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Forward layer‑wise learning 
of convolutional neural networks 
through separation index 
maximizing
Ali Karimi , Ahmad Kalhor * & Melika Sadeghi Tabrizi 

This paper proposes a forward layer‑wise learning algorithm for CNNs in classification problems. 
The algorithm utilizes the Separation Index (SI) as a supervised complexity measure to evaluate and 
train each layer in a forward manner. The proposed method explains that gradually increasing the SI 
through layers reduces the input data’s uncertainties and disturbances, achieving a better feature 
space representation. Hence, by approximating the SI with a variant of local triplet loss at each layer, 
a gradient‑based learning algorithm is suggested to maximize it. Inspired by the NGRAD (Neural 
Gradient Representation by Activity Differences) hypothesis, the proposed algorithm operates in a 
forward manner without explicit error information from the last layer. The algorithm’s performance 
is evaluated on image classification tasks using VGG16, VGG19, AlexNet, and LeNet architectures 
with CIFAR‑10, CIFAR‑100, Raabin‑WBC, and Fashion‑MNIST datasets. Additionally, the experiments 
are applied to text classification tasks using the DBPedia and AG’s News datasets. The results 
demonstrate that the proposed layer‑wise learning algorithm outperforms state‑of‑the‑art methods in 
accuracy and time complexity.

There has been a significant advancement in machine learning over the past few years, and deep neural networks 
based on backpropagation  learning1–3 have gained prominence in many problems. Many different domains 
have been able to benefit from their use, including image and speech  recognition4–6, text  processing7, activity 
 recognition8, language  translation9, medical issues specially  Covid1910,11. As a fundamental learning algorithm, 
End-to-End learning is widely used in supervised learning. However, its applications extend beyond supervised 
learning to include  unsupervised12, self-supervised13, and semi-supervised14 methods. While there is currently 
no direct evidence supporting the utilization of a backpropagation-like algorithm in the brain for learning, 
previous studies have demonstrated that models trained with backpropagation can effectively explain observed 
neural responses. For instance, the response properties of neurons in the posterior parietal  cortex15 and primary 
motor  cortex16 align well with the predictions made by backpropagation-trained models.

The fundamental idea is that the brain achieves effective synaptic updates by utilizing feedback connections 
to induce neuron activities. These activities, computed locally, encode error signals similar to backpropagation. 
The hypothesis of  NGRAD17 is based on the idea that higher-level activities, originating from sources such as a 
target, another modality, or a broader spatial or temporal context, can drive lower-level activities towards values 
that align with the higher-level activity or desired output. The resulting changes in lower-level activities can then 
be used to compute weight updates similar to backpropagation, relying solely on locally available signals. Thus, 
the fundamental notion is that top-down activities drive learning, obviating the need for explicit error informa-
tion propagation between  layers18.

The  SI19 is a distance-based metric for evaluating input data and its transformation across layers in a convolu-
tional neural network tailored for classification tasks. Distinguishing itself from traditional shape-based indices, 
SI is shape-less and grounded in core principles of class separability and data complexity inherent to classification 
challenges. Data complexity manifests when a dataset contains samples residing in overlapping regions across 
different classes, presenting a classification hurdle. Conversely, a class is considered separable when its samples 
exhibit distinct positions, avoiding overlap. SI quantifies dataset complexity by tallying samples in the overlap-
ping region, normalized against the total sample count. The SI can be utilized for evaluating  datasets19, ranking 
neural network  models20, and assessing the training progress of neural  networks21. However, this index has not 
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been directly employed for training networks. We in this paper introduce a loss function based on a triplet loss, 
where loss function terms are explicitly defined using the SI.

The proposed model introduces a layer-wise learning algorithm inspired by the NGRAD  hypothesis18, empha-
sizing a biological perspective. This algorithm enables forward training of all layers without carrying explicit 
error information from the last layer, reflecting the brain’s mechanism of effective synaptic updates through 
feedback connections and locally computed activities encoding error signals. The integration of the SI plays a 
pivotal role in this process, aligning with the NGRAD hypothesis. The SI, acting as a nudge from target labels, 
contributes to the learning trajectory of each layer, addressing a necessary condition for effective training. Despite 
not explicitly representing errors between network outputs and targets, the SI minimizes disturbances and data 
sparsity, providing internal feature representations in line with backpropagation goals. This approach establishes 
a nuanced connection between artificial neural networks and biological learning processes, underscoring the 
potential biological relevance of the proposed model.

Since SI has a cardinal-based definition, it is necessary to increase it using gradient algorithm methods. In 
this paper, the SI is approximated as a variant of a triplet loss, where positive and negative examples of each 
anchor are its nearest neighbors with the same and different labels, respectively. Consequently, by employing 
such a triplet loss and applying a local error-backpropagation algorithm, the SI increases layer by layer. Thus, 
a forward-backward learning algorithm for a CNN is established, where all layers are trained sequentially, as 
depicted in Fig. 1.

In the following, Section “Related works” provides a comprehensive review of related works in layer-wise 
learning. In Section “Proposed Method”, we introduce the method. Experimental results and performance evalu-
ation are presented in Section “Experimental results”. Finally, we conclude the paper in Section “Conclusion” by 
summarizing our contributions and highlighting the significance of our proposed approach.

Related works
The Forward-Forward algorithm, introduced by  Hinton22, presents a novel learning procedure for neural net-
works, deviating from the conventional backpropagation method. Instead, it employs two forward passes: one 
with positive data and another with negative data. Each layer is equipped with its loss function in this approach, 
aiming for high goodness with positive data and low goodness with negative data. This innovative algorithm 
introduces a shift from the traditional backpropagation paradigm, providing a unique perspective on optimizing 
neural network learning.

Bengio et al.23 propose a layerwise algorithm that is supervised and greedy. Each new hidden layer is trained 
as a hidden layer for a supervised network, with a hidden layer used as an input for the previous layer’s output, 
and the output of the last layer is discarded. The performance of the MNIST dataset was assessed using five dif-
ferent algorithms in an experiment: (1) DBN (Deep Belief Network), (2) a deep network with layers initialized 
as auto-encoders, (3) a supervised greedy layer-wise algorithm for pre-training each layer, (4) a deep network 
with no pre-training, and (5) a shallow network.

During the test, it was observed that the error rate of the training data in the unsupervised greedy pre-trained 
mode was lower than that of the deep network without pre-training, indicating better performance. Furthermore, 
a comparison was made between two greedy layer-wise modes, supervised and unsupervised, revealing that the 
unsupervised technique outperformed the supervised one.

However, this paper, despite introducing a novel learning method, faces a limitation. The lack of training for 
previous layers during the layer-wise training process results in inadequate learning for these preceding layers. 
As indicated by the results, this deficiency leads to a decline in the final accuracy of neural networks.

Li et al.24 propose a stage-wise learning approach based on unsupervised learning. The stage-wise learning 
partition method divides the task into three stages: initial, middle, and late partitions. The initial stage tackles 
simpler tasks, producing features of higher quality in the final stages.

The learning method focuses on each specific target stage rather than requiring the entire network to learn 
the final target. This approach has several advantages. First, the initial stage is tasked with learning a simpler task. 
Second, the final stage can leverage the advantages of the initial stage through weight sharing. Third, backward 
propagation between each stage takes a shorter path compared to the end-to-end learning method. Although this 
paper has conducted extensive experiments across various topics, showcasing the applicability of the proposed 
method in different domains, it is important to note that the approach operates in a stage-wise manner rather 
than a layer-wise one. In each stage, it trains multiple layers instead of a single layer.

The greedy  approach25 requires less access to the overall gradient, which can have several advantages. One 
advantage is that there is no need to store intermediate activations and gradients. Sequential learning in shallow 

Figure 1.  A scheme of layer-wise learning algorithm by SI maximizing.
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networks can serve as an alternative solution for end-to-end learning with backpropagation. With this learning 
approach, it is possible to observe the progress of each layer in terms of linear separability. Unfortunately, the 
existing regularization methods do not achieve satisfactory accuracy for large datasets like ImageNet.

The innovation of this paper lies in the use of auxiliary tasks in each layer, where feature reduction takes place 
through these auxiliary tasks in each layer. This layer-wise learning method has been able to compete with end-
to-end learning methods for the AlexNet and VGG networks on CIFAR-10 and ImageNet datasets. The authors 
of this paper concluded that solving auxiliary problems sequentially with a hidden layer leads to a CNN that 
performs better than AlexNet on the ImageNet dataset. Then, this idea was expanded, and by solving auxiliary 
problems with 2 or 3 hidden layers (k-hidden layer CNN problem, k=2,3), an 11-layer model was obtained 
that outperforms some models from the VGG family. It is claimed that by training a VGG-11 model, the same 
accuracy as the end-to-end learning method can be achieved. It is claimed that this alternative approach is the 
first one to compete with the end-to-end learning method on the  ImageNet26 dataset.

Ko et al.27 proposed a method that increases the learning rate more than it should for layers with less variance 
gradient than the entire model, and conversely, it decreases the learning rate less than it should for layers with a 
greater learning rate than the entire model. With fewer iterations, this method can achieve better accuracy than 
other learning rate scaling methods, except for CIFAR-10 with a batch size of 1024. While the proposed method 
has significantly improved performance on the CIFAR-100 dataset, its results show no substantial improvement 
on CIFAR-10. In practical terms, its performance has not demonstrated considerable enhancement in datasets 
with fewer labels.

Yu28 et al. presented a different architecture of CNNs for LVSR (Large Vocabulary Speech Recognition). Their 
method based on layer-wise context expansion and location-based attention. Moreover, like ResNet, there is a 
connection between some layers. Also, average pooling and max pooling are not used in this method. The results 
of the experiments show that this model has been able to reduce the error rate compared to DNN and LSTM. 
However, their experiment is limited to audio and only on few models.

In another  research29, the authors propose a new approach to train deep neural networks more efficiently and 
effectively. The proposed method involves training a stacked autoencoder and a stacked-randomized one. This 
approach entails training the neural network one layer at a time, with each layer learning features subsequently 
used as input for the next layer. By employing this approach, the neural network can acquire complex representa-
tions of protein sequences that prove useful for predicting protein-protein interactions. Their work is valuable 
from a medical perspective and represents the first study conducted in the field of layer-wise learning in medicine.

Xiong et al.30 propose a method for learning the representation in each stage of a network in such a way 
that the encoder is divided into several modules, each of which has a contrastive loss function at the end. The 
input is forward-propagated as normal, but the gradients are not back-propagated between modules; instead, 
each module is greedily trained by a local contrastive loss function. The experiments of this paper have been 
conducted on the ImageNet dataset, demonstrating the superiority of the results of this method compared to 
other state-of-the-arts methods.

Tang et al.31 presented a method for human activity recognition using wearable sensors and CNNs. The data 
is preprocessed and segmented into smaller windows fed into the CNNs.The authors then discuss the limitations 
of traditional CNN architectures for processing wearable sensor data, which typically involves dealing with high-
dimensional data with many channels. To address this issue, the authors propose using smaller filter sizes in the 
convolutional layers, which can capture more detailed information from the input data. The proposed method 
involves training one layer at a time, starting from the input layer and adding one layer until the entire network 
is trained. The authors demonstrate the effectiveness of the proposed method on two benchmark datasets and 
compare it with other state-of-the-art methods. The results show that the proposed method achieves competitive 
results with significantly fewer training samples, demonstrating its effectiveness for training deep convolutional 
networks with small datasets.

Horton et al.32 propose a novel method for compressing CNNs named ’Layer-Wise Data-Free CNN Compres-
sion.’ This method independently compresses each network layer without utilizing any data. Their approach offers 
several advantages over existing compression methods, particularly its data-free nature, making it more practical 
and flexible in scenarios where data is scarce or sensitive. The proposed method has significant implications for 
resource-constrained applications.

Dey et al.33 proposed a methodology for making an MLP robust concerning link failures, multiplicative noise, 
and additive noise by penalizing the system error with three regularizing terms. The approach was tested on ten 
regression and ten classification tasks with different scenarios of weight alteration, and the experimental results 
demonstrated the effectiveness of the proposed regularization in achieving robust training of an MLP. The authors 
also discussed the importance of the coefficient vector in achieving robustness, highlighting its role in different 
scenarios and its impact on the task and dataset used. Moreover,  In34 a methodology was presented to improve 
the robustness of Radial Basis Function Networks (RBFN) against input noises, both additive and multiplicative. 
This is accomplished by selecting optimal centers and widths for the RBF units in the hidden layer. A combina-
tion of Self-Organizing Maps (SOM) is used for center selection, while a nearest-neighbor approach is used for 
determining the widths. The proposed method aims to make the RBFN less sensitive to input perturbations and 
outliers, ultimately improving its performance in noisy environments. Experiments were conducted on standard 
datasets to demonstrate the effectiveness of the approach, showing its superiority over existing methods.

Proposed method
The proposed method algorithm, presented in algorithm 1, outlines a step-by-step approach to improve the 
training of neural networks. First, we define the dataset for training and testing and choose a suitable neural 
network model. Next, we add a new layer to the network. Then, we create pairs of data instances for training, 
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emphasizing the importance of data preparation. The network is trained using a specified loss function. We check 
for untrained layers and go back to adding layers if needed. After all layers are trained, a classification layer is 
added and trained using the cross-entropy35 loss function. Finally, the algorithm evaluates the accuracy of the 
trained network on a test dataset. This systematic approach enhances the effectiveness of the proposed method 
in improving neural network training.

Separation index in convolutional neural networks
When evaluating the complexity of data in a classification problem, some practical measures have been used in 
three main categories: measures of overlaps of different classes, measures of the separability of classes, and meas-
ures of geometry, topology, and density of classes. Here,  SI19, as a measure of the separability between classes, is 
proposed to evaluate and learn layers in a deep neural network. SI quantitatively computes the separation of data 
points with different labels from the point of view of the nearest neighbor model. For a classification problem 
with K different classes, assume D = {(xi , li)}

m
i=1 includes m pairs of input patterns (xis) and their ground truth 

labels (lis) . The SI is defined as follows:

where δK operates as Kronecker delta function:

According to Equation (1), SI counts all data points whose nearest neighbors have the same labels as them. 
In a classification problem with a real-world dataset, there are some issues, such as different appearances of 
features, common features between different classes, and various measurement uncertainties and disturbances. 
Such issues cause examples with the same labels to lose their spatial nearness and become far together, which 
leads lower SI of the dataset. To increase SI in such a situation, CNNs seem suitable models. CNNs can gradually 
filter disturbances and common features through their sequenced convolution and pooling layers.

To formulate and explain such an advantage, consider a CNN with Lfinal layers. By applying the input x to the 
CNN, it flows through the layers of the model and finally, the predicted label is computed at layer Lfinal , as seen 
in Fig. 2. In this CNN, x1 is equal to x and FL denotes the function of layer L on xL−1 .

Consider that DL =
{(

xLi , li
)}m

i=1
 denotes the dataflow of D at the Lth (L ∈ {1, 2, . . . , Lfinal}) layer. One can 

compute SI of DL to measure and evaluate the separability of data points at the Lth (L ∈ {1, 2, . . . , Lfinal}) layer. 
Now, assume that ith input data point, x1i  , is defined as follows:

Where x̃1i  denotes the exclusive features of the ith input pattern to a certain class, g i denotes the function which 
defines the appearance form of x̃1i  , pi denotes the physical measurement parameters of x̃1i  and di denotes the addi-
tive effect of disturbances and common features on the ith input. In addition, assume FL

(·) denotes all cascaded 
functions from layer one to layer L which operates on x̃1i  . Then, we have:

It is feasible that by using a well trained CNN, two conditions are satisfied: (1) the norm of disturbances and 
common features will decrease layer by layer, and (2) the exclusive features will intensify and scale layer by layer 
where some data points with the same labels become nearest neighbors:

(1)SI(D) =
1

m

m∑

i=1

δK(li − li∗) i∗ = argmin
∀Oi �=i

∥∥xi − xOi
∥∥

(2)δK (�l) =

(
1 �l = 0
0 else

(3)x1i = g i
(
x̃i

1, pi
)
+ di

(4)xLi = F
L(
g i
(
x̃i

1, pi
))

= FL
(
FL−1

(
. . .

(
F2

(
g i
(
x̃i

1, pi
)))))

Figure 2.  A scheme of convolutional neural networks including the filter part and the nearest neighbor model 
to predict the labels in classifying different classes.
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By satisfying the given rules in Equation (5) and (6), it is expected that all data points with different labels become 
far together and all data points with the same labels converge together layer by layer on one or some regions. 
Regarding the definition of SI in Equation (1), one can say SI

(
DL

)
 will increase when L → Lfinal .

A forward layer‑wise learning algorithm via triplet loss
Considering the absence of classification layers, it is necessary to utilize loss functions such as triplet loss or simi-
lar ones to ensure effective learning and preservation of relative similarities among data points. Triplet Loss is a 
commonly used metric learning loss function that aims to enhance the feature space by pulling similar instances 
closer and pushing dissimilar ones apart. It involves forming triplets of data points: an anchor, a positive (similar) 
sample, and a negative (dissimilar) sample. In various cases such as face  verification36, vehicle  verification37, this 
loss function could perform better from cross-entropy.

The loss function penalizes the model when the distance between the anchor and the positive sample is not 
smaller than the distance between the anchor and the negative sample by a specified margin. This process encour-
ages the model to learn embeddings that effectively capture the desired similarity relationships in the data. Here, 
we intend to leverage the capability of Triplet loss for network training, but with modifications to the original 
formulation. We aim to choose the terms of the formula based on SI for increase SI.

SI is an indicator of the relationship between SI and accuracy. Our objective at each layer is to elevate SI to 
achieve high accuracy at the end of the network training. Although SI is not gradient-descent-friendly, we have 
effectively incorporated it into training by defining a variant of triplet loss function. In our approach, the posi-
tive sample is the closest data point with the same label, and the negative sample is the closest data point with a 
different label. We employ the Near-near data selection and we define a new loss based on triplet loss.

Since the proposed SI shows the accuracy of the nearest neighbor model and it does not require any auxil-
iary classifier, one can develop a forward learning strategy that maximizes the SI at each layer. Regarding to the 
considered CNN at Fig. 2, assume that the layer L(L > 1) is a convolution layer and xL = FL

(
xL−1, aL

)
 where aL 

denotes all parameters of the convolution operations. To increase SI at such layer L, it is enough to change aL in 
order that any examples xi∗ finds its nearest neighbor xi∗ with the same label i.e. li = li∗ . Here, a variant of triplet 
loss without any margin distance is proposed as an alternative to maximizing SI at layer L:

where

In fact, for each anchor xLi , x
L
ip

 and xLin denote the positive and negative points, respectively. An interesting 
property of the above triplet loss is that the positive and negative points are the nearest neighbors of the anchor. 
Such property is consistent with the operation of a convolutional layer, which uses shared weights and local 
connections and hence leads to better optimization. However, in comparison to triplet loss, which uses random 
positive and negative data points, the above triplet loss requires computing the matrix distance of the data points.

Our proposed method is not dependent on any specific architecture and can be applied to all neural net-
work architectures that support layer-wise addition. The training process can be facilitated using our proposed 
approach across various neural network structures that allow for the incremental addition of layers.

(5)If L → Lfinal then F
L
(
g i

(
x̃1i , pi

)
+ di

)
→ F

L
(
g i

(
x̃1i , pi

))

(6)∀i : ∃i∗ �= i where If L → Lfinal then
∥∥∥FL

(
g i

(
x̃1i , pi

))
− F

L
(
g i∗

(
x̃1i∗ , pi∗

))∥∥∥ → 0

(7)JLtriplet =

m∑

i=1

(∥∥∥xLi − xLip

∥∥∥
2
−

∥∥xLi − xLin

∥∥2
)

, L ∈ {2, 3, . . . , L final }

(8)ip = arg
∀î �=i,li �=lî

min
∥∥∥xLi − xL

î

∥∥∥ in = arg
∀î �=i,li �=lî

min
∥∥∥xLi − xL

î

∥∥∥
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Algorithm 1.  Proposed method algorithm

Experimental results
In this section, we have conducted several experiments to show that our proposed method is more accurate 
than state-of-the-art methods. Our experiments have been performed in two sections: image classification and 
text classification. In Section “Image classification”, we will analyze the proposed method for classifying images 
using state-of-the-art CNNs. In Section “Text classification”, we will analyze the proposed method for classifying 
texts using VD-CNN25.

Image classification
In this section, our proposed method is evaluated for image classification on several datasets and CNN archi-
tectures. Experiments are conducted using four architectures, namely  VGG1638,  VGG1938,  AlexNet39, and 
 LeNet40. The datasets utilized for training the CNNs include CIFAR-1041, CIFAR-10041, Fashion-MNIST42, and 
Raabin-WBC43.

Implementation details
The parameters used for all the image classification experiments were the same, as indicated in Table 1. Each 
layer was trained for ten epochs in the proposed method, while in the End-to-End method, it was trained for 200 
epochs. The other hyperparameters were the same in both methods. Through parameter search and evaluation, 
the optimal parameters have been selected for the End-to-End learning method, and these parameters have been 
utilized for training using the proposed method.

Our experiments indicate that the parameter values for both methods are nearly similar, and those parameters 
performing well for the End-to-End method also hold suitable for our method. For instance, a learning rate of 

Table 1.  Hyperparameters of neural networks used in image classification experiments.

Parameter Value

Epoch (end-to-end) 200

Epoch per layer (proposed method) 10

Optimizer SGD or Adam

Batch size 128

Initial learning rate 0.01
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0.5 yields unfavorable results for both methods, while a learning rate of 0.01 proves to be an appropriate value 
for effective learning in both approaches.

The number of epochs for the proposed method has also been determined through various experiments, 
representing a value that allows the network to achieve its maximum accuracy. Additionally, in End-to-End 
learning, a value of 200 epochs may be considered appropriate for achieving maximum accuracy throughout 
the learning process.

