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Quantitative measurement 
of internal quality of carrots 
using hyperspectral imaging 
and multivariate analysis
Arcel Mutombo Mulowayi 1,4, Zhen Hui Shen 1,2,4, Witness Joseph Nyimbo 3, Zhi Feng Di 1,4, 
Nyumah Fallah 3 & Shu He Zheng 1,4*

The study aimed to measure the carotenoid (Car) and pH contents of carrots using hyperspectral 
imaging. A total of 300 images were collected using a hyperspectral imaging system, covering 472 
wavebands from 400 to 1000 nm. Regions of interest (ROIs) were defined to extract average spectra 
from the hyperspectral images (HIS). We developed two models: least squares support vector machine 
(LS-SVM) and partial least squares regression (PLSR) to establish a quantitative analysis between the 
pigment amounts and spectra. The spectra and pigment contents were predicted and correlated using 
these models. The selection of EWs for modeling was done using the Successive Projections Algorithm 
(SPA), regression coefficients (RC) from PLSR models, and LS-SVM. The results demonstrated that 
hyperspectral imaging could effectively evaluate the internal attributes of carrot cortex and xylem. 
Moreover, these models accurately predicted the Car and pH contents of the carrot parts. This study 
provides a valuable approach for variable selection and modeling in hyperspectral imaging studies of 
carrots.

Keywords Hyperspectral imaging, Internal attribute evaluation, Carrot, Variable selection, Quantitative 
analysis model

Carrot (Daucus carota L.) is a widely consumed root vegetable crop known for its high nutritional value, including 
essential micronutrients such as vitamins A and  C1,2. Carrot production is rising worldwide, with China lead-
ing the way as the top  producer3. Although carrots are typically orange, they also exhibit a range of other colors 
including purple, red, and yellow, thereby enriching the diversity within the  spectrum4. Moreover, these crops 
provide significant amounts of antioxidants, provitamin A, and carotenoids, which have been linked to various 
health benefits, including a lower risk of prostate cancer and improved heart and liver  health5–8.

With its unique pH value, carrot juice is susceptible to spoilage and pathogenic  organisms9. Key quality 
indicators for carrots include factors like color, absence of bruises, provitamin A content, vitamin C levels, and 
firmness, all of which impact shelf life, market value, and consumer  satisfaction10. Carrots’ shelf life, selling 
price, and customer satisfaction depend on their quality. Enhancing carrot quality inspection and developing 
rapid quality control technologies that give precise and detailed information about nutritional content is crucial, 
given rising consumption and the effects of climate  change11,12. This information can be utilized to ascertain the 
most suitable time for harvesting, refine storage parameters, and enhance the nutritional quality of processed 
carrot derivatives.

The simultaneous collection of spectral and image data from the tested sample using hyperspectral imaging 
(HSI) merges conventional spectroscopy and digital imaging technology into a  system13–15. HSI technology is 
used in various industries, including agriculture,  food16, environmental management, and urban planning. It can 
provide substantial information in spectral and spatial  domains17. In recent years, HSI technology has played a 
pivotal role in detecting the internal quality of agricultural products, ranging from moisture and starch detection 
 contents18 to protein and fat analysis. Furthermore, HSI has also been leveraged to investigate crop  diseases19, 
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nutrient  deficiency20, and estimating biochemical and biophysical characteristics essential for understanding 
vegetable physiological status and predicting crop yields. Moreover, this tool can investigate soil properties, 
including moisture content, organic matter, and carbon  content21,22, total  capsaicinoids23, and  pH24. Munera 
et al.25,26 mentioned that the evaluation of fruit quality is a recently developed application. For instance, studies 
on the quality detection of bakery goods, meat, and fresh vegetables have already been  published27.

Research has shown that visible/near-infrared HSI technology has been extensively employed in the non-
destructive assessment of interior fruit attributes, including soluble solids content (SSC) and firmness. Never-
theless, the current research on predicting Car and pH content in various regions of fruits, such as the cortex 
and xylem, is limited from a scientific standpoint. To comprehensively evaluate the internal quality attributes of 
carrots, this study aimed to investigate the potential of hyperspectral reflectance imaging for predicting the Car 
and pH content of carrots. We sought to investigate these parameters in two central regions of carrots (cortex 
and xylem) using visible and near-infrared (Vis/NIR) HSI. The specific objectives of this study were to:

1. Acquire hyperspectral images of carrot samples and extract spectral data from them.
2. Build partial least squares regression (PLSR) and least squares support vector machine (LS-SVM) models 

using the entire spectrum.
3. Choose representative wavelengths using successful projection algorithms (SPA) and regression coefficients 

(RC) from PLSR.
4. Develop simplified LS-SVM and PLSR models.
5. Use the best model to predict the quality attributes of each sample pixel and compare its performance to 

Fig. 1.

Methods
Sample preparation
A stratified sampling approach was applied to select carrot samples for analysis. A comprehensive collection of 
300 carrot samples, exhibiting comparable shape and size, was procured from Putian (Pt) and Fuzhou (Fz) City, 
located within the geographical boundaries of Fujian Province, China. Each sample weighted between 55 to 65 g.

Following an exhaustive washing process, carrots that exhibited cracks, rust, dysmorphia, or dark discolora-
tion were excluded from the sample set. As a result, 240 samples remained, all meeting the predefined quality 
criteria. Among the samples selected for investigation, 120 carrots were sourced from the Fz, while the remaining 
120 originated from the Pt. The carrots were stored in a sealed plastic bag at 3 °C for 2 days. Later, each carrot 
was divided into two halves to investigate Car and pH contents. The plant material used in this work complies 
with relevant institutional, national, and international guidelines and legislation.

Figure 1.  Hyperspectral imaging system.
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HSI system and image acquisition
Experimental HSI was conducted using a high-performance CCD digital camera (Sencicam QE Taiwan) and a 
hyperspectral camera (HIS-V10E-sCMOS) that covered the wavelength range of 400–1000 nm with a spectral 
resolution of 2–8 nm. The system was equipped with Oriel Instruments USA halogen tungsten light bulbs, a 
spatial resolution point radius of 9 m, a light source supply system with a feedback controller, and a computer. 
The camera was operated using Camera Control Kit V219. We used this camera to capture hyperspectral images. 
The camera consisted of a focal length of 170mm, a scanning line distance of 2mm, and a light source beam’s 
optical center located 2mm from the scanning line. We integrated data from four evenly spaced places over the 
equator using a 22-binning technique to provide a full spectral image to conduct the HSI of the carrots. See Fig. 1 
for a graphic depiction of the HSI equipment.

Image processing
One of the most important steps in pre-processing the hyperspectral images was calibrating the raw data to 
exclude dark current effects from the CCD camera. After calibration, an area of interest (ROI) was found in the 
calibrated images, and spectrum data was then taken out of these ROIs, as Fig. 2 shows. To reduce differences 
caused by illumination, detector sensitivity, camera specs, and subtleties in the physical setup, raw hyperspectral 
photos were corrected by comparing them to black-and-white reference  images28.

The camera lens was covered with its opaque cap, and the light source was turned off to provide a black 
reference image. Alternatively, a spectral image of a uniformly white tile with approximately 99.9% reflectance 
was captured to create a white reference  image29. The following equation was used to adjust the uncorrected 
hyperspectral pictures:

Here, R represents the corrected hyperspectral image, while I represents the sample’s initial spectral image, 
Id denotes the dark reference image and Iw standsfor the white reference image. We leveraged image acquisition 
software to correct the image.

Spectral pre-treatment
The hyperspectral data were extracted from the acquired ROIs for spectral processing. Undesired variations were 
compensated (negative effects from random and systematic noise), and unnecessary or noisy wavelengths were 
removed to improve prediction accuracy. Pre-treatment was applied to the spectral data in the form of opera-
tions, including smoothing, derivatives, multiplicative scatter correction (MSC)14,15, standard normal variate 
(SNV), and Savitzky–Golay (SG)30. The SG smoothing method with a window width of three points was used 
to reduce high-frequency noise, baseline excursion, and dispersion to stabilize the baseline and reduce noise. 

(1)R =
I − Id

Iw − Id

Figure 2.  Flow diagram of the experimental steps.
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Moreover, MSC was applied to adjust for additive and multiplicative scatter effects, which improved and cor-
rected the obtained hyperspectral data.

The SG  filter31 is a widely used technique for smoothing data based on approximating the raw data using 
polynomials in a defined data frame. The SG filter has two degrees of freedom, including polynomial order and 
window length. The first parameter enables the smoothed data to follow the raw data as closely as possible. This 
process demonstrates the importance of preserving the edges of the data. However, it also entails the drawback of 
tracking noise fluctuations. The window length neutralizes the high-frequency noise contribution for the second 
degree of freedom by smoothing its fluctuations through polynomial  fitting32,33. The SG filter searches for the 
optimal n + 1 polynomial coefficients for a given n-degree polynomial to best suit the raw data and assesses the 
outcome in the window  center34,35. The polynomial function was applied to the signal point by point. The meas-
ured value of the window’s midpoint was replaced with the polynomial function’s estimated value. The degree 
of smoothing was altered by changing the window’s width and polynomial order. In addition to SG smoothing, 
other spectral pre-treatment methods, such as MSC and SNV, are commonly used to compensate for undesired 
variations and remove unnecessary or noisy  wavelengths14,15,30.

Effective wavelength selection methods
The spectrum data set may comprise thousands of variables/wavelengths and hundreds or thousands of 
 samples36,37 due to the high resolution of modern spectroscopic instruments. Such large-scale data can make 
hyperspectral image inspection techniques more time-consuming. Moreover, variable selection (wavelength 
selection) is crucial in identifying the relevant variables and eliminating highly correlated ones to reduce com-
putational complexity, increase detection effectiveness, and meet the industry-required inspection  speed38,39. 
While no definitive method has been established for selecting optimal wavelengths, various approaches have 
been  recommended40. For instance, SPA, RC, uninformative variable elimination (UVE), simulated annealing 
(SA), K-nearest neighbors regression (K-NNR), and genetic algorithm (GA) are a few multivariate algorithms 
that have been suggested for developing quantitative models.

In this study, the wavelength selection techniques utilized included RC, K-NNR, and SPA. SPA identified 
wavelengths with the least redundant information. SPA has been described as a method for identifying relevant 
features in a forward direction by comparing projection vectors resulting from projecting wavelengths onto 
other wavelengths. It chooses the most significant projection vector wavelength and incorporates it into the 
candidate subset of characteristic wavelengths. Studies have described SPA as a method that identifies relevant 
features in a forward direction by comparing projection vectors resulting from projecting wavelengths onto 
other wavelengths. It selects the most significant projection vector wavelength and includes it in the candidate 
subset of characteristic  wavelengths41. Here, the performance of different subsets was evaluated using a regres-
sion model. SPA aims to identify a combination of variables that contains the least redundant information and 
the least covariance, thereby reducing model complexity and improving accuracy. Overall, SPA is a useful tool 
for feature selection in various applications, such as regression, classification, and data mining.

It has been established that RC plays a decisive role in creating a predictive model for specific data collec-
tion. Weighted RC, also known as b-coefficients, which are equivalent to the model with full spectra, are used 
to calculate RC. The best wavelengths are determined by selecting those with the highest absolute b-coefficient 
values. This approach enables the identification of the most crucial wavelengths for forecasting the response 
variable, leading to a more accurate and effective  model42. The use of fewer wavelengths in spectral analysis has 
the potential to improve model  performance24,24. The method representing a small number of wavelengths, RC, 
and SPA, was chosen for modeling following the selection of EWs.

Modeling methods and model evaluation
Model validation is an important step in multivariate data analysis. The prediction model for this study was con-
structed utilizing PLSR and LS-SVM, which are linear multivariate algorithms. This is because of its efficacy when 
a linear relationship exists between spectra and object  properties43–45. PLSR is widely employed in chemometrics 
to analyze the correlation between spectral data and reference quality indicators. A set of statistically uncorre-
lated latent variables was utilized by the PLSR model to forecast Car and pH levels. Through decomposition, this 
method generates principal factors from the independent and dependent variables as they are projected into a 
new multidimensional space. Seven PLSR factors were chosen for this investigation according to the correlation 
strength of the principal factors. Notably, PLSR and LS-SVM were applied to the prediction model. However, 
PLSR was solely utilized to model the full  spectra44.

Based on concepts from statistical learning theory, SVM can be used for classification and nonlinear regres-
sion. LS-SVM is an enhancement of traditional SVM. It uses least-squares linear systems as the loss function 
rather than traditional convex quadratic  programming46. LS-SVM is more than SVM because of its low compu-
tational complexity and efficiency.

In the given context, K(x, xk) represents the kernel function, xk indicates the input vectors, k denotes the 
support values, and b indicates the bias factor. The computation of similarity between the input vectors is the 
responsibility of the kernel function, and the kernel function selection influences the efficacy of the model.

Furthermore, a correlation analysis was conducted to assess the RC of the simplified models, investigating 
the association between the EWs and the quality features.

(2)y(x) =
∑N

k=1
akK(x, xk)+ b
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Model evaluation
The prediction capacities of the models were assessed by calculating statistical metrics, including the coefficient 
of determination of calibration  (R2

cal), coefficient of determination of prediction  (R2
pre), root mean square error 

(RMSEC, RMSEP), and RPD can be described as follows:

where m represents the number of samples,  ŷi represents the predicted value, yi represents the actual value 
and y represents the mean value of the actual value. SD is the standard deviation of the validation sample.

When the RPD value is greater than 2.5, it indicates a high capacity for  prediction47. Spectral data extraction 
was conducted on ENVI 4.8 (ITT, Visual Information Solutions, Boulder, USA). All computations and multivari-
ate data analyses were performed with chemometric software  Unscrambler® 9.7 (CAMO AS, Oslo, Norway) and 
MATLAB R 2009b (The Math Works, Natick, USA).

Biochemical analyses
After acquiring hyperspectral images, the samples were immediately sliced and weighed for subsequent chemical 
analysis. Each measurement was performed three  times48. We used 0.1 g of fresh-weight material immersed in a 
20 ml solution containing 80% acetone and 100% ethanol (1:1 ratio) for 24 h in darkness to extract the pigments. 
The pH composite electrode was mixed in pure water and then shaken dry after being thoroughly washed. The 
pH meter was placed into the 4.00 pH calibration solution to calibrate it. Once the calibration was finished, the 
meter was rinsed with distilled water and dried. The pH meter was calibrated using a standard buffer solution 
with a pH of 7.0049,50. The meter was cleaned with pure water, dried, and calibrated using a pH 9.18 solution. The 
three-point calibration has been accomplished at this stage. A sufficient amount of pulp was extracted from each 
sample, squeezed to obtain juice, and then the electrode was immersed in the juice to measure the pH value. Next, 
the electrode was immersed in the juice, and the pH value was measured. Each sample underwent three meas-
urements following the described procedure. The average of the three readings was considered for the pH value.

We measured the Car levels with a 752UV/Vis spectrophotometer and determined based on fresh weight 
using standard  techniques51,52.

Results
Hyperspectral reflectance spectra
Figure 3a shows how to identify the carrot region of interest. Figure 3b and c show the 400–1000 nm xylem and 
cortex spectral of the Fz carrot cultivar, respectively. These spectra were taken from the hyperspectral image 
of calibration set samples. It is evident that the spectra from all sides follow the same pattern across the whole 
wavelength range, but there were some notable deviations. The spectral curves exhibited distinct absorption and 
reflection peaks, as can be seen in Fig. 4. The reflectivity of the Fz-xylem and Pt-xylem side is slightly higher 
than that of the Fz-cortex and Pt-cortex side within the visible light range of 420 to 680 nm, which was based 
on the spectral images obtained from the Fz-xylem and Pt-xylem, as well as the Fz-cortex and Pt-cortex side. 
However, the reflectivity of the Fz-xylem and Pt-xylem side significantly increases compared to the Fz-cortex 
and Pt-cortex side within the near-infrared range of 780 to 1000 nm.

A typical Car absorption band at 680nm corresponds to the first discernible absorption peak. Around 750 
nm is the peak of the second absorption center, and a relatively wide absorption band is connected to the band 
C–H’s fourth overtone. The second overtone of band O–H may be related to the tiny absorption band at 950  nm53.

In addition to the typical absorption characteristics, the spectral intensities of different samples were dif-
ferent, indicating differences in chemical components, which was conducive to constructing the Car and pH 
quantitative analysis model.

PLSR models based on the full spectra
We leveraged PLSR to establish regression models with the xylem and cortex datasets. The regression results are 
shown in Tables 1 and 2. PLSR models, the samples were taken in the same order on the carrot xylem and cortex 
side. The calibration and prediction sets for both regions of the carrot were also the same.

As indicated by the  R2
pre, RMSEP, and RDP values, the results displayed in Table 1 illustrate the ability to 

predict carotenoid quality and pH in the xylem and bark regions of the Fz-Pt cultivar. The RMSEP values for Fz 
and Pt in the xylem region were 0.026 and 0.027, respectively, while the  R2

pre values for predicting carotenoid 
quality ranged from 0.903 to 0.915 for Fz and from 0.885 to 0.876 for Pt. Furthermore, the region where Fz and 
Pt had RDP values of 2.19 and 2.21, respectively, demonstrated a greater ability to predict carotenoid quality. In 
contrast, the  R2

pre values obtained to infer pH in the xylem and cortex regions were comparatively lower, ranging 
from 0.666 to 0.702. Furthermore, RMSEP values ranged from 0.022 to 0.035. All RDP values were less than 2, 
indicating a satisfactory level of predictive accuracy despite the lower  R2

pre values. It was also observed that the 

(3)R2
=

∑
i(ŷi − yi)

2

∑
i(y − yi)

2

(4)RMSE =

√
1

m

∑m

i=1
(ŷ − yi)

2

(5)RPD =
SD

RMSE
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Figure 3.  Main steps for image and spectra processing of carrot: (a) identification of the Region of Interest 
(ROI), (b) Fz-cortex raw mean reflectance spectrum, and (c) Fz-xylem raw mean reflectance spectrum.

Figure 4.  Average spectral curves of cortex and xylem of the Fz and Pt carrot cultivar.
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RDP values in the cortex region were slightly higher than those in the xylem region. This discrepancy implies 
that pH prediction performance was significantly improved in the cortex region.

Selection of effective wavelengths
Choosing a configuration with fewer wavebands is recommended to enhance the stability and integrability of a 
multispectral imaging system from a scientific standpoint (ElMasry et al.  201954). SPA was used to identify the 
EWs carrying crucial information for determining scaling rates and reducing data dimensionality. These EWs 
remove unnecessary information by including the whole spectral data range (400–1000 nm), representing the 
most important data among the EWs. Table 3 demonstrates that only the important wavelengths are required to 
estimate Car and pH. The pH decreased the number of wavelengths from 5 to 9, contrasting the pH range (8 to 
14) detected in the xylem of both cultivars, which showed a wavelength range from (Table 3).

Prediction of pH
Table 3 illustrated that the xylem spectra had less spectral than the cortex spectra. However, their predictive 
capability was much better.

Besides, Table 4 showed that the prediction under the RC-PLSR model had an  R2
Pre of 0.672 and an RMSEP 

of 0.030, while the counterpart had an  R2
Pre of 0.752 and an RMSEP of 0.029. However, the RC-LS-SVM model 

Table 1.  Results and parameters of the calibration and prediction sets of Car by partial least squares regression 
(PLSR) models.

Cultivar Region

Calibration set Prediction set

R2
Pre RMSEC R2

Pre RMSEP RPD

Fz Xylem 0.924 0.021 0.903 0.026 2.19

Fz Cortex 0.897 0.023 0.885 0.025 1.61

Pt Xylem 0.930 0.022 0.915 0.027 2.21

Pt Cortex 0.906 0.025 0.876 0.030 1.72

Table 2.  Results and parameters of the calibration and prediction sets of pH by PLSRmodels.

Cultivar Region

Calibration set Prediction set

R2
Pre RMSEC R2

Pre RMSEP RPD

Fz Xylem 0.799 0.024 0.666 0.022 1.54

Fz Cortex 0.841 0.024 0.682 0.025 1.72

Pt Xylem 0.854 0.023 0.674 0.027 1.66

Pt Cortex 0.871 0.024 0.702 0.035 1.80

Table 3.  The selected EWs for Car and pH using RC and SPA.

Cultivar Parameter Selected range (nm) Methods Region Number Selected EWs (nm)

Fz Car 400–1000 RC
Xylem 10 910, 643, 441, 561, 628, 880, 664, 731, 450, 945

Cortex 7 410, 580, 671, 900, 950, 660, 730

Pt Car 400–1000 RC
Xylem 14 994, 444, 561, 594, 628, 880, 577, 634, 658, 660, 730, 

739, 740, 765

Cortex 10 775, 410, 580, 670, 952, 950, 662, 685, 704, 736

Fz Car 400–1000 SPA
Xylem 11 902, 440, 560, 681, 594, 625, 880, 958, 956, 828, 691

Cortex 8 489, 522, 555, 584, 582, 671, 911, 953

Pt Car 400–1000 SPA
Xylem 14 994, 574, 444, 561, 580, 628, 881, 577, 634, 659, 662, 

730, 739, 765

Cortex 13 543, 595, 674, 775, 410, 673, 952, 952, 662, 685, 699, 
704, 736

Fz pH 400–1000 RC
Xylem 8 441, 561, 594, 628, 880, 994, 674

Cortex 7 410, 580, 671, 900, 950, 704, 735

Pt pH 400–1000 SPA
Xylem 8 441, 561, 594, 628, 880, 994

Cortex 5 410, 580, 671, 900, 950

Pt pH 400–1000 SPA
Xylem 8 443, 556, 592, 628, 880, 992, 674, 710

Cortex 9 410, 714, 721, 580, 673, 900, 950, 702, 734
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had an  R2
Pre of 0.701 and an RMSEP of 0.032, while the counterpart had an  R2

Pre of 0.802, an RMSEP of 0.026, 
an  R2

Pre of 0.757, and an RMSEP of 0.024.
The SPA-PLSR had an  R2

Pre of 0.678 and an RMSEP of 0.031, while the SPA-LS-SVM had an  R2
Pre of 0.731 and 

an RMSEP of 0.030, and the counterpart had an  R2
Pre of 0.816 and an RMSEP of 0.028. The identical outcome 

observed in the Fz sample was found to be applicable in the Pt samples, as evidenced by the data presented in 
Table 4. Our findings indicate that the spectral characteristics of the xylem were more effective in predicting 
Car than those of the cortex.

Prediction of carotenoid
Here, we used EWs to build Car and pH-predicting models in two carrot cultivars, namely Fz and Pt. The 
obtained results of the car prediction are shown for the Fz sample in Table 5.

Table 5 also showed that the Fz cultivar RC-PLSR model had an  R2
Pre value of 0.892 and an RMSEP value of 

0.023 in the xylem, slightly lower than its counterpart (using the cortex), with  R2
Pre = 0.854and RMSEP = 0.030. 

The RC-LS-SVM results showed an  R2
Pre value of 0.933, an RMSEP value of 0.022, and an RPD of 2.27, while its 

counterpart had an  R2
Pre value of 0.883 and an RMSEP value of 0.026, and an RPD of 1.8

Table 4.  LS-SVM and PLSR models calibration and prediction of pH using EWs (RC and SPA).

Cultivar Models Region

Calibration set Prediction set

R2
Pre RMSEC R2

Pre RMSEP RPD

Fz RC-PLSR Xylem 0.901 0.025 0.672 0.030 1.67

Fz RC-PLSR Cortex 0.961 0.021 0.752 0.029 1.72

Pt RC-PLSR Xylem 0.892 0.026 0.653 0.029 1.55

Pt RC-PLSR Cortex 0.924 0.022 0.711 0.030 1.70

Fz RC-LS-SVM Xylem 0.876 0.024 0.701 0.032 1.56

Fz RC-LS-SVM Cortex 0.957 0.030 0.802 0.026 1.92

Pt RC-LS-SVM Xylem 0.861 0.023 0.696 0.030 1.57

Pt RC-LS-SVM Cortex 0.946 0.030 0.812 0.025 2.00

Fz SPA-PLSR Xylem 0.923 0.027 0.678 0.031 1.61

Fz SPA-PLSR Cortex 0.964 0.024 0.841 0.024 2.08

Pt SPA-PLSR Xylem 0.933 0.025 0.681 0.031 1.62

Pt SPA-PLSR Cortex 0.953 0.024 0.791 0.025 2.11

Fz SPA-LS-SVM Xylem 0.826 0.025 0.731 0.030 1.67

Fz SPA-LS-SVM Cortex 0.954 0.023 0.816 0.028 1.79

Pt SPA-LS-SVM Xylem 0.841 0.024 0.742 0.029 1.81

Pt SPA-LS-SVM Cortex 0.970 0.024 0.820 0.026 2.40

Table 5.  LS-SVM and PLSR models calibration and prediction of pH using EWs (RC and SPA).

Cultivar Models Region

Calibration set Prediction set

R2
Pre RMSEC R2

Pre RMSEP RPD

Fz RC-PLSR Xylem 0.937 0.022 0.892 0.023 2.17

Fz RC-PLSR Cortex 0.906 0.025 0.854 0.030 1.67

Pt RC-PLSR Xylem 0.941 0.021 0.890 0.024 2.16

Pt RC-PLSR Cortex 0.961 0.024 0.872 0.029 2.00

Fz RC-LS-SVM Xylem 0.961 0.023 0.933 0.022 2.27

Fz RC-LS-SVM Cortex 0.914 0.024 0.883 0.026 1.82

Pt RC-LS-SVM Xylem 0.957 0.024 0.878 0.022 2.13

Pt RC-LS-SVM Cortex 0.930 0.023 0.842 0.026 1.57

Fz SPA-PLSR Xylem 0.933 0.022 0.896 0.023 2.08

Fz SPA-PLSR Cortex 0.913 0.024 0.815 0.024 2.08

Pt SPA-PLSR Xylem 0.923 0.022 0.944 0.024 2.27

Pt SPA-PLSR Cortex 0.933 0.023 0.811 0.022 1.76

Fz SPA-LS-SVM Xylem 0.967 0.025 0.934 0.022 2.30

Fz SPA-LS-SVM Cortex 0.922 0.022 0.893 0.024 2.17

Pt SPA-LS-SVM Xylem 0.964 0.024 0.932 0.022 2.26

Pt SPA-LS-SVM Cortex 0.924 0.021 0.831 0.023 1.80
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For the SPA-PLSR model, the  R2
Prevalue was 0.896, the RMSEP value was 0.023, and an RDP of 2.17, while its 

counterpart had an  R2
Pre value of 0.815 and an RMSEP value of 0.024 and an RPD of 2.08. On the other hand, the 

LS-SVM model had an  R2
Pre value of 0.934 and an RMSEP value of 0.022, with an RPD of 2.27, and its counterpart 

had an  R2
Pre value of 0.893 and an RMSEP value of 0.024 and 2.08 for the RPD. Regarding prediction accuracy 

for Car content in both the calibration and prediction sets, the outcomes demonstrate that the LS-SVM models 
exhibited superior performance overall than the PLSR models. In contrast to the PLSR models, the LS-SVM 
models demonstrated superior RMSEC and RMSEP values.

The LS-SVM model exhibited notably robust outcomes for the Xylem region among the cultivars, whereas Fz 
maintained a consistently high performance across all models and regions. Conversely, the cultivar Pt obtained 
superior performance from the PLSR model in the Cortex region. As listed in Table 5, the Pt samples exhibited 
the identical pattern identified in the Fz sample. Superior suitability for Car prediction was observed in the xylem 
spectra compared with the cortex.

Figures 5 and 6 illustrate the optimal prediction outcomes according to the selected-range spectra.

Discussion
Analysis of characteristic wavelengths
Here, the spectral window ranged from 400 to 1000 nm. The outcomes of the wavelength selection are shown 
in Table 1. The EWs for Car were determined in the xylem and cortex, ranging from 410 and 956 nm, whereas 
the EWs for pH contents were between 500 and 900 nm. In related research, Car pigments were observed at 
wavelengths between 400 and 500  nm55, 450 nm, and 580  nm25,26, as well as 400–600  nm56. Additional peaks 
were observed at the xylem area at 820 and 980 nm and in the cortex region at 814 and 970 nm. Additionally, 
acids were found to be present at 800  nm56, and sugars were detected at 835  nm24 and 840  nm57. Therefore, the 
peak at 820 nm in the carrot xylem and 814 nm in the cortex could be related to acids and sugars in both cases. 
Water was detected at 960  nm58, 970  nm56, and 976  nm24. Hence, the peaks reported at 980 nm and 970 nm may 
be attributed to water and sugars. Conversely, water and sugars have been observed at wavelengths of 970  nm59,60, 
960–980  nm61, and 970–980  nm62, respectively. In particular, some minor differences in wavelength reflectance 
were observed in the xylem and cortex.

Selection of effective wavelengths
The research emphasized the criticality of EW selection, improving the stability and integrability of multispectral 
imaging systems. The study employed SPA and RC to forecast quality metrics associated with Car and pH, as 
suggested in ElMasry et al.  (201954) work for a system with a diminished quantity of wavebands. By the selection 
procedure, informative EWs containing crucial information for detecting scaling rates were discerned, result-
ing in the compilation of a more efficient dataset comprising the most valuable spectral data. The 400–1000 
nm wavelengths were considered essential for predicting Car and pH characteristics.. Notably, the chosen EWs 

Figure 5.  The performances of the top prediction models to detect the quality of Fuzhou (Fz) carrots using 
EWs are as follows: the pH and carotenoid (Car) prediction is achieved by employing the combination of 
successive projections algorithm, and least squares support vector machine (SPA-LS-SVM) model.
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exhibited variations between the xylem and cortex regions of the cultivars, suggesting that the estimation of Cars 
requires distinct spectral information needs.

In addition, the analysis unveiled particular wavelength requirements for pH estimation, suggesting the 
presence of more concentrated and accurate spectral data that is essential for precise pH forecasting. The appli-
cation of SPA in ascertaining the chosen EWs enhanced the accuracy of the prediction models by revealing the 
crucial wavelengths associated with each quality attribute and emphasizing the combined benefits of RC and 
SPA methods. Consistent with previous investigations into internal fruit  properties63,64, the results of this study 
provide additional evidence for the importance of vibrational energy changes induced by NIR light on chemi-
cal bonds, including C–H, N–H, O–H, and C–O, which influence Near-Infrared Reflectance  Spectroscopy65,66.

The inconsistency between the NIR method and the number of wavelengths chosen for pH estimation may be 
attributable to internal pH components that are not perfectly aligned; this highlights the significance of selecting 
wavelengths tailored to particular  attributes67.

In general, the predictive capabilities of the models for Car and pH attributes have been improved through the 
careful selection and analysis of EWs utilizing RC and SPA methods. This highlights the significance of custom 
wavelength selection in multispectral imaging applications that require accurate and efficient quality attribute 
predictions in the agricultural and scientific sectors.

Modeling based on full wavelengths
Tables 1 and 2 show PLSR model carotenoid and pH predictions. Our findings showed that xylem side spectra 
models outperformed cortex region models. The higher concentration of carotenoids in the xylem area, which 
transports water and nutrients, may explain this performance differential. Therefore, HSI of xylem side spectra 
may improve carrot carotenoid predictions.

In contrast, pH prediction performed poorly. Fz-Pt xylem regions had prediction quality of 0.666 to 0.674, 
while cortical regions had 0.674 to 0.702. Chemical composition and physiological mechanisms may explain the 
pH prediction performance differential between the xylem and cortex. Plant xylem, which transports water, may 
have a more stable pH than the cortex, which stores and performs other  functions68,69. This pH stability variance 
may explain the decreased xylem forecast accuracy. Even if all RDP values are below 2, the pH prediction models 
need more development and optimization.

The PLSR models made essentially identical predictions, proving their reliability and consistency.

Modeling based on effective wavelengths
This study’s reference indices for model evaluation were the root mean square error,  R2

pre, and RPD, as shown 
in Table 3. The regression equations for RC-PLSR-xylem and SPA-LS-SVM-Xylem exhibited high  R2

pre and 
RPD values and low RMSE values. This suggests that these two differential orders provide superior predictive 
performance compared to other examples. In summary, the performance of the SPA-PLSR model was found to 
be slightly worse compared with the other models. However, the SPA-LS-SVM models exhibited exceptional 

Figure 6.  The performances of the top prediction models on Fuzhou (Fz) for detecting quality attributes based 
on EWs are as follows: the pH and caroteniod (Car) prediction is achieved by employing the combination of 
successive projections algorithm and partial least squares regression (SPA-PLSR) model.
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performance. In general, the early warning signals (EWs) identified by the signal processing algorithm (SPA) 
exhibited more efficacy compared to those discovered by the rule-based classifier (RC).

We noticed that the SPA-LS-SVM method for pH prediction was more accurate than RC, despite RC having 
more variables. The findings verified that the chosen EWs and spectral morphological parameters were appro-
priate for spectral dimension reduction and feature extraction. However, they employed different routines for 
spectral analysis. The former emphasized the morphological differences and spectra variations in samples with 
diverse Car and pH, while the latter mainly reflected the reflectance or absorbance values. Based on the Car 
and pH prediction samples, the absorbance spectra calibrated by SG-MSC based on the EWs proved the best in 
constructing PLSR and LS-SVM predictive models for Car and pH in carrot samples.

On the other hand, Car estimates outperformed pH predictions due to the low organic acid concentration in 
fruits. Given that the reference pH values did not span a broad spectrum, it is reasonable to infer that they were 
suitable for establishing a dependable and precise calibration model. