-unit 
increase in log OR of T2DM, 1.67 (95% CI 1.18–2.37) per 1-SD increase in BMI, and 1.78 (95% CI 1.15–2.75) 
per 1-SD increase in waist circumference. Conversely, APOB (per 1-SD increase, OR 0.67; 95% CI 0.47–0.97) and 
LDL (per 1-SD increase, OR 0.62; 95% CI 0.42–0.92) decreased the risk for liver cancer (Fig. 2). The weighted 
median and MR egger results showed a consistent direction with IVW analysis. In contrast to the results of many 
observational studies, we did not find causal relationship between smoking initiation, alcohol drinking, coffee 
consumption with the risk of liver cancer.

Subsequently, we carried out a multivariable Mendelian randomization (MVMR) analysis of waist circumfer-
ence and blood lipid traits with adjustment for BMI. Following the adjustment, the inverse association between 
APOB and LDL levels and the risk of liver cancer became stronger, while waist circumference was found to be 
unrelated to liver cancer risk. Furthermore, after adjusting for BMI, APOA (0.56, 95% CI 0.38–0.81), TC (0.72, 
95% CI 0.54–0.94), and TG (0.57, 95% CI 0.40–0.78) displayed a significant inverse correlation with the risk of 
liver cancer (Fig. 3).

Moreover, to ensure the validity of the above findings, a range of sensitivity analyses were conducted. These 
included the Cochran’s Q test, MR Egger intercept test, and MR-PRESSO global test. (Table 2). All P values of the 
MR-Egger intercept tests were > 0.05, indicating that no horizontal pleiotropy existed. Cochran’s Q test analysis 
revealed heterogeneity in TC, TG, HDL, and LDL. Nevertheless, as random effects IVW can balance pooled 
heterogeneity, the recorded heterogeneity was deemed  acceptable25. The Egger intercepts did not detect any 
pleiotropy, indicating that pleiotropic bias was not introduced to MR estimates in the presence of heterogeneity. 
Furthermore, after removing outliers in the MR-PRESSO analysis, the associations remained constant, and no 
variation was observed in the estimates before and after outlier elimination. The scatter plots, funnel plots and 
the results of leave-one-out analysis were showed in Supplementary Fig. 1–3.

Discussion
This study implemented several MR approaches to appraise the possible causal association of BMI, waist circum-
ference, lifestyle factors, glycemic traits, and lipoprotein traits with liver cancer. We demonstrated that abdomi-
nal obesity (measured by waist circumference), overall obesity (measured by BMI), T2DM, and 2-h glucose 
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causally increased the risk of liver cancer. A possible causal association is observed between APOB and LDL with 
decreased risk of liver cancer. After adjusting for the impact of BMI, we identified a reverse causal relationship 
between TC, TG, APOA-I, with the liver cancer risk. There is no evidence that FG, FI, HbA1c, HDL, smoking 
initiation, alcohol drinking, and coffee consumption are causally associated with liver cancer.

Many experimental and observational epidemiological studies have investigated that obesity was associated 
with an ascended risk of liver  cancer7,37,38. In a meta-analysis of 11 cohort studies with a total of 11,079 cases, 
overweight and obesity were associated with a 17% and 89% higher risk of liver cancer respectively, which is 
consistent with our  findings8. In a systematic review and meta-analysis, waist circumference is a significant inde-
pendent risk factor related to the incidence of liver  cancer39. By two-sample MR analysis, we have confirmed the 
causal relationship between BMI, waist circumference with liver cancer risk. However, after adjusting for BMI, 
waist circumference lost its causal relationship with the risk of liver cancer. This suggests that abdominal obesity 
may not be a significantly higher risk factor compared to overall obesity. Several potential mechanisms may 
explain the association between obesity and liver cancer, including a high level of proinflammatory  cytokines40, 
disorders of adipose tissue  metabolism41, and abnormal levels of  hormones42.

