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Using sentinel‑2 satellite images 
and machine learning algorithms 
to predict tropical pasture forage 
mass, crude protein, and fiber 
content
Marcia Helena Machado da Rocha Fernandes 1*, Jalme de Souza FernandesJunior 2, 
Jordan Melissa Adams 3, Mingyung Lee 3, Ricardo Andrade Reis 1 & Luis Orlindo Tedeschi 3

Grasslands cover approximately 24% of the Earth’s surface and are the main feed source for cattle 
and other ruminants. Sustainable and efficient grazing systems require regular monitoring of the 
quantity and nutritive value of pastures. This study demonstrates the potential of estimating pasture 
leaf forage mass (FM), crude protein (CP) and fiber content of tropical pastures using Sentinel‑2 
satellite images and machine learning algorithms. Field datasets and satellite images were assessed 
from an experimental area of Marandu palisade grass (Urochloa brizantha sny. Brachiaria brizantha) 
pastures, with or without nitrogen fertilization, and managed under continuous stocking during the 
pasture growing season from 2016 to 2020. Models based on support vector regression (SVR) and 
random forest (RF) machine‑learning algorithms were developed using meteorological data, spectral 
reflectance, and vegetation indices (VI) as input features. In general, SVR slightly outperformed the RF 
models. The best predictive models to estimate FM were those with VI combined with meteorological 
data. For CP and fiber content, the best predictions were achieved using a combination of spectral 
bands and meteorological data, resulting in  R2 of 0.66 and 0.57, and RMSPE of 0.03 and 0.04 g/g dry 
matter. Our results have promising potential to improve precision feeding technologies and decision 
support tools for efficient grazing management.

The ongoing growth of the human population has increased pressure on the agricultural sector. Precision farming 
has emerged in this global context as a fresh approach to intensively use data to improve agricultural productivity 
while reducing environmental  effects1. Within agricultural context, grassland’s global importance is supported 
by their extent, they cover approximately 24% of the Earth’s surface and 67% of agriculturally productive  land2. 
After forests, grasslands are a significant source of carbon  sinks3 and thus play an essential role in regulating 
global carbon atmospheric  concentration4,5. In addition to regulating the global carbon cycle, grasslands are 
the livestock industry’s primary and cheapest feed  source3. Moreover, adequate grazing management strategies 
could decrease methane (a greenhouse gas) emission intensity by 22 to 35%, effectively contributing to mitigat-
ing carbon emissions from ruminant  animals6,7. Nonetheless, efficient grazing management and sustainable 
pasture-based production systems require regular monitoring of pasture forage mass (FM) and nutritional value 
to optimize animal performance and overall productivity in grazing systems.

The performance of grazing animals is mainly driven by available forage mass, and forage quality is related 
to nutritive value of ingested forage (chemical composition: crude protein, CP, and fiber contents and digest-
ibilities) and forage  intake8. A better understanding of the nitrogen (N) content, forage dry matter (DM) mass, 
and chemical composition of pastures is extremely useful to support livestock managers in adjusting the stocking 
rate, planning adequate pasture N fertilization and supplementation to match animal needs for more sustain-
able  production8. Advancements in precision livestock farming of pasture monitoring have evolved with remote 
 sensing9. The advantages of remote sensing using satellites over ground-based techniques excel in providing 
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systematic observations at different scales, from global to local, to potentially capture the spatial and temporal 
variability of land surfaces and retrieve historical  data10.

Thus, the relationship between spectral reflectance from satellite optical sensors and forage mass (FM) has 
been investigated using vegetation indices (VI) as a proxy in regression models (e.g., linear, power, logarithmic, 
multiple linear) for estimating FM in  temperate11–14 and tropical  pastures15–17. The exponential evolution of 
digital computers harnessed machine learning algorithms, which have been reported to frequently enhance 
predictive performance compared with simpler linear regression  models17,18. Nonetheless, in tropical pastures, 
the use of satellites to estimate FM has resulted in poor predictive  performance17,19, which has been attributed 
to the presence of a high fraction of senescent material in the biomass and soil background scattering  effects20,21. 
Therefore, the dry FM of tropical pastures still needs to be addressed and investigated to build feasible models 
to implement in field conditions.

Regarding nutritional attributes, hyperspectral sensors (with narrow and near-continuous spectra) and 
machine learning algorithms have been used to estimate the chemical parameters of different pastures with sig-
nificant  accuracy22–24. In general, those studies with hyperspectral data have shown that the most relevant wave-
lengths for detecting CP and fiber were in the blue, red-edge, and short infrared regions of the  spectrum16,24–26. 
Due to the cost and complexity of hyperspectral sensors, the Sentinel-2 satellite, a freely available broadband 
multispectral satellite designed with red-edge and short infrared bands, provides an opportunity for assessing 
crude protein and fiber of pastures on a large scale. The European Space Agency (ESA) launched the first Sen-
tinel-2 satellite constellation in 2015. Compared to other open sources of multispectral satellite sensors, such 
as Landsat and MODIS, Sentinel-2 outperforms in its spatial and temporal resolution, as well in its spectral 
resolution, because of the presence of red-edge bands, which were only previously incorporated in sensors of 
commercial satellites such as WorldView-2 and  RapidEye27.

Previous studies highlighted the potential of Sentinel-2 spectral bands to estimate leaf N content in range-
lands from South  Africa27, fiber concentration in the seminatural grasslands of southeast  Germany28, and CP 
and fiber content of Mediterranean permanent  grasslands29 using machine learning algorithms with moderate 
performance and predictivity ability. Among the various machine learning algorithms, Randon forest  (RF30;) 
and support vector machine  (SVM31;) have been widely explored in remote sensing studies. Both RF and SVM 
are nonparametric supervised classifiers; they do not assume a known statistical distribution of the data to 
be classified. This is particularly relevant due to the unknown distribution of the data acquired from satellite 
remote  sensing31. The main advantages of RF, a well-known regression method, are related to its ability to process 
high-dimensional data and prevent  overfitting32. In contrast, SVM’s main advantages are its robustness to small 
training datasets and low sensitivity to free parameter  settings31.

Therefore, the hypothesis was that spectral data from the Sentinel-2 satellite are adequate to nondestructively 
estimate dry FM, CP, and fiber concentrations of tropical pastures. This study aimed to estimate the dry FM, CP, 
and neutral detergent fiber (NDF) content of Marandu palisade grass (Urochloa brizantha Hochst ex A. Rich 
Stapf cv. Marandu) pastures using Sentinel-2 bands combined with machine learning algorithms (RF and SVM).

Results
In this study, a field dataset and Sentinel-2 satellite images were assessed from an experimental area of Marandu 
palisade grass pastures, with or without nitrogen fertilization, and managed under continuous stocking. The data 
were gathered from January to April 2016–2020 during the pasture growing season. Models based on support 
vector regression (SVR) and RF machine-learning algorithms were developed using meteorological data, spectral 
reflectance, and VI as input features to estimate FM, CP and NDF content of tropical pastures.

Estimation of forage mass parameters
The estimate of FM using spectral reflectance data and their VI from the Sentinel-2 satellite, with or without 
meteorological data, resulted in models with low to moderate precision and accuracy, with  R2, root mean square 
prediction error (RMSPE), and concordance correlation coefficient (CCC) ranging from 0.20 to 0.38, 96.57 to 
109.68 g/m2, and 0.36 to 0.54, respectively (Table 1). Otherwise, the estimate of dry forage green and leaf mass 
resulted in moderate to high precision and accuracy, with  R2 and CCC ranging from 0.36 to 0.64 and 0.52 to 
0.78, respectively (Table 1). No prediction bias was observed in any model (P > 0.10; Supplementary Table S3 
online; Fig. 1).

In general, the best predictive models to estimate FM and dry leaf and green forage mass were those with VI 
combined with meteorological data as input features. The SVR slightly outperformed the RF models, resulting 
in  R2 values of 0.37, 0.62 and 0.64 (Table 1). The main features of the best models were ranked according to their 
degree of importance (Fig. 2). In general, all features were of similar importance.

Estimation of chemical composition parameters
For CP estimation, the highest  R2 (0.66) and the lowest RMSPE (0.03 g/g DM) were achieved using a combina-
tion of spectral bands and meteorological data (Bd + Mt). Similarly, the Bd + Mt combination features resulted 
in the highest  R2 (0.57) and the lowest RMSPE (0.04 g/g DM) for NDF estimation (Table 2). No prediction bias 
was observed in any model (P > 0.1; Supplementary Table S4 online; Fig. 3).

Like forage mass, the SVR models showed slightly superior performance than the RF models in predicting 
CP and NDF (Table 2). The models using only VI as input variables for CP and NDF estimation showed lower 
precision than the other tested input feature combinations. The input of meteorological data improved the 
precision of CP (an increase of up to 23% in the  R2 values) and NDF (an increase of approximately 3% in the 
 R2 values) estimation when compared with using only spectral bands (Bd) or vegetation indices (VI). However, 
the combination of the spectral bands, vegetation indices, and meteorological data did not improve the CP and 
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NDF estimation precision when compared to those obtained using only the Bd combined with meteorological 
data (Table 2).

The main features of the best models were ranked according to their degree of importance (Fig. 4). In general, 
all features were of similar importance. Otherwise, the most influential features, above 8% of importance, were 
the spectral reflectances in red edges 1 and 3 for protein and red edge 1 for NDF (Fig. 4).

Discussion
This study demonstrated the potential of estimating pasture leaf biomass and CP and NDF content of tropical 
pastures with moderate to high precision and accuracy using Sentinel-2 satellite images in tandem with machine 
learning algorithms. Such information has promising potential to improve the monitoring of tropical pasture FM 
and nutritive value, accounting for their spatial and temporal variability. In this sense, the Sentinel-2 satellite is 
a freely available broadband multispectral satellite designed with red-edge and short infrared bands. The use of 
red edge-based vegetation indices has been shown to improve the estimates of  FM27,33, leaf N  content23,27,34 and 
acid detergent fiber (ADF)23. Acquiring images from the Sentinel-2 satellite, this study also observed the impor-
tance of red edge regions in predicting the CP and NDF content of Marandu palisade grass pastures. Moreover, 
the inclusion of meteorological data as an input feature improved the predictive performance, elucidating the 
importance of rainfall and temperature in the prediction of pasture FM, as well as CP and NDF, as observed in 
previous  studies17,35.

Table 1.  Prediction precision and accuracy of forage mass parameters (dry forage mass, dry leaf forage 
mass and dry green forage mass) of Marandu palisadegrass pastures using random forest and support vector 
regression models. The number in parenthesis represents a standard error among fivefold cross-validation. 
Bold represents the best models. RMSPE root mean square prediction error, CCC  concordance correlation 
coefficient, RF random forest, SVR support vector regression. # Bd: only data from spectral bands; see Table 5 
for more information; Mt: meteorological data; maximum temperature  (Tmax), minimum temperature  (Tmin), 
average temperature  (Tavg), relative humidity (RH), number of rainy days within a month (ND), rainfall; VI: 
only data from vegetation indices; see Table 6 for more information.

Variables

Input  features#

Linear regression

CCC R2 RMSPE

Models RF SVR RF SVR RF SVR

Dry forage mass (g/m2)

Bd 0.20
(0.05)

0.26
(0.03)

109.68
(5.37)

105.40
(6.62)

0.37
(0.03)

0.44
(0.04)

Bd + Mt 0.35
(0.05)

0.35
(0.08)

98.77
(4.73)

100.0
(3.98)

0.52
(0.03)

0.54
(0.05)

VI 0.20
(0.06)

0.25
(0.08)

109.49
(5.44)

106.51
(6.30)

0.36
(0.04)

0.42
(0.05)

VI + Mt 0.34
(0.06)

0.37
(0.07)

99.22
(6.21)

97.04
(8.81)

0.52
(0.04)

0.52
(0.05)

Bd + VI 0.23
(0.06)

0.27
(0.07)

106.95
(6.47)

105.04
(5.73)

0.38
(0.04)

0.45
(0.04)

Bd + VI + Mt 0.34
(0.06)

0.38
(0.07)

99.81
(6.24)

96.57
(9.38)

0.50
(0.03)

0.52
(0.05)

Dry leaf forage mass (g/m2)

Bd 0.44
(0.08)

0.51
(0.07)

43.08
(2.19)

40.38
(2.31)

0.62
(0.06)

0.67
(0.04)

Bd + Mt 0.53
(0.08)

0.61
(0.07)

39.31
(2.44)

36.01
(3.75)

0.68
(0.07)

0.76
(0.04)

VI 0.45
(0.07)

0.63
(0.01)

42.74
(1.66)

35.19
(1.31)

0.62
(0.05)

0.77
(0.01)

VI + Mt 0.56
(0.05)

0.62
(0.02)

37.88
(1.17)

35.69
(1.88)

0.71
(0.04)

0.78
(0.02)

Bd + VI 0.46
(0.06)

0.49
(0.07)

42.11
(1.45)

41.33
(1.11)

0.64
(0.04)

0.67
(0.03)

Bd + VI + Mt 0.56
(0.04)

0.62
(0.03)

38.26
(1.48)

35.51
(1.91)

0.70
(0.03)

0.76
(0.02)

Dry green forage mass (g/m2)

Bd 0.36
(0.08)

0.51
(0.06)

83.67
(5.46)

73.97
(3.85)

0.52
(0.06)

0.66
(0.04)

Bd + Mt 0.49
(0.06)

0.58
(0.06)

74.41
(4.34)

67.67
(6.11)

0.65
(0.05)

0.73
(0.04)

VI 0.40
(0.08)

0.50
(0.06)

80.52
(4.35)

74.82
(3.60)

0.57
(0.06)

0.64
(0.05)

VI + Mt 0.52
(0.05)

0.64
(0.03)

72.52
(4.01)

63.48
(3.25)

0.67
(0.04)

0.76
(0.02)

Bd + VI 0.43
(0.08)

0.52
(0.08)

79.13
(6.38)

73.41
(4.69)

0.58
(0.06)

0.66
(0.05)

Bd + VI + Mt 0.52
(0.07)

0.63
(0.04)

72.55
(4.23)

63.54
(4.07)

0.66
(0.05)

0.76
(0.03)
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The poor performance of the models in predicting dry FM in tropical pastures has also been observed in 
previous studies, which reported  R2 values less than 0.3017,19,32. The low predictive ability of dry FM in previous 
 studies17,19 was attributed to the low variability in the dry forage mass dataset used for modeling, whose coefficient 
of variation was approximately 26%19. In the current study, the coefficient of variation for the observed dry FM 
dataset was approximately 19% (Table 4), which could be a plausible explanation. The other explanation for the 
poor prediction of dry FM in tropical pastures is related to the high presence of senescent or dead  material21. 
Indeed, the proportion of dead material herein was relatively high (on average 45%, Table 2), with a coefficient 
of variation of approximately 30%. According to Todd et al.11, the loss of pigmentation from vegetation drying 
and senescing alters spectral reflectance characteristics, where reflectance in both visible and mid-infrared 
spectrum regions increases significantly. Consequently, dead and dry materials produce reflectance patterns 
that resemble soil. Therefore, in regions where dry or senescent biomass is a substantial canopy component, the 
spectral distinction between vegetation and soil background is altered, hindering FM estimation. The problem 

Figure 1.  Scatterplots of the predicted versus observed values of dry forage mass using the best random forest 
(RF) (a) and support vector regression (SVR) (b) models, of dry leaf forage mass using the best RF (c) and SVR 
(d) models, and dry green (leaf + stem) forage mass using the best RF (d) and SVR (f) models.
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of low predictability of dry FM could be offset by using an estimate of dry leaf or green (leaf plus stem) forage 
 mass21, which had relatively good model performance  (R2 > 0.60; Table 5) in this study. Considering that the 
performance of grazing animals is highly correlated with the intake of leaves (the most digestible part of the 
plant)4,8, the dry leaf FM could be more representative as a proxy to include in decision-making grazing models.

Together with pasture FM, the estimates of CP and NDF content of pastures using satellite remote sensing 
provide an excellent opportunity for precision livestock farming to monitor forage quantity and nutritive value 
on large scales and with temporal variability. Attempts to estimate the N (or CP) and fiber content (NDF or ADF) 
of pastures have been successful using field and imaging  spectroscopy24,26 or airborne hyperspectral  data23, with 
acceptable precision  (R2 > 0.5), because the absorption features that relate to CP and fiber  (ADF23 and  cellulose36) 
have been reported to be found at wavelengths in the red edge (705–718 nm) and shortwave infrared region of 
the spectrum (1400–3000 nm)23,36. In the literature, few  studies27–29,32 have exploited satellite multispectral opti-
cal sensors to estimate chemical composition, which has only become possible due to the inclusion of red-edge 
bands in satellites such as Sentinel-2, WorldView-2, and RapidEye.

For instance, Ramoelo et al.27, using WorldView-2 satellite images, reported  R2 values between 0.71 and 0.90 
for models to estimate the leaf N content of grasses from rangelands of African savannas. In tropical pastures, 
using Sentinel-2 satellite images, Pereira et al.32 reported  R2 values between 0.51 and 0.64 for models to estimate 
the plant N content. Likewise, Fernandez-Habaz et al.29 observed moderate prediction models to assess CP 
 (R2 = 0.50) and NDF  (R2 = 0.50) using the Sentinel-2 satellite in permanent grasslands from the Mediterranean 
region. Comparatively, the best models to estimate CP and NDF in this study showed good predictive perfor-
mance, with  R2 values of 0.66 and 0.57, RMSPE values of 0.03 and 0.04 g/g DM, and CCC values of 0.80 and 0.73, 
respectively. Raab et al.28 used Sentinel-2 and Sentinel-1 data as well as random forest regression techniques to 
report strong  R2 values for ADF (0.79) and CP (0.72) forecasts. Since radar data from Sentinel-1 provide infor-
mation on pasture height, which is directly proportional to the amount of cellulose and lignin present, these 
data could help with ADF  estimation28. Otherwise, the authors concluded that Sentinel-2 data might be suffi-
cient to forecast forage quality given the better homogeneity of the analyzed grasslands and the dense temporal 

Figure 2.  Feature importance of the best models of (a) dry forage mass, (b) dry leaf forage mass and (c) dry 
green (leaf + stem) forage mass of Marandu palisadegrass pastures.  Tmax, maximum temperature;  Tmin, minimum 
temperature;  Tavg, average temperature, RH_p, relative humidity; ND number of rainy days within a month; 
Isolat, insolation; CCCI, canopy chlorophyll absorption ratio index; CIgreen, chlorophyll index green; CIredge, 
chlorophyll index red edge; EVI, enhanced vegetation index; GDVI, normalized green difference vegetation 
index; GLI, green leaf index, LChloI, leaf chlorophyll index; NBR, normalized burn rate; NDVI, normalized 
difference vegetation index; NDVI8A, NDVI 8A; OSAVI, optimized soil adjusted vegetation index; SR, simple 
ratio; SRredge, simple ratio red edge.
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component of their dataset, as well as the enhanced findings that could be attributed to the employment of the 
random forest method.

It is noteworthy that the majority of previous studies mentioned above used predictive or machine learning 
modeling algorithms, such as random  forest27,28,32. Machine-learning techniques, such as RF and SVR, could 
be an asset in detecting the nonlinear relationship between pasture nutritive value and canopy reflectance and 
circumventing the overfitting and multicollinearity  problem32,37. In this study, the SVR models slightly out-
performed the RF models, presumably because SVR has shown better generalization performance when the 
training datasets are  small31, as observed in this study. While RF works by ensembling multiple trees, which can 
lead to overfitting when data are limited, SVR’s focus on maximizing the margin can lead to more stable results 
on smaller datasets. Moreover, SVR models have been reported to perform better in scenarios where feature 
importance is unclear, such as this study (Figs. 2 and 4). While RF can compute feature importance, understand-
ing their complex interactions can be challenging. SVR can select important features to maximize the margin, 
leading to a clearer understanding of feature interactions in the  model30,31.

This study was managed with continuous stocking using put-and-take technique, whose ground data were 
collected monthly, and management decisions were reasonably made once or twice per month. This grazing 
management allowed for a gap between field collection and image availability of ± 10 days, which allowed 
adequate data collection free from cloud cover, which is the main limitation of satellite optical sensors. However, 
Bretas et al.19 observed that the predictive performance of the models was enhanced when the maximum interval 
between image acquisition and field observation was restricted to one day instead of five days. This information 
gap is significant in rotational stocking, where the impact of changing pasture conditions occurs in the short term 
during the growing season. Furthermore, previous studies suggested that the prediction ability and robustness of 
the models for estimating vegetation parameters may be season-specific27,38. Therefore, future studies aggregating 
data from the dry season should be performed to test and expand the applicability of the models in all seasons.

This study demonstrates the potential of estimating pasture leaf FM, CP and NDF content of tropical pastures 
with moderate to high precision and accuracy using Sentinel-2 satellite images in tandem with machine learning 
algorithms. Such information has promising potential to improve the monitoring of the quantity and nutritive 
value of tropical pastures, accounting for their spatial and temporal variability.

Table 2.  Prediction precision and accuracy of chemical composition parameters (crude protein and 
neutral detergent fiber content) of Marandu palisadegrass pastures using random forest and support vector 
regression models. The number in parenthesis represents a standard error among fivefold cross-validation. 
Bold represents the best models. RMSPE root mean square prediction error, CCC  concordance correlation 
coefficient, RF random forest, SVR support vector regression, CP crude protein, NDF neutral detergent fiber. 
# Bd: only data from spectral bands; see Table 3 for more information; Mt: meteorological data; maximum 
temperature  (Tmax), minimum temperature  (Tmin), average temperature  (Tavg), relative humidity (RH), number 
of rainy days within a month (ND), rainfall; VI: only data from vegetation indices; see Table 4 for more 
information.

Variables

Input  features#

Linear regression

CCC R2 RMSPE

Model RF SVR RF SVR RF SVR

CP (g/g DM)

Bd 0.50
(0.07)

0.64
(0.06)

0.03
(0.002)

0.03
(0.002)

0.64
(0.05)

0.79
(0.04)

Bd + Mt 0.58
(0.09)

0.66
(0.11)

0.03
(0.002)

0.03
(0.004)

0.70
(0.06)

0.80
(0.07)

VI 0.48
(0.04)

0.61
(0.10)

0.03
(0.001)

0.03
(0.003)

0.63
(0.03)

0.77
(0.07)

VI + Mt 0.51
(0.12)

0.65
(0.09)

0.03
(0.003)

0.03
(0.003)

0.66
(0.07)

0.80
(0.05)

Bd + VI 0.55
(0.05)

0.58
(0.08)

0.03
(0.001)

0.03
(0.002)

0.67
(0.03)

0.75
(0.05)

Bd + VI + Mt 0.57
(0.10)

0.64
(0.07)

0.03
(0.002)

0.03
(0.002)

0.70
(0.06)

0.80
(0.04)

NDF (g/g DM)

Bd 0.29
(0.07)

0.36
(0.08)

0.05
(0.004)

0.05
(0.003)

0.47
(0.07)

0.54
(0.06)

Bd + Mt 0.49
(0.07)

0.57
(0.08)

0.04
(0.004)

0.04
(0.003)

0.65
(0.06)

0.73
(0.06)

VI 0.27
(0.07)

0.39
(0.07)

0.05
(0.003)

0.05
(0.003)

0.45
(0.07)

0.58
(0.05)

VI + Mt 0.47
(0.09)

0.56
(0.09)

0.04
(0.004)

0.04
(0.005)

0.64
(0.07)

0.73
(0.07)

Bd + VI 0.33
(0.04)

0.40
(0.08)

0.05
(0.002)

0.05
(0.003)

0.48
(0.04)

0.59
(0.06)

Bd + VI + Mt 0.49
(0.07)

0.57
(0.10)

0.04
(0.003)

0.04
(0.005)

0.65
(0.05)

0.73
(0.07)
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Methods
Study area
The study was carried out at Sao Paulo State University (UNESP), Jaboticabal, Sao Paulo State, Brazil (21°15′22″ S 
latitude, 48°18′58″ W longitude and 595 m elevation). The climate is humid subtropical with dry winters and 
warm summers (Aw), according to Köppen’s classification, and the soil is classified as a typical Hapludox with 
a clayey  texture39.

The site comprised 44.2 ha of pastures of Marandu palisade grass (Urochloa brizantha Hochst ex A. Rich Stapf 
cv. Marandu). From 2016 to 2019, the grazing site comprised 33 paddocks ranging from 0.5 to 2.2 ha each and was 
fertilized with different doses of nitrogen (N) in the form of urea (0, 90, 180, and 270 kg/ha) or ammonium nitrate 
(0, 75, and 150 kg/ha). In 2020, three paddocks were subdivided so that the grazing site comprised 36 paddocks 
ranging from 0.5 to 2.2 ha each, which received different doses of N in the form of urea (150 kg/ha), ammonium 
nitrate (0, 75 and 150 kg/ha) or ammonium sulfate (150 kg/ha; Fig. 5). The total amount of fertilizer was applied 
throughout the growing season into three applications of the same amount. We declare that no permissions or 
specific requirement to collect, analyze and work with Urochloa brizantha are required by local and national 
Brazilian authorities. Experimental research and field study on plant Urochloa brizantha, including the collection 
of plant material, complied with relevant institutional, national, and international guidelines and legislation.

The evaluated periods were from January to April in 2016–2020 during the pasture growing season. The 
mean annual rainfall was 1244 ± 186 mm, and the mean ambient temperature was 23 ± 0.3 °C. The meteorologi-
cal records (Table 3) during the evaluated periods were acquired from a local meteorological station located 
approximately 500 m from the study area. This study was managed with continuous stocking using put-and-
take  technique40 to maintain a canopy height of 25 cm during the rainy season. The number of animals in each 

Figure 3.  Scatterplots of the predicted versus observed values of crude protein content (CP) using the best 
random forest (RF) (a) and support vector regression (SVR) (b) models and neutral detergent fiber (NDF) using 
the best RF (c) and SVR (d) models. DM = dry matter.
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paddock was adjusted weekly, considering the maximum amplitude of 8% variation in canopy height (23–27 cm). 
The stocking rate in the paddocks varied from 1.9 to 6.5 animal units per ha (1 animal unit AU = 450 kg body 
weight). The animal procedures of this study were reviewed and approved by the São Paulo State University 
Animal Care and Use Committee guidelines and the National Council of Animal Experimentation Control 
(protocol approval numbers 12703/15, 7979/18, 11343/19). The procedures in this study are in accordance with 
ARRIVE guidelines.

Detailed procedures of the grazing management of the study area for each year, as well as the field data col-
lection, are comprehensively described in Delevatti et al.41, Ongaratto et al.42, Leite et al.43 and Fonseca et al.44.

Figure 4.  Feature importance of the best models of (a) crude protein and (b) neutral detergent fiber of 
Marandu palisadegrass pastures.  Tmax, maximum temperature;  Tmin, minimum temperature;  Tavg, average 
temperature, RH_p, relative humidity; ND number of rainy days within a month; Isolat, insolation; Blue (B2); 
Green (B3); Red (B4); RE1, Red Edge 1 (B5); RE2, Red Edge 2 (B6); RE3, Red Edge 3 (B7); NIR, Near Infrared 
(B8); NIR8A, Narrow NIR (B8A); SWIR1, Short Wave Infrared 1 (B11); SWIR2, Short Wave Infrared 2 (B12).
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Field data collection
To quantify the dry FM, four samples per paddock were collected by clipping all plants at the soil level within 
the perimeter of a circular area of 0.25  m2. Samples were then separated into green leaves, dead material, and 
stem + sheath and dried at 55 °C to a constant weight to estimate total forage DM per hectare. Field sampling 
was performed periodically at intervals of 28 days. Pasture chemical composition was assessed by analyzing the 
hand-plucked pasture  samples45 for N (46; method 984.13) and  NDF47 content. The CP content was estimated 

Figure 5.  Distribution of paddocks and their nitrogen fertilization in the study area in (A) from 2016 to 2019 
and (B) in 2020. 1 ha = 10.000  m2. The map was generated with the QGIS v.3.28.10 software (https:// qgis. org/ en/ 
site/).

Table 3.  Meteorological data during periods of field data collection. Data obtained from the meteorological 
station of the Faculty of Agricultural and Veterinary Sciences, UNESP, Jaboticabal campus. Tmax. maximum 
temperature, Tmin. minimum temperature, Tavg. average temperature, RH relative humidity, ND number of rainy 
days within the month.

Month Tmax. (°C) Tmin. (°C) Tavg. (°C) RH (%) Rainfall (mm) ND Insolation (h)

2016

 Jan 29.9 20.6 24.4 82.0 449.4 18 163.5

 Feb 31.9 21.1 25.2 78.8 201.0 14 180.3

 Mar 31.4 20.2 24.6 79.3 132.9 17 209.0

 Apr 31.5 18.0 24.0 65.6 9.1 2 267.6

2017

 Jan 30.2 20.6 24.1 80.2 217.7 19 144.7

 Feb 32.0 20.0 25.0 72.5 118.3 8 236.8

 Mar 31.9 19.3 24.4 71.7 126.3 11 247.3

 Apr 30.0 17.9 22.8 74.7 135.7 9 217.1

2018

 Jan 30.9 20.3 24.2 78.7 270.9 21 168.2

 Feb 30.5 19.7 24.0 77.4 86.8 12 186.4

 Mar 32.2 20.6 25.5 73.9 55.7 10 246.8

 Apr 30.8 17.3 23.2 65.9 11.0 3 238.2

2019

 Jan 32.7 20.9 26.1 69.2 148.1 11 260.6

 Feb 30.9 20.4 24.4 77.5 282.6 17 160.7

 Mar 31.0 20.1 24.5 76.6 115.2 12 213.2

 Apr 30.6 19.0 23.9 73.4 97.6 6 228.2

2020

 Jan 31.6 20.5 24.8 79.9 350.4 20 208.0

 Feb 29.8 20.3 24.0 82.9 181.1 18 123.6

 Mar 31.4 18.5 23.9 70.6 101.9 6 259.1

 Apr 30.1 16.1 22.5 67.2 32.6 1 257.0

https://qgis.org/en/site/
https://qgis.org/en/site/
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by multiplying the N content by 6.25. Descriptive statistics of the field data collected to develop the models are 
depicted in Table 4.

Remote sensing data collection and preprocessing
All paddocks of the study area were geo-referenced to the WGS84 UTM zone 22 N map projection using an open-
source image processing package (QGIS, http:// www. qgis. org), and the vector layer (shapefile) was uploaded to 
the Google Earth Engine platform (GEE;48).

Using the GEE cloud platform, the spectral reflectance was obtained from the Sentinel-2 multispectral instru-
ment product. Images were corrected to be cloud- and shadow-free over the study area. The maximum difference 
between field and image collection was set to 10 days. The average spectral reflectance of each Sentinel-2 band 
within each paddock was extracted for each image used. The average spectral reflectance of each paddock was 
then correlated with the data obtained in the field on dates matching the image acquisition date for attribute 
predictions. The bands within the Sentinel-2 satellite used in this study are depicted in Table 5.

Reflectance values of spectral bands were then used to calculate the vegetation indices (VI), which can reflect 
vegetation growth, physiological characteristics, and reduction in soil background effects (Table 6).

Model development
Models based on SVR and RF machine learning algorithms were developed to estimate the dry FM, dry leaf FM, 
dry green (leaf + stem) FM, CP, and NDF content. The systematic workflow of this study is represented in Fig. 6.

The input features were divided into three categories: meteorological data (Mt; see Table 3), spectral reflec-
tance of bands (Bd; see Table 5), and vegetation indices (VI; see Table 6). The potential of solely using the spectral 
bands or the representativeness and importance of VI, with or without meteorological data, was explored in the 
models as follows: Bd, only data from spectral reflectance of bands; Bd + Mt, combined spectral reflectance of 
bands and meteorological data; VI, only data from vegetation indices; VI + Mt, combined vegetation indices 
and meteorological data; Bd + VI + Mt, combined spectral reflectance of bands, vegetation indices and mete-
orological data.

Table 4.  Descriptive statistics of the forage mass and chemical composition parameters of Marandu palisade 
grass pastures. S.D. standard deviation, Min minimum value, Max maximum value, DM dry matter, FM, forage 
mass, CP crude protein, NDF neutral detergent fiber, Green, Leaf + stem.

Variables Count Mean S.D Min Max

Forage mass parameters

 Forage DM (g/g DM) 508 0.32 0.0897 0.12 0.62

 Dry forage mass (g/m2) 508 631 122 289 1023

 Dry leaf FM (g/m2) 508 162 57 46 305

 Dry green FM (g/m2) 508 331 104 87 547

 Leaf proportion (g/g DM) 508 0.26 0.078 0.12 0.45

 Stem proportion (g/g DM) 508 0.26 0.073 0.12 0.47

 Dead material proportion (g/g DM) 508 0.45 0.12 0.18 0.75

Chemical composition parameters

 CP (g/g DM) 399 0.129 0.0458 0.0285 0.199

 NDF (g/g DM) 399 0.628 0.0576 0.448 0.750

Table 5.  Sentinel-2 bands used in this study.

Band Band name Central wavelength (nm) Spatial resolution (m)

B2 Blue 490 10

B3 Green 560 10

B4 Red 665 10

B5 Red Edge 1 (RE1) 705 20

B6 Red Edge 2 (RE2) 740 20

B7 Red Edge 3 (RE3) 783 20

B8 Near Infrared (NIR) 842 10

B8A Narrow NIR (NIR8A) 865 20

B11 Short Wave Infrared (SWIR1) 1610 20

B12 Short Wave Infrared (SWIR2) 2190 20

http://www.qgis.org
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The database was randomly split into training (80%) and testing (20%) datasets. The training dataset was used 
to build the models following the following steps: preprocessing data, selection of variables, and optimization 
of hyperparameters. After all steps, the testing dataset was applied to the final models for evaluation (Fig. 6).

Random Forest Model: The RF algorithm is an ensemble of decision trees based on the bagging technique. 
For regression problems, the RF algorithm grows many decision trees (forest), and the final prediction value 
corresponds to the averaged output of all individual decision trees. Each tree in the forest is independently con-
structed during the training process using a bootstrap sample (sample with replacement) of the training data. 
RF modeling was performed using R software’s ‘randomForest’ package (version 4.2.2). Developing machine 
learning algorithms requires a hyperparameter tuning process that maximizes the predictive accuracy of the 
models, whose best values depend on the research  problem49. In this study, the optimal values of hyperparameters 
mtry (number of predictor variables randomly sampled as candidates at each split) and ntree (number of trees) 
for each model were selected according to the accuracy estimation in the training dataset using the grid-search 
method. In the tuning process, the candidate values ranged from 3 to 10 (square root of the total number of 
variables) for mtry and from 50 to 200 for ntree. The hyperparameters used in the final models are depicted in 
the supplementary material (Supplementary Table S1 online). Feature importance was computed from the index 
“Gini importance” provided by ‘randomForest’ package built-in function.

Table 6.  Vegetation indices used in the estimation models. #  www. index datab ase. de.

Vegetation  index# Acronym Formula

Canopy Chlorophyll Absorption Ratio Index CCCI ((NIR8A−RE1)/(NIR8A+RE1))
((NIR−RED)/(NIR+RED))

Chlorophyll Index Green CIgreen (NIR/GREEN)− 1

Chlorophyll Index Red Edge CIredge (NIR8A/RE1)− 1

Enhanced Vegetation Index EVI 2.5×
(NIR−RED)

(NIR+6×RED+7.5×BLUE)+1

Normalized Green Difference Vegetation Index GDVI (NIR−GREEN)
(NIR+GREEN)

Green Leaf Index GLI (2×GREEN−RED−BLUE)
(2×GREEN+RED+BLUE)

Leaf Chlorophyll Index LChloI (NIR−RE1)
(NIR+RED)

Normalized Burn Rate NBR (NIR−SWIR2)
(NIR+SWIR2)

Normalized Difference Vegetation Index NDVI (NIR−RED)
(NIR+RED)

NDVI 8A NDVI8A (NIR8A−RED)
(NIR8A+RED)

Optimized Soil Adjusted Vegetation Index OSAVI (1+ 0.16)×
(NIR−RED)

(NIR+RED+0.16)

Simple Ratio SR NIR

RED

Simple Ratio Red Edge SRredge NIR8A

RE1

Figure 6.  Systematic workflow of model development. SVR, support vector regression. RF, random forest.

http://www.indexdatabase.de
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Support Vector Regression Model: SVR is an application of a support vector machine, which maps the input 
samples to a high-dimensional feature space using a nonlinear mapping  function50, constructs a regression equa-
tion in the high-dimensional space, and then transforms the regression analysis into a quadratic programming 
problem, thus avoiding easily trapping local optima. In this study, the Gaussian radial basis function (RBF) kernel 
function, which has two hyperparameters (gamma and cost), was used as the core tool of SVR. The optimal val-
ues of hyperparameter cost and gamma for each model were selected using the ‘tune’ function by a grid-search 
method. In the tuning process, the candidate values ranged from 0.1 to 20 for cost and 0.001 to 1 for gamma. 
The hyperparameters in the final models are depicted in the supplementary material (Supplementary Table S2 
online). SVR modeling was performed using the ‘e1071’ package of R software (version 4.2.2).

Model evaluation
This study used a fivefold cross-validation method to evaluate the selected model because an independent evalu-
ation dataset was unavailable. For cross-validation, the dataset was randomly divided into five subsets. For each 
run, four subsets were used to train the model selected in the first step, while the remaining subsets were used 
for prediction. The average predictive power for five iterations (fivefold cross-validation) was recorded as the 
final performance.

In the evaluation process, model adequacy was evaluated according to  Tedeschi51. The precision and accuracy 
of all developed models were evaluated using the coefficient of determination  (R2), root mean square prediction 
error (RMSPE), and concordance correlation coefficient (CCC). The CCC was classified as negligible (0.00–0.30), 
low (0.30–0.50), moderate (0.50–0.70), high (0.70–0.90), and very high (0.90–1.00). Residual analyses were 
also conducted to assess the mean and slope biases of the models. All statistical analyses for model adequacy 
were performed with R software (version 4.2.2). Statistical significance was declared at P < 0.05, and a trend was 
considered as 0.05 ≤ P < 0.1.

Data availability
The data presented in this study are fully available in this article and the Supplementary Information.
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