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Putative climate adaptation 
in American pikas (Ochotona 
princeps) is associated 
with copy number variation 
across environmental gradients
Bryson M. F. Sjodin 1, Danielle A. Schmidt 1, Kurt E. Galbreath 2 & Michael A. Russello 1*

Improved understanding of the genetic basis of adaptation to climate change is necessary for 
maintaining global biodiversity moving forward. Studies to date have largely focused on sequence 
variation, yet there is growing evidence that suggests that changes in genome structure may be 
an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an 
alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but 
previous work has been limited to single nucleotide polymorphism based analyses within a fraction 
of the species range. Here, we investigated the role of copy number variation underlying patterns 
of local adaptation in the American pika using genome-wide data previously collected across the 
entire species range. We identified 37–193 putative copy number variants (CNVs) associated with 
environmental variation (temperature, precipitation, solar radiation) within each of the six major 
American pika lineages, with patterns of divergence largely following elevational and latitudinal 
gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or 
CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, 
and DNA repair. Some of these genes have been previously linked to putative high elevation and/or 
climate adaptation in other species, suggesting they may serve as important targets in future studies.
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The complex interplay between environmental factors and local adaptation plays an essential role in the genera-
tion and maintenance of  biodiversity1–4. Typically, genetic studies on adaptation have focused on DNA sequences 
(single nucleotide polymorphisms; SNPs), given that point mutations were thought to be the predominant source 
of selectable  variation5,6; however, genomes can also vary in their physical structure across species, populations, 
and even  individuals7–12. These physical variations, collectively known as structural variants, include insertions 
or deletions of single or large numbers of nucleotides, duplications of genes or entire regions of the genome, 
inversions or changes in polarity of chromosomes, and translocations both within and among chromosomes. 
Structural variants can be significant factors in shaping species divergence and local  adaptation10,12–16. Early 
comparative genomics research determined that chromosomal inversions were linked to speciation in Dros-
ophila8. More recent work is focused on the eco-evolutionary impact of structural variation within natural 
 populations12,16. For instance, Arostegui et al.17 found that a chromosomal inversion is likely responsible for 
ecotype differentiation in rainbow trout. Likewise, Cayuela et al.13 found significant genotype-environment 
associations (GEA) among sympatric capelin lineages in the North Atlantic Ocean linked to chromosomal rear-
rangements and hypothesized that they were associated with adaptation to environmental conditions at spawning 
sites. These examples and others demonstrate how investigations of structural variants can provide important 
and novel insights into local adaptation.

Copy number variants (CNVs) span different classes of structural variants (e.g., insertions/deletion, dupli-
cations, transposable elements) that vary in the number of copies among  individuals18. Previous studies have 
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revealed that signal at CNVs can differ relative to SNPs, providing important insights into population differentia-
tion and evolutionary history, including the genetic basis of adaptation (reviewed in Mérot et al.10). Importantly, 
recent studies have effectively detected and analyzed CNVs from reduced representation genome sequencing 
(e.g., restriction-site associated DNA sequencing;  RADseq19), providing a cost-effective approach for investigating 
the role of structural variation in a range of non-model organisms, including American  lobster20,  capelin21, and 
Columbia spotted  frog22. Moreover, these analytical approaches can now be retrospectively applied to the wealth 
of publicly available RADseq data to investigate the potential role of CNVs underlying patterns of ecological 
and evolutionary  relevance23.

The American pika (Ochotona princeps) is a small lagomorph distributed across a large latitudinal gradient 
in western North America, from New Mexico (USA) to central British Columbia (Canada)24,25. Pikas are alpine 
specialists typically found at elevations > 2000 m, although their full distribution spans an elevational gradient 
from 0 to 4000  m25–27. These environmental gradients serve as an excellent system for investigating local adapta-
tion, as variations in genomic architecture can be directly correlated to differences in environmental variables 
including temperature, precipitation, and solar  radiation1,28. Furthermore, American pikas can also be separated 
into six geographically isolated evolutionary  lineages29, allowing for investigations of potentially independent and 
parallel histories of adaptation within the same system. While previous studies have found genetic evidence for 
local adaptation in the American pika on regional  scales30–32 and at the whole genome  level33,34, range-wide adap-
tation has not been explored. Moreover, these previous studies focused solely on sequence variation; investigation 
of structural variation may provide a novel, yet complementary, perspective on local adaptation in this species.

To complement past and on-going studies of sequence variation, we investigated the role of CNVs underly-
ing patterns of local adaptation in the American pika using RADseq data previously collected for 36 sites across 
the species  range29. We used a combination of partial redundancy analysis and linear mixed-effect modelling to 
identify loci putatively associated with temperature, precipitation, and solar radiation within and across all six 
major American pika lineages. We subsequently examined the spatial distribution of putatively adaptive varia-
tion and population differentiation across range-wide latitudinal and elevational gradients. Finally, we annotated 
putatively adaptive variants and identified target genes with potential functional impacts on local adaptation.