Prospective cohort studies have reported a significant association between T2DM and a higher risk of develop-
ing liver  cancer9,43. According to a population-based case–control study, diabetic individuals were found to have 
a 2.87-fold higher risk of liver cancer compared to non-diabetic controls, independent of viral hepatitis, alcoholic 
liver disease, or nonspecific  cirrhosis44. Our MR study strengthened the causal nature of this positive association. 
Moreover, an umbrella review of meta-analyses of prospective studies examined prediabetes symptoms, such as 
impaired FG and glucose tolerance, which were associated with the incidence of liver  cancer45.

In addition, a cohort study that examined 1,140,000 Australians found an increased risk of liver cancer in 
association with glucose  tolerance46. Consistent with the previous studies mentioned, our investigation demon-
strated robust MR associations between liver cancer risk and glucose tolerance (measured by 2-h glucose) in two 
independent datasets. This indicates that impaired glucose tolerance may serve as a risk factor for liver cancer 
and is beneficial for predicting the risk of liver cancer before patients are diagnosed with diabetes. Impaired 
glucose tolerance and T2DM have various factors that may contribute to the initiation and progression of liver 
cancer, including insulin/insulin-like growth factor-related  factors47, proinflammatory  cytokines48, gut microbiota 

Figure 1.  The study design and assumptions of the MR approach. Assumption 1 requires that the selected 
genetic variants, proposed as instrumental variables, are strongly associated with the risk factor under 
investigation. Assumption 2 states that these genetic variants should not be associated with potential 
confounding factors, while Assumption 3 asserts that these genetic variants should impact the outcome 
exclusively through the risk factor, rather than through alternative pathways. By reducing residual confounding 
and reverse causality, the MR approach can enhance the causal inference of the exposure-outcome association. 
The instrumental variables selected for studying the effects of modifying the exposure are randomly allocated 
at conception, thereby minimizing the susceptibility to confounding by environmental factors and reverse 
causation. These instrumental variables are used in the inverse-variance weighted (IVW) analysis to provide an 
estimate of the causal effect. Type 2 diabetes mellitus (T2DM) is a particular example of the exposure-outcome 
association being investigated.
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Table 1.  Detailed Information on Used GWAS data source.

Exposure Unit Adjustments IV-SNPs Sample size Variance explained F-statistic
PubMed ID or 
URL

Body mass index SD
Age and any 
necessary study-
specific covariates

458 461,460 5.7% 61.26 UK Biobank

Waist circumfer-
ence SD Age and study-

specific covariates 374 462,166 3.4% 44.15 UK Biobank

Smoking initia-
tion

SD in prevalence 
of smoking initia-
tion

Age, sex, and the 
first 10 genetic 
principal compo-
nents

93 607,291 2.5% 166.06 30643251

Alcohol drinking
SD increase of 
logtransformed
alcoholic drinks/
per week

Age, sex, and the 
first 10 genetic 
principal compo-
nents

76 941,280 0.5% 69.74 30643251

Coffee consump-
tion 50% change

Age, sex, BMI, 
total energy, pro-
portion of typical 
food intake, and 
20 genetic princi-
pal components