Datasets and architectures
In this experiment, we utilized four state-of-the-art convolutional architectures, namely VGG16, VGG19, 
AlexNet, and LeNet, on four benchmark datasets: CIFAR-10, CIFAR-100, Fashion-MNIST and Raabin-WBC. 
Table 2 provides detailed information about each dataset. The choice of these datasets was deliberate and aimed 
at evaluating the proposed methods across diverse domains. CIFAR-10 and CIFAR-100 are widely recognized 
datasets for image classification, each containing a diverse set of 60,000 32× 32 color images distributed over 10 
and 100 classes, respectively. Fashion-MNIST is another image classification dataset consisting of 28× 28 grayscale 
images of 10 different fashion categories, providing a different context for evaluation. Additionally, Raabin-WBC, 
a dataset focused on medical applications, was chosen to assess the method’s performance in a domain-specific 
context related to medicine. Additionally, by selecting these datasets, we have evaluated the effectiveness of the 
proposed method in image classification across datasets with a range of categories, from a small (Raabin-WBC) 
to a large (CIFAR-100) number of classes.

Results
The results of the experiments indicate that our proposed method achieved higher accuracy than the End-to-
End method and outperformed the layer-wise methods. Because there have been limited studies on layer-wise 
learning algorithms, the main comparison has been conducted between our proposed and End-to-End methods 
as the state-of-the-are learning  methods44. The comparison results with the End-to-End method are presented 
in Table 3. Specifically, in the CIFAR-100 dataset using the VGG19 network, our proposed method achieved an 
accuracy of 72.49%, outperforming the End-to-End method, which achieved an accuracy of 71.23%.

Table 3 shows the performance of different learning strategies on the CIFAR-10, CIFAR-100, Fashion-MNIST 
and Raabin-WBC datasets using various convolutional architectures. In the CIFAR-10 dataset, our method 
achieved an accuracy of 93.51% for VGG16, 93.43% for VGG19, 86.25% for AlexNet, and 67.47% for LeNet. In 
comparison, the End-to-End method using SGD optimization achieved accuracies of 92.95%, 92.52%, 84.61%, 
and 67.30% for the respective architectures. When using the Adam optimization with the End-to-End method, 
the accuracies were slightly lower, with values of 92.86%, 92.39%, 84.50%, and 67.12%. the Forward-backward 
method achieved accuracies of 94.81%, 94.71%, 85.84%, and 67.61% which our method is better two case from 
Forward-backward learning strategy

For Fashion-MNIST, our proposed method achieved an accuracy of 95.04%, outperforming End-to-End 
approaches using both Cross Entropy with SGD (94.17%) and Cross Entropy with Adam (93.14%). Similarly, 
on the Raabin-WBC dataset, our method demonstrated superior results with an accuracy of 98.50%, surpass-
ing the End-to-End models using Cross Entropy with SGD (97.83%) and Cross Entropy with Adam (97.94%). 
These findings highlight the effectiveness of our proposed method in achieving higher accuracy compared to 
alternative End-to-End approaches on both datasets.

As shown in Table 4, we compare our proposed method with that presented by  Belilovsky25 et al. proposed a 
convolutional architecture called SimCNN, which showed promising results in previous studies. Our proposed 
method was compared with Belilovsky et al.’s for a comprehensive evaluation using SimCNN.

Table 4 presents a comparison of the results achieved by different learning strategies on the CIFAR-10 dataset 
using the SimCNN architecture. We achieved accuracies of 89.2%, 91.3%, and 93.0% for SimCNN with k = 1 , 
k = 2 , and k = 3 , respectively. On the other hand, the method proposed by Belilovsky et al. achieved accura-
cies of 88.3%, 90.4%, and 91.7% for the respective k values. Our results clearly indicate that we can consistently 
outperform Belilovsky et al.25 layer-wise approach on the CIFAR-10 dataset, demonstrating that our method is 
superior in terms of gaining higher accuracy.

Table 5 presents a comprehensive comparison of time complexities (in minutes and seconds) among vari-
ous learning strategies, including our proposed method, Forward-backward21, Modified Greedy Layer-Wise23, 
End-to-End (Cross Entropy - SGD), and End-to-End (Cross Entropy - Adam), applied to the CIFAR-10 dataset. 
The values reflect the time each method requires to accomplish image classification tasks using different con-
volutional architectures (VGG16, VGG19, AlexNet, and LeNet). Our proposed method notably stands out with 
significantly lower time complexity, underscoring its efficiency in comparison to other state-of-the-art methods. 
This highlights the practicality and computational advantage of our approach in the realm of image classification.

Table 2.  Image classification datasets used in experiments.

Dataset Train size Test size Number of classes

CIFAR-1041 50,000 10,000 10

CIFAR-10041 50,000 10,000 100

Fashion-MNIST42 60,000 10,000 10

Raabin-WBC43 10,175 4339 5
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Our proposed method is trained in fewer epochs, and the training time for the first layers is also less than the 
training of all layers. This is due to the fewer parameters in the network, resulting in less time for each epoch in 
the first layers. Only in the final layers, the time per epoch for the proposed method equals the time per epoch 
for the end-to-end learning method.

In summary, our proposed method consistently outperformed comparable approaches in the majority of 
experiments, demonstrating its superior performance in various scenarios. Notably, the proposed method exhib-
ited better predictive accuracy across different datasets and network architectures. Furthermore, in terms of 
computational efficiency, our method consistently surpassed its counterparts, showcasing its efficacy in achieving 
accurate results with reduced time complexity. These results collectively highlight the robustness and efficiency 
of our proposed approach, making it a promising candidate for diverse applications in comparison to similar 
methods.

Table 3.  Comparison of accuracy between our proposed method and state-of-the-arts methods in image 
classification.

Dataset Learning strategy VGG16 VGG19 AlexNet LeNet

CIFAR-10

Proposed method 93.51 93.43  86.25 67.47

Forward-backward21 94.81 94.76 85.84 67.61

Greedy Layer-Wise23 82.58 81.85 75.71 60.98

End-to-End (Cross Entropy - SGD) 92.95 92.52 84.61 67.30

End-to-End (Cross Entropy - Adam) 92.86 92.39 84.50 67.12

CIFAR-100

Proposed Method 72.13 72.49 62.43 53.59

Forward-backward21 71.74 71.55 62.45 52.87

Greedy Layer-Wise23 62.81 62.36 55.71 47.10

End-to-End (Cross Entropy - SGD) 70.98 71.23 62.22 52.91

End-to-End (Cross Entropy - Adam) 70.36 71.09 62.05 52.36

Fashion-MNIST

Proposed Method 95.04 95.21 92.89 73.16

Forward-backward21 94.73 95.06 92.65 72.98

Greedy Layer-Wise23 85.33 85.74 82.87 66.55

End-to-End (Cross Entropy - SGD) 94.17 94.61 92.53 72.19

End-to-End (Cross Entropy - Adam) 93.14 93.43 92.20 71.76

Raabin-WBC

Proposed method 98.50 98.35 97.56 93.31

Forward-backward21 98.03 98.0 97.21 92.67

Modified Greedy Layer-Wise23 93.56 92.19 91.97 88.40

End-to-End (Cross Entropy - SGD) 97.83 97.98 96.98 92.65

End-to-End (Cross Entropy - Adam) 97.94 98.02 96.49 92.04

Table 4.  Comparison of accuracy between our proposed method and another layer-wise method in image 
classification.

Dataset Learning strategy SimCNN (k=1)25 SimCNN (k=2)25 SimCNN (k=3)25

CIFAR-10
Proposed method 89.2 91.3  93.0

Belilovsky et al.25 88.3 90.4 91.7

Table 5.  Comparison of time complexity (minutes:seconds) between our proposed method and state-of-the-
arts methods in image classification.

Dataset Learning Strategy VGG16 VGG19 AlexNet LeNet

CIFAR-10

Proposed Method 102:48 129:17 52:19 16:35

Forward-backward21 127:44 138:48 62:96 31:83

Modified Greedy Layer-Wise23 124:49 133:26 57:56 20:42

End-to-End (Cross Entropy - SGD) 139:43 149:58 68:28 32:38

End-to-End (Cross Entropy - Adam) 144:57 148:45 69:12 34:20
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Text classification
In this section, we test the proposed method on two well-known data classification datasets, AG’s News and 
DBPedia, on the VD-CNN  network45.

Implementation details
The value of the hyperparameters of the proposed method and the state-of-the-arts methods are the same as 
in Table 6, with the difference that the number of epochs for the End-to-End method is equal to 15, and our 
proposed method is trained for three epochs in each layer. The hyperparameters of the VD-CNN network have 
been selected based on the  paper45, which introduces the VD-CNN network.

Datasets and architectures
We conducted experiments using the VD-CNN architecture and evaluated its performance on AG’s News and 
DBPedia datasets. The AG’s News dataset is designed for categorizing English news, while the DBPedia dataset 
is used to classify ontologies. This dataset’s details are included in Table 7.

The AG’s News dataset is specifically curated for English news categorization, encompassing various topics 
and subjects typically found in news articles. This dataset is well-suited for evaluating text classification models 
on real-world news content, providing a diverse range of topics and language usage. On the other hand, the 
DBPedia dataset is tailored for the classification of ontologies.

Results
Based on AG’s News and DBPedia datasets, Table 8 compares the proposed and state-of-the-art methods for 
text classification using the VD-CNN architecture. For a comprehensive evaluation, we used three different 
configurations of VD-CNN with varying network depths.

The proposed method outperformed all three AG’s News dataset experimental models. The testing error 
rates for our method were 9.35% for VD-CNN (Depth=9), 8.71% for VD-CNN (Depth=17), and 8.72% for VD-
CNN (Depth=29). On the other hand, the End-to-End method with cross-entropy loss achieved error rates of 
10.17%, 9.29%, and 9.36% for the respective network depths. Also, error rates of other state-of-the-art methods 
are higher than our proposed method.

Table 6.  Hyperparameters of neural networks used in text classification experiments.

Parameter Value

Epoch (end-to-end) 15

Epoch per layer (our method) 3

Optimizer SGD

Batch size 2048

Initial Learning Rate 0.01

Character Embedding 16

Table 7.  Text classification datasets used in experiments.

Dataset Train size Test size Number of classes

AG’s  news46 120,000 7600 4

DBPedia47 560,000 70,000 14

Table 8.  Comparison of error-rate between our proposed method and state-of-the-arts methods in text 
classification.

Dataset Learning strategy VD-CNN(Depth=9) VD-CNN(Depth=17) VD-CNN(Depth=29)

AG’s News

Proposed method 9.35 8.71 8.72

Forward-backward21 9.61 9.19 10.61

Modified Greedy Layer-Wise23 13.67 12.99 11.44

End-to-End (Cross Entropy) 10.17 9.24 9.30

DBPedia

Proposed Method  1.53 1.30  1.23

Forward-backward21 1.67 1.44 1.46

Modified Greedy Layer-Wise23 2.83 2.19 2.32

End-to-End (Cross Entropy) 1.64 1.42 1.36
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Similarly, in the DBPedia dataset, our proposed method demonstrated better performance compared to the 
End-to-End method. The testing error rates for our method were 1.53% for VD-CNN (Depth=9), 1.30% for 
VD-CNN (Depth=17), and 1.23% for VD-CNN (Depth=29). In contrast, the End-to-End method achieved error 
rates of 1.64%, 1.42%, and 1.36% for the respective network depths.

Conclusion
This paper introduces a groundbreaking layer-wise learning algorithm inspired by the NGRAD hypothesis, offer-
ing a distinctive biological perspective. NGRAD posits that higher-level activities, emanating from sources such 
as a target, another modality, or a broader spatial or temporal context, can guide lower-level activities towards 
values aligned with the higher-level activity or desired output. In the context of our proposed algorithm, NGRAD 
serves as a guiding principle for effective synaptic updates.

Our method endeavors to train convolutional neural networks by maximizing SI. It has been discussed that 
maximizing SI mitigates data uncertainties and segregates data examples with different labels at each layer. In 
the presented algorithm, a new variant of triplet loss approximates the SI to leverage gradient-based learning 
methods. The proposed method undergoes evaluation in image and text classification, with its performance 
compared to state-of-the-art methods. According to the results, this method consistently outperforms other 
approaches in terms of accuracy and error rate. For instance, when applied to the CIFAR-10 dataset using the 
AlexNet network, our proposed method achieves an accuracy of 86.2%, surpassing the accuracy of the End-
to-End learning method at 84.61%. Additionally, on the AG’s News dataset using the VD-CNN network, our 
proposed method achieves an error rate of 8.72%, outperforming the End-to-End method’s error rate of 9.36%.

The findings demonstrate the effectiveness and potential of the proposed method for improving the perfor-
mance of deep neural networks. In future studies, our proposed method can be applied to self-supervised learn-
ing. Furthermore, the combination of layer-wise learning with SI can assist in compressing the network during 
training. Additionally, the applications of this approach can extend to the search for neural network architectures, 
facilitating the automated layer-wise design of neural networks.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The code and models can be accessed by sending a request email to alikarimi120@gmail.com.
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