Methods
Data and study area
We used previously generated RADseq  data29 collected from 348 individuals sampled from 36 localities across the 
entire American pika distribution spanning all six major lineages: (NRM) Northern Rocky Mountains; (CRM) 
Central Rocky Mountains; (SRM) Southern Rocky Mountains; (CSC) Cascades; (SN) Sierra Nevada; and (CU) 
Central Utah (Fig. 1; Table S1); a subset (n = 173) of these samples were used in Galbreath et al.35. We removed 
site 18 from the NRM lineage as this site displayed significant admixture between the NRM and CRM  lineages29.

Initial SNP calling and filtering
Raw sequencing data from all 11 RADseq libraries were de-multiplexed using the process_radtags module of 
Stacks v2.5736; during this stage, reads were trimmed to 94 bp to remove low-quality bases at the end of the 
read. De-multiplexed sequences were then aligned to the American pika reference genome assembly (OchPri4.0; 
GenBank accession ID: GCA_014633375.133) using BWA-mem v2.2.137 under default parameters. The aligned 
sequence data was then processed using the gstacks module of Stacks v2.5736 to generate a catalog of RADtags 
for downstream analyses.

Due to low range-wide  heterozygosity38,39 that interfered with downstream copy number variant (CNV) detec-
tion (see Discussion for further explanation), we called SNPs independently within each lineage from the aligned 
sequence data using Stacks v2.5736 retaining polymorphic, autosomal SNPs present in ≥ 70% of all individuals 
within that lineage. This design also allowed us to assess patterns of parallel evolution by considering each line-
age as a separate pseudoreplicate. We further filtered loci to only retain genotypes with a genotyping quality ≥ 20 
using VCFtools v0.1.1540 and only retained loci present in ≥ 2 individuals within each sample site. Following 
Dorant et al.20, we performed a final filtering step to retain loci which genotyped in ≥ 70% of individuals within 
a sample site (allowing for 10% of populations to fail this threshold; maximum of 2 populations per lineage) and 
had a minimum minor allele sample (i.e., the minimum number of samples possessing the minor/rare allele) of 
5% of individuals within a lineage (rounded up to the nearest individual) across all individuals within a lineage 
using the 05_filter_vcf_fast.py script downloaded from https:// github. com/ enorm andeau/ stacks_ workf ow (see 
Table S1 for a summary of filtering values). Also during this step, individual genotypes at a locus with a total read 
depth < 4 (i.e., minimum allele depth) were reclassified as missing data following Dorant et al.20.

Putative CNV identification
We used the HDplot method to detect duplicated SNPs representing putative CNVs from the above dataset fol-
lowing methods initially described by McKinney et al.41 and modified by Dorant et al.20. Putatively duplicated loci 
were identified using a combination of four parameters calculated for each locus: proportion of heterozygotes; 
inbreeding coefficient; median allele ratio for heterozygotes; and proportion of rare homozygotes. Each param-
eter was calculated using the 08_extract_snp_duplication_info.py script downloaded from https:// github. com/ 
enorm andeau/ stacks_ workf ow. We plotted the four parameters against each other and used graphical cut-offs to 
categorize loci based on their position in the distribution using a modified 09_classify_snps.R script downloaded 
from https:// github. com/ enorm andeau/ stacks_ workf ow. Putative CNVs were those loci categorized as dupli-
cated, highly diverged, or had a high depth of coverage following Dorant et al.20 and Cayuela et al.21 (see Table S2 
for summary of graphical cut-offs). We then extracted read depth for each putative CNV to use as a proxy for 
copy  number20,41 using VCFtools v0.1.1540. To account for differences in sequencing effort across individuals, 

https://github.com/enormandeau/stacks_workflow
https://github.com/enormandeau/stacks_workflow
https://github.com/enormandeau/stacks_workflow
https://github.com/enormandeau/stacks_workflow


3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8568  | https://doi.org/10.1038/s41598-024-59157-6

www.nature.com/scientificreports/

we normalized read counts using a trimmed mean of M-values method using the edgeR R-package42 following 
Dorant et al.20. Missing genotypes for an individual were imputed as the mean read depth for that locus across 
individuals within the same sample site.

Genotype-environment association analyses
We performed several genotype-environment association (GEA) analyses to identify CNVs with putative links 
to climate adaptation. For this, we downloaded climate data for 27 variables from  ClimateNA43 (Table S3) and 
separated them into three climate variable categories: temperature (n = 16); precipitation (n = 6); and solar radia-
tion (n = 5). We separated variables into categories to assess the relative impact of temperature, precipitation, 
and solar radiation independently and to minimize redundancy across categories due to multicollinearity. To 
further reduce multicollinearity, we calculated correlation coefficients between each pair of climate variables 
within each variable category; for each pair with |r|> 0.70, we removed the variable with largest mean absolute 
correlation using the findCorrelation function as part of the caret R-package44.

We first used partial redundancy analysis (pRDA) to detect CNVs with climate associations separately for 
each climate variable category using the vegan R-package45. Climate variables were assigned as predictors with 
normalized read depth as the response. Due to sequencing batch effects detected in the normalized read depth 
matrices (Figure S1), we included the sequencing library ID for each individual as a covariate. To validate the 
absence of multicollinearity, we calculated the variance infation factor (VIF) for each predictor variable and 
removed those with VIF >  1046. We assessed model significance using global and marginal analyses of variance 
(ANOVAs) with 1000 permutations and retained all significant (p ≤ 0.05) axes for downstream analysis. In the 
event of no significant axes, only the first RDA axis was retained for outlier detection. Climate-associated CNVs 
(i.e., outlier loci) were then classified as those with a loading > 2.25 standard deviations from the mean loading 
along each retained RDA axis (p ≤ 0.01)47.

Figure 1.  Sampling sites and lineage delineations (thick black lines) for the American pika (Ochotona princeps). 
Shaded regions indicate the approximate American pika distribution as modified from Galbreath et al.35.
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We also used linear mixed-effect models (LMM) to detect climate-CNV associations for each climate variable 
category using the lme4 R-package48. We used log-transformed normalized read depth as the response variable 
and the same climate variables as used for the pRDA as fixed effects; we included the sequencing library ID as a 
random intercept to account for batch effects. We assessed significance of each climate variable using the likeli-
hood ratio test (LRT) as implemented by the drop1 function in the lmerTest R-package49. To control for false 
positives, we corrected p-values using the Benjamini–Hochberg false discovery rate method with a corrected 
significance threshold of α = 0.05. As a final step to reduce false positives, we retained only those loci detected as 
outliers in both the LMM and pRDA and classified these as “robust outliers”. Finally, we re-ran the pRDAs using 
the methods above with only the robust outliers to estimate the amount of variation explained by the climate 
variables for these loci.

Genetic differentiation and adaptive divergence
We estimated pairwise genetic differentiation using the variant fixation index VST

50 via a custom R function, 
which is analogous to the estimator of population differentiation θ51, and is commonly used to identify differ-
entiated CNVs between  populations20,50. Using the robust outliers for each climate category, VST estimates were 
calculated on a per locus basis and averaged across each pair of sites to obtain mean pairwise estimates. We 
assessed significance using a bootstrap resampling procedure implemented in the boot R-package52 for mean 
pairwise VST estimates across 10,000 replicates.

We also examined patterns of adaptive divergence within lineages using a hierarchal clustering approach. 
Using the robust outliers for each climate category, we generated a matrix of pairwise genetic distance by calcu-
lating Bray–Curtis distances for each pair of individuals using the ecodist R-package53 then calculated the mean 
distance for each pair of sites. Using this distance matrix as an input, we performed a hierarchal clustering analysis 
employing the Ward’s minimum variance  method54 using the hclust R-function. The resulting dendrograms 
were bootstrapped with 10,000 replicates to assess robustness using boot.phylo function in the ape R-package55.

To assess the impact of geography on adaptive divergence, we performed linear regressions on each robust 
locus with either elevation or latitude as the explanatory variable and normalized read depth as the response. 
Linear regressions were performed in R using the base  packages56.

Annotation of putatively adaptive variants
To assess the putative functional implications of climate-associated CNVs, we annotated all robust outliers using 
the Ensembl Variant Effect Predictor v103.157 and identified CNVs found within protein-coding genes. We then 
performed a literature search to explore the function of genes that had linked CNVs from across multiple line-
ages, were linked to multiple CNVs, or were linked to CNVs with significant associations to multiple climate 
variable categories.

Results
SNP identification and CNV detection
Initial SNP calling resulted in 359,569–1,170,051 loci genotyped per lineage (mean = 784,092 loci) with 
60,383–150,978 loci remaining post-filtering (mean = 94,428 loci; Table S1). From the filtered datasets, we iden-
tified between 2208 and 9585 putative CNVs per lineage with a mean sequencing depth of 11.0x ± 3.62 SD 
(ranging from 4.3x  to 118.7x) for downstream analysis (Table S1). Mean missing data were 4% ± 4.2 SD per 
locus (range: 0–30%).

GEA analyses and robust outliers
After removing colinear variables, we retained two to three variables within each climate variable category within 
each lineage (Table S4). For the pRDAs, all models were significant (p < 0.05) for all climate variable categories 
and all lineages except for the solar radiation model in the CU lineage (Table S4). Each RDA had at least one 
significant axis (p < 0.05) except for the CRM precipitation model (pRDA1 = 0.072), the SRM solar radiation model 
(pRDA1 = 0.120) and the CU solar radiation model (pRDA1 = 0.233); for these models, we still retained the first pRDA 
axis for outlier detection. The temperature model explained the most variation within each lineage (adjusted 
r2 = 0.018–0.064) except for SRM (adjusted r2 = 0.015), which had the precipitation model explaining the most 
variation (adjusted r2 = 0.017). We detected between 35 and 468 climate-associated CNVs for each of the pRDAs 
after removing duplicate loci (Table S4; Figs. S2–S7).

For the LMMs, we detected between 46 and 216 unique loci associated with at least one climate variable within 
each lineage (Tables S5–S10; Figs. S2–S7). We found the most significant associations with temperature for the 
NRM (79 unique loci), CSC (139 unique loci), and CU (116 unique loci) lineages, while precipitation had the 
most for the SRM (29 unique loci) and SN (112 unique loci) lineages. Solar radiation had the largest number of 
outlier loci for the CRM lineage (28 unique loci; Tables S5–S10; Fig. S2–S7).

We found from 37 to 193 total robust outliers detected by both methods within each lineage (Figs. S2–S7). 
Repeating the pRDAs using only the robust outliers for each climate variable category resulted in substantially 
greater variation explained by climate (between 19.8 and 59.1%; Table 1; Figs. 2, 3, 4). All models were highly 
significant across all climate variable categories and lineages (p < 0.001; Table 1; Figs. 2, 3, 4).

Genetic differentiation and adaptive divergence
During preliminary analyses, we saw minimal to no evidence of population structure (Figure S1) and only 
weak population differentiation (all pairwise VST < 0.07) within each lineage using all putative CNVs. Using the 
robust outliers, we found consistent elevational and latitudinal patterns of population structure and population 
differentiation across analyses, though with slight differences between lineages and climate variable categories 
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(Figs. 2, 3, 4, 5). Within the NRM lineage, we detected two main population clusters that largely followed lati-
tudinal gradients (Figures S8–S10), though there were also weak clinal trends between normalized read depth 
of the top correlated outlier loci and elevation (Figures S11–S13). Population structure was less apparent within 
the CRM lineage, especially for the temperature (Fig. 2) and solar radiation (Fig. 4) outliers, though there were 
noticeable elevational patterns among precipitation outliers (Fig. S12). For the SRM lineage, we saw consistent 
patterns in population structure between temperature (Fig. 2) and precipitation (Fig. 3), with slightly different 
clustering for solar radiation (Fig. 4); however, we did see a distinct pattern between elevation (Figs. S11–S13) 
and latitude (Figures S8–S10) and normalized read depth. Temperature outliers seemed to be strongly correlated 
with elevation and latitude in the CSC lineage, while precipitation outliers seemed to be primarily associated with 
elevation, and radiation outliers followed latitudinal gradients (similar to temperature; Fig. 5). Structure within 
the SN lineage followed both elevational and latitudinal gradients for temperature and solar radiation outliers 
(Figs. 2, 4, 5); there was still distinct clustering by sample site using the precipitation outliers (Fig. 3), though 
there was no consistent pattern between either latitude or elevation and read depth (Figs. S9, S12). Population 
structure and differentiation most clearly followed elevational and latitudinal gradients in the CU lineage for all 
variable categories (Figs. 2, 3, 4, 5).

Annotation of adaptive variants
We found that 207 of 508 unique robust outliers were located within introns, exons, or untranslated regions of 
protein-coding genes, with hits to 158 unique genes (Table S11). Temperature outliers had the most gene hits 
(n = 85 unique), followed by precipitation (n = 65 unique) and solar radiation (n = 55). Of these genes, 31 had 
associations across climate variables, 25 had associations across multiple CNVs, and five had associations across 
multiple lineages (Table S11). Additionally, one gene (CHCHD3) that had two associated CNVs was identi-
fied independently in both the NRM and CU lineages (Table 2, Table S11). Following our literature review, we 
identified 12 genes that had putative implications for local adaptation including those with functions regard-
ing: mitochondrial structure and function (i.e., CHCHD3, FBXL3, MCU); immune response (i.e., DOCK1, 
HPSE2, ONECUT1); transcription (i.e., MED12L); hemoglobin structure and function (i.e., HPSE2); response 
to hypoxia (i.e., LOC101529014, FBXL3); olfaction (i.e., LOC101517538, LOC101532007); and DNA repair (i.e., 
LOC101529014, HUS1, MACROD1; Table 2).

Discussion
Structural variation and local adaptation
Various environmental factors can serve as drivers of local adaptation. For example, Muir et al.58 found that tem-
perature significantly impacted larval period and growth rate in the common frog (Rana temporaria) distributed 
over an elevational gradient. Precipitation has been shown to be one of the most significant drivers of adaptation 
and natural selection on both continental and global  scales59,60. High levels of solar (UV) radiation have led to 
rapid, convergent evolution of genes related to DNA repair in species residing on the Qinghai-Tibetan Plateau, 
the highest plateau on the  planet28. Studying both the genetic and phenotypic impacts of environmental factors 

Table 1.  Summary values for redundancy analysis (RDA) and ANOVA performed on robust outlier loci for 
six American pika (Ochotona princeps) lineages. Robust outliers (Nrobust) were those loci detected via RDA and 
linear mixed modelling.

Lineage Category Nrobust r2 r2
adjusted df F p

NRM

Temperature 53 0.256 0.229 3 8.621 0.001

Precipitation 26 0.228 0.210 2 11.175 0.001

Solar radiation 39 0.224 0.206 2 10.777 0.001

CRM

Temperature 13 0.271 0.245 3 9.206 0.001

Precipitation 9 0.267 0.252 2 14.163 0.001

Solar radiation 15 0.205 0.176 3 6.506 0.001

SRM

Temperature 17 0.321 0.299 2 11.244 0.001

Precipitation 23 0.370 0.351 2 14.044 0.001

Solar radiation 8 0.337 0.314 2 11.489 0.001

CSC

Temperature 64 0.269 0.230 4 6.255 0.001

Precipitation 7 0.217 0.198 2 9.548 0.001

Solar radiation 31 0.198 0.178 2 8.732 0.001

SN

Temperature 62 0.383 0.351 3 9.834 0.001

Precipitation 90 0.280 0.256 2 9.417 0.001

Solar radiation 41 0.376 0.357 2 14.372 0.001

CU

Temperature 13 0.591 0.562 3 11.929 0.001

Precipitation 33 0.507 0.486 2 12.807 0.001

Solar radiation 90 0.515 0.496 2 13.845 0.001
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Figure 2.  Adaptive divergence of robust temperature outliers in the American pika (Ochotona princeps). 
Partial redundancy analysis (left) was run using the vegan R-package45; sample sites are indicated by colour 
and correspond to the sample site numbers on the dendrograms (middle) and heatmaps (right). Sample site 
numbers correspond with those found on Fig. 1. Dendrograms (middle) were created by hierarchal clustering 
of Bray–Curtis distances with bootstrap values shown on the nodes; for clarity, only values > 80 are shown. 
Heatmaps (right) display pairwise population differentiation (VST); shaded tiles indicate non-significant results 
from a bootstrapping resampling procedure with 10,000 replicates (p > 0.05). NRM Northern Rocky Mountains, 
CRM Central Rocky Mountains, SRM Southern Rocky Mountains, CSC Cascades, SN Sierra Nevada, CU 
Central Utah.
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Figure 4.  Adaptive divergence of robust solar radiation outliers in the American pika (Ochotona princeps). 
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within and among species can improve understanding of biodiversity, speciation, and adaptation to heterogenous 
and changing landscapes.

There is a growing body of evidence that changes in genome structure may be an even more significant 
source of evolutionary potential than other, more well-studied markers such as  SNPs10,12,61–64. Here, we found 
that structural variation in the form of copy number variation may be associated with local adaptation in the 
American pika. Specifically, we observed that putatively adaptive variation in this system largely followed eleva-
tional and latitudinal gradients. In the southwestern lineages (SN, CU), putatively adaptive variation was most 
strongly associated with elevational gradients, particularly with temperature (Figs. 2, 3, 4, 5). Populations of 
pikas in these regions are often limited to higher elevations, likely due to higher  temperatures25,26; in fact, both 
recent and historical population declines have been documented in southwestern portions of the American 
pika range, primarily at lower elevations, and have been linked to warmer  climates65–68. In the northern lineages 
(NRM, CSC), putatively adaptive variation closely followed latitudinal gradients, with elevational patterns also 
evident in the CSC lineage (Figs. 2, 3, 4, 5). Due to cooler temperatures at northern latitudes, pikas in these line-
ages can occupy a greater range of elevations and can be found as low as sea-level69,70. Additionally, the strength 
of latitudinal temperature gradients tends to increase moving northward from the  tropics71 and could explain 
the difference in the effect of latitude between the northern and southern lineages. Furthermore, the northern 
lineages span a larger latitudinal gradient than the southern lineages, suggesting latitude has a greater potential 
to correlate with genetic variation in these regions. On the other hand, several studies have found that elevation 
plays a significant role in shaping putatively adaptive variation in northern populations of the American pika 
within the CSC  lineage31,32,72, indicating that both spatial factors likely infuence local adaptation in this system.

In contrast to the other southern lineages, we saw strong, latitudinal trends among outlier loci in the SRM lin-
eage, though solar radiation in this lineage also strongly correlated with elevation (Fig. 5, Figs. S8–S10). Samples 
in this lineage were collected at high elevations (all > 3150 m) over a relatively small elevational gradient (~ 500 m 
difference between lowest and highest sites), which could explain the minimal impact of elevation in this line-
age. The CRM lineage did not display any clear patterns and had significantly less structure when compared to 
the other lineages (Figs. 2, 3, 4, 5), possibly due to a narrow and intermediate latitudinal distribution that could 
limit differences in climate among sample sites. Alternatively, the genetic variation resulting from the relatively 
disjunct distribution between sample sites in this lineage, particularly in the case of site 28, may be masking 
signals of climate adaptation. This lineage is also the most recently diverged of the six  phylogroups29 and may 
have had insufficient time post-divergence for selection to leave a significant signature of adaptive variation. 
Nevertheless, these patterns highlight the importance in sampling over appropriate environmental gradients to 
detect local  adaptation73.

Potential relationships between CNVs, gene expression, and phenotype
Copy number variation can have significant phenotypic and adaptive  consequences22,74–76. CNVs are the most 
abundant form of structural variation, accounting for up to 10% of the total length of the human genome. 
Moreover, they even occur more frequently than  SNPs50,77–79 and can serve as a significant source of selectable 
material, particularly when genes are located within a  CNV10,12,14,15. CNVs can directly alter gene expression 
through increases/decreases in copy number, cause the inactivation of genes via duplication, and lead to amino 
acid changes and/or reading frame shifts when genes are only partially covered by a variant. In fact, CNV-linked 
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Figure 5.  Boxplots showing the distribution of r2 values from linear regressions among robust climate-
associated outlier loci in the American pika (Ochotona princeps). We performed independent linear regressions 
on each locus with either elevation or latitude as the explanatory variable and normalized read depth as the 
response. NRM Northern Rocky Mountains, CRM Central Rocky Mountains, SRM Southern Rocky Mountains, 
CSC Cascades, SN Sierra Nevada, CU Central Utah.
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genes more often have functions related to environmental response compared to basic cellular  processes74. Copy 
number variation can also lead to high elevation adaptation. A study involving five species of domestic live-
stock found that mtDNA copy number decreased among high elevation populations compared to low elevation 
populations, which was hypothesized to be the result of chronic  hypoxia80. Copy number variation has also been 
linked to high elevation adaptation in a number of other species, including  yak81, ground  tit82, and  humans83. 

Table 2.  Subset of gene annotations for robust climate outliers detected using GEA analyses on six American 
pika (Ochotona princeps) lineages. NRM Northern Rocky Mountains, SRM Southern Rocky Mountains, 
CRM Central Rocky Mountains, CSC Cascades, SN Sierra Nevada, CU Central Utah

Gene ID CNV Variable associations Lineages

CHCHD3

NC_050563.1_30967720_2611485 Radiation CSC

NC_050563.1_31126318_2611814 Temperature NRM

NC_050563.1_31126337_2611814 Temperature, precipitation, radiation NRM, CU

NC_050563.1_31126355_2611814 Temperature, precipitation, radiation NRM, CU

NC_050563.1_31126371_2611814 Precipitation, radiation CU

NC_050563.1_31126379_2611814 Precipitation, radiation CU

DOCK1
NC_050553.1_3509915_140166 Precipitation SRM

NC_050553.1_3651078_140637 Precipitation, radiation SN

FBXL7

NC_050546.1_30893897_950917 Temperature CSC

NC_050546.1_31094969_951406 Temperature SN

NC_050568.1_2668793_3906688 Temperature CU

NC_050568.1_2668814_3906688 Temperature CU

HPSE2
NC_050553.1_25946746_201125 Precipitation SN

NC_050553.1_26022614_201248 Temperature NRM

HUS1 NC_050545.1_42800208_3781296 Temperature, precipitation SRM

LOC101517538 (VMN2R116)
NC_050553.1_69408172_305279 Temperature NRM

NC_050553.1_69408231_305279 Temperature NRM

LOC101529014 (TRRAP)

NC_050548.1_133443909_2930290 Radiation CU

NC_050548.1_133443965_2930289 Radiation CU

NC_050548.1_133596957_2931039 Precipitation CU

NC_050548.1_133596959_2931039 Precipitation CU

NC_050548.1_37778753_2726048 Radiation CU

NC_050548.1_37779077_2726047 Radiation CU

NC_050548.1_37779097_2726047 Radiation CU

NC_050536.1_13032794_1943468 Temperature CRM

NC_050536.1_13033154_1943468 Temperature, radiation CRM

NC_050541.1_35683184_4832659 Precipitation SN

NC_050541.1_35703827_4832693 Radiation CU

NC_050541.1_35703843_4832693 Radiation CU

NC_050541.1_35703860_4832693 Radiation CU

NC_050541.1_35704145_4832693 Radiation CU

NC_050541.1_35704147_4832693 Radiation CU

NC_050541.1_35704162_4832693 Radiation CU

NC_050541.1_35704225_4832693 Radiation CU

NC_050542.1_9477885_1402332 Precipitation NRM

NC_050542.1_9477910_1402332 Precipitation NRM

LOC101532007 (OLFR147)
NC_050536.1_13032794_1943468 Temperature CRM

NC_050536.1_13033154_1943468 Temperature, radiation CRM

MACROD1 NC_050536.1_108586515_2151246 Temperature, precipitation CSC

MCU NC_050553.1_37066530_231578 Temperature, precipitation, radiation SN

MED12L

NC_050549.1_14187010_4510924 Temperature SN

NC_050549.1_14187037_4510924 Temperature SN

NC_050549.1_14206971_4511008 Temperature NRM

NC_050539.1_2811551_2405314 Temperature CSC

NC_050539.1_2811556_2405314 Temperature CSC

ONECUT1 NC_050552.1_65357252_2319361 Precipitation, radiation CU
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Further investigations of CNVs and high elevation environments may lead to a more thorough understanding 
of adaptations to hypoxia, cold stress, and UV radiation.

We found numerous CNVs within genes with putative links to climate and high elevation adaptation related 
to mitochondrial function, response to hypoxia, and DNA repair. CHCHD3 had the greatest support for being 
under selection of all the annotated genes, as it was detected across all variable categories, several lineages 
(NRM, CSC, and CU), and multiple CNVs (n = 6; Table 2). This gene is critical in the formation of mitochon-
drial cristae. In fact, in vitro knockdown of CHCHD3 results in significantly reduced oxygen consumption and 
glycolytic  rates84,85, indicating that this gene could have potential consequences for cold tolerance and adaptation 
to hypoxia. FBXL7, another gene identified in our study as a potential target of selection, is also an important 
regulator of mitochondrial function. Expression levels of FBXL7 were down-regulated under hypoxic conditions 
in the marine  medaka86, and constitute an important predictor of the severity of asthma symptoms in  humans87. 
We also found one CNV annotated to the mitochondrial calcium uniport (MCU), which is an integral com-
ponent of the mitochondrial inner  membrane88. These results are consistent with previous work that identified 
functional enrichment and positively selected genes associated with mitochondrial structure and function in 
the American pika reference  genome33,34, providing further evidence for adaptation to high elevation environ-
ments in this species.

In addition, we found several genes associated with hypoxia response to be potentially under selection. The 
gene HPSE2 encodes for the enzyme heparanase-2, which plays a role in extracellular matrix remodelling as well 
as embryo implantation. HPSE2 has also been linked to hemoglobin-related traits, including fetal hemoglobin 
in North African human populations, which could have potential implications for adaptation to  hypoxia89,90. 
We found that a predicted TRRAP ortholog (LOC101529014) also may be under selection. This gene is part of 
the INO80 family of chromatin remodelers, which appear to have putative links to the response to hypoxia by 
interacting with hypoxia inducible factor-191,92.

We further found that several genes related to DNA repair may be under selection. For example, TRRAP 
(discussed above) is also involved in DNA repair by binding with the MRN-complex to detect and repair double-
strand breaks (DSBs)93,94. Knockout and knockdown of TRRAP results in the reduced efficiency and precision of 
end-joining following DSBs in mice and HeLa cells, suggesting this gene plays an important role in DSB signal-
ling and  repair94. The gene HUS1 is part of the Rad9-Hus1-Rad1 complex, an important component of the DNA 
repair pathway. This complex loads onto damaged chromatin (for example, from UV exposure), promoting DSB 
 repair95. Again, these results are consistent with previous studies showing putative adaptation to increased UV 
radiation at high elevations in American  pika33,34.

Other putatively adaptive genes
We found several other genes with putative links to local adaptation in the American pika. For example, the 
gene MED12L—a transcriptional coactivator of RNA poly II-dependent genes—was significantly associated 
with temperature in the NRM, CSC, and SN lineages (Table 2), and has been linked to elevational gradients 
in North American deer  mice96 as well as mean annual temperature in Mediterranean cattle  breeds97. We also 
found two genes, LOC101532007 (olfactory receptor 147-like) and LOC101517538 (vomeronasal type-2 receptor 
116-like), which encode for olfactory receptors that could have an impact on foraging. American pikas do not 
hibernate; rather, they remain active throughout the winter and cache food into “hay piles” to ensure adequate 
food  supplies98. These hay piles often consist of the highest quality vegetation available, likely detected and 
assessed via  olfaction99; additionally, many of these cached foods contain high levels of secondary compounds 
that can help preserve biomass and nutrient availability into the winter  months100. Differences in vegetation 
quality could also be linked to variation in precipitation, though the CNVs detected here were significantly 
associated with temperature. Evidence for putative adaptations related to olfaction has been previously shown 
in the American pika  genome34.

We found further evidence for adaptations related to immune response. DOCK1 is a gene required for 
phagocytosis of apoptotic cells and has been linked to immune response and climate adaptation in Middle 
Eastern  sheep101 and disease resistance in  dolphins102. HPSE2 (discussed above) is also involved in the immune 
response, and expression levels of this gene were significantly associated with white blood cell count in  pigs103. 
Similarly, ONECUT1 is involved in B cell differentiation and has been linked to local adaptation in Ethiopian 
 cattle104 and three-spined  stickleback105. American pikas experience relatively high levels of parasitism and may 
be experiencing a spillover of parasites from other small mammals, particularly rodents, which could result in 
immune response  adaptations106–108. Additionally, some populations of American pikas may be physiologically 
stressed due to harsh environmental  conditions109–113; enhanced immune response may confer a greater ability 
for this species to survive and thrive.

Limitations and future directions
Although we identified putatively adaptative variation in CNVs within the American pika, there were limita-
tions to the approach employed in this study. We used climate data downloaded from ClimateNA which comes 
with several  considerations43. First, this dataset uses climate data collected from 4891 weather stations distrib-
uted throughout North America to interpolate climate variables for any given set of coordinates, adjusting for 
 elevation43. While this method allows for the estimation of climate data anywhere on the continent without 
requiring direct sampling, it also introduces potential error to climate variables. Wang et al.43 found that tem-
perature estimates using this method generally correlated with direct measurements, whereas precipitation 
varied considerably more; additionally, elevation affected the accuracy of climate variables, with mountainous 
regions having lower accuracy in point estimates compared to fat regions. Second, this dataset measures total 
solar radiation of which harmful UV radiation only accounts for a small percentage (~ 5%)114,115. The relative 
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contribution of UV radiation to total solar radiation also varies with elevation. However, both total solar radia-
tion and UV radiation increase with elevation; as such, total solar radiation could operate as a crude proxy for 
UV radiation in lieu of a better estimate. These limitations could explain why both precipitation and solar radia-
tion were relatively less correlated with copy number variation than temperature in this study. Lastly, these data 
only include ambient temperatures and do not account for the microclimates found underneath the talus that 
American pikas use for behavioural thermoregulation to prevent over-heating116. Recent findings suggest that 
subsurface microclimates important for pika thermoregulation may have changed at a faster rate than ambient 
temperatures over the past few decades in the Southern Rocky  Mountains117. Consequently, the sole reliance 
on ambient temperature estimates may mask potential associations between CNVs and microclimate variation, 
which represents a potentially interesting avenue for future inquiry.

Our initial study design included plans to detect CNVs using a range-wide dataset. To take advantage of 
existing sequencing data, we used the HDplot method to detect  CNVs13,20,41. This method visually detects puta-
tive paralogous loci by plotting several heterozygosity and genetic diversity metrics, and qualitatively identifies 
those that deviate from a central distribution. However, American pikas generally have low heterozygosity as a 
species at a range-wide  level38,39, meaning standard SNP filtering procedures remove many variants. We found 
that the variants that remained showed very low levels of polymorphism with minimal deviations from the central 
distribution, greatly inhibiting our ability to confidently and accurately call putative CNVs using the HDplot 
method. To improve upon the ability to detect CNVs on a range-wide rather than within lineage scale, future 
work could employ whole genome resequencing that would provide a greater breadth of coverage and offer the 
added capability of detecting additional classes of structural variants, such as inversions and  translocations118 
that may be more directly associated with climate adaptation in the American pika.

Conclusions
Here, we present a novel analysis of local adaptation in the American pika based on copy number variation. We 
found that CNVs were significantly associated with temperature, precipitation, and solar radiation within each 
lineage, and trends in putatively adaptive variation largely followed elevational and latitudinal gradients. Addi-
tionally, we identified several genes related to putative high elevation and climate adaptation that could serve 
as important targets in future studies, including those explicitly involving gene expression. Overall, our work 
adds to a growing body of literature revealing the novel insights that may be obtained by explicitly examining 
structural variation in the genome for investigating species-level responses to changing  environments20,119. With 
climate change significantly altering habitats worldwide, a fuller understanding of how organisms may respond, 
including sentinel species such as the American  pika65,112, will be critical for maintaining global biodiversity 
moving forward.

Data availability
Previously archived sequencing data are available from the NCBI sequence read archive (BioProject ID: 
PRJNA1075342). Normalized read depth for identified CNVs and SNP genotypic data are available in DRYAD 
(https:// doi. org/ 10. 5061/ dryad. 2bvq8 3bzf). Climate data are available in the Supplementary Tables document 
(Table S3). Scripts used for CNV detection are publicly available at https:// github. com/ enorm andeau/ stacks_ 
workf ow. Benefits from this research accrue from the sharing of our data and results within public databases 
as described above.
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