29 375,833 0.3% 38.99 31046077

Type 2 diabetes 
mellitus

1-unit in log odds 
ratio of type 2 
diabetes

Age, sex, and the 
first 10 geneti 
principal compo-
nents

279 1,407,282 25.8% 1758.4 32541925

2-h glucose SD
BMI, study-
specific covariates, 
and principal 
components

14 112,283 2.6% 214.41 34059833

Fasting insulin SD
BMI, study-
specific covariates, 
and principal 
components

38 151,013 0.4% 11.86 34059833

Fasting glucose SD
BMI, study-
specific covariates, 
and principal 
components

70 200,622 1.2% 20.38 34059833

HbA1c SD
BMI, study-
specific covariates, 
and principal 
components

75 146,806 0.7% 13.79 34059833

High-density 
lipoprotein SD

Lipid-lowering 
medication, and 
principal compo-
nents

362 403,943 10.1% 124.74 32203549

Low-density 
lipoprotein SD

Lipid-lowering 
medication, and 
study-specific 
covariates

82 201,678 6.8% 179.44 UK Biobank

Triglycerides SD
Lipid-lowering 
medication, and 
study-specific 
covariates

12 21,545 5.1% 95.24 27005778

Total cholesterol SD
Lipid-lowering 
medication, and 
study-specific 
covariates

23 21,491 9.4% 101.47 27005778

Apolipoprotein 
A-I SD

Lipid-lowering 
medication, and 
study-specific 
covariates

11 20,687 4.7% 93.31 27005778

Apolipoprotein B SD
Lipid-lowering 
medication, and 
study-specific 
covariates

21 20,690 8.9% 98.24 27005778

Malignant neo-
plasm of liver and 
intrahepatic bile 
ducts

–
Age, sex, 10 
genetic principal 
components, and 
genotyping batch

– 309,174 – – FinnGen consor-
tium
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 dysbiosis49, and  angiogenesis50. However, our study did not find causal associations of HbA1c, FG, and FI with 
liver cancer risk, which differs from observational  studies51,52.

So far, the relationship between lipoprotein characteristics and liver cancer remains unclear. In most cases, 
the available studies have insufficient cases of liver cancer to explore possible associations with lipoprotein traits 
 independently53,54. A recent MR study showed that lower levels of LDL were linked with an increased risk of total 
 cancer55. In our MR study, we found a reverse causal relationship between LDL and the risk of liver cancer. As the 
apolipoprotein of LDL, the decrease of APOB level has also been identified as a causal risk factor for liver cancer. 
After adjusting for BMI by MVMR, the reverse relationship between LDL, APOB with the risk of liver cancer was 
further strengthened. Therefore, our findings may indicate that contrary to people’s expectations, low LDL level 
may not confer benefits and could potentially be detrimental. Some underlying mechanisms in support of APOB, 
LDL and the risk of liver cancer have been proposed. A study of comparative systems genomics demonstrated 

Figure 2.  MR analysis results of the exposures to liver cancer risk.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8502  | https://doi.org/10.1038/s41598-024-59211-3

www.nature.com/scientificreports/

low-APOB activity was associated with upregulation of oncogenic and metastatic regulators (CD44, FOXM1, 
ERBB2), inhibition of tumor suppressors, (PTEN and TP53), and also associated with poor  prognosis56,57.

As blood lipid characteristics are often closely related to obesity, analyzing these characteristics independently 
of BMI has important clinical value in assessing the risk of liver cancer. After adjusting for BMI through MVMR, 
our study found a negative causal relationship between TC and TG with the risk of liver cancer. Similarly, a large 
retrospective study over multiple years has shown that low TC and TG concentration are independent risk fac-
tors for  HCC58. Although we currently do not understand the exact mechanism, several potential mechanisms 
can explain the association. Firstly, cholesterol imbalance itself may be a part of liver cancer occurrence. Vari-
ous inflammatory factors that affect the occurrence and progression of cancer, including IL-6, IL-1, and TNF-a 
dysregulation, can all affect cholesterol  synthesis59. In addition, an animal study found that high cholesterol 
levels can enhance the tumor-killing effect of NK cells. This finding demonstrates a new role for cholesterol in 
affecting immune  factors60.

This suggests that for obese populations, weight loss may be a more effective way to reduce the risk of liver 
cancer than regulating blood lipid levels. Additionally, after adjusting for BMI, we found that APOAI is a protec-
tive factor for liver cancer, while there is no causal relationship between HDL and the risk of liver cancer. Further 
research may be needed to explain the underlying mechanisms.

Epidemiological data on the association between light alcohol drinking and liver cancer are  inconsistent61–63. 
However, heavy alcohol drinking (> 50 g per day) showed a dose–response relationship with liver  cancer12,63. Our 
study did not confirm the dose–response association but could not exclude a possible weak nonlinear associa-
tion of alcohol drinking with liver cancer. Likewise, no causal association between coffee consumption and liver 
cancer risk was found in our study. In a meta-analysis of 18 cohorts, an extra two cups of coffee were associated 
with a decreased risk of hepatocellular carcinoma (OR 0.73, 95% CI 0.63–0.85)64. Given the limited data and 
potential publication bias examining the link from coffee consumption to liver cancer, more study is needed.

Figure 3.  Genetically predicted BMI-adjusted associations of waist circumference and lipid traits.

Table 2.  Sensitivity analysis of the MR analysis results of exposures and outcomes.

Exposure

Cochrane’s Q MR-Egger MR-PRESSO

Q value P Intercept P P

Body mass index 409.72 0.49 − 0.003 0.75 0.62

Waist circumference 339.56 0.54 − 0.013 0.16 0.59

Smoking initiation 84.34 0.43 − 0.008 0.80 0.55

Alcohol drinking 53.30 0.95 − 0.047 0.06 0.94

Coffee consumption 26.41 0.49 0.017 0.49 0.54

Type 2 diabetes mellitus 578.51 0.02 − 0.007 0.24 0.004

2-h glucose 5.34 0.72 − 0.055 0.37 0.68

Fasting insulin 27.06 0.85 − 0.016 0.63 0.85

Fasting glucose 61.27 0.57 0.017 0.26 0.52

HbA1c 60.57 0.78 0.022 0.14 0.79

High-density lipoprotein 405.61  < 0.001 − 0.010 0.15 0.001

Low-density lipoprotein 120.56  < 0.001 0.019 0.18 0.001

Triglycerides 80.24  < 0.001 0.164 0.36 0.001

Total cholesterol 60.18  < 0.001 8.21 ×  10–5 0.99 0.24

Apolipoprotein A-I 12.43 0.13 0.066 0.48 0.21

Apolipoprotein B 38.21  < 0.001 0.014 0.76 0.007
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Several limitations should be considered in the present study. Our participants were solely of European ances-
try, therefore, extrapolation of our findings to other ethnicities must be approached with caution, given possible 
cultural and lifestyle differences. Additionally, the MR approach is limited by potential pleiotropy, including 
vertical and horizontal  pleiotropy65,66.

However, the pleiotropic should not impact the validity of our findings for two reasons. Firstly, our MR-Egger 
intercept test revealed limited evidence of vertical pleiotropy in most of the associations analyzed in our MR 
study. Secondly, for associations showing significant evidence of horizontal pleiotropy, MR-PRESSO analysis 
identified only a small number of outliers, and the results remained consistent or even became more robust 
after removing these outliers. However, pleiotropy should not compromise the validity of our findings for two 
reasons. First, our MR-Egger intercept test showed low evidence of vertical pleiotropy in most of the associa-
tions examined in our MR study. Second, the MR-PRESSO analysis identified a few outliers for associations 
that showed significant evidence of horizontal pleiotropy. These outliers were removed, resulting in consistent 
or even more robust outcomes.

Moreover, our estimations could be prone to selection bias and impacts of unmeasured environmental factors. 
For instance, individuals identified with a high polygenic risk score concerning circulating lipids are at a greater 
risk of leaving the cohort due to their increased vulnerability to chronic cardiovascular diseases. Additionally, 
we couldn’t regulate the impact of medication used for glucose-lowering and lipid-lowering purposes.

Conclusion
In summary, this MR study suggests causal roles of abdominal obesity, overall obesity, T2DM, and two-hour glu-
cose in the development of liver cancer. On the contrary, genetically determined higher TC, TG, LDL, APOA-I, 
APOB level is associated with a lower risk of liver cancer. Further studies are required to explore the underlying 
mechanisms of the causal relationships explored by our study.

Data availability
All the GWAS data used for this study are publicly available and their original studies are shown in Table 1.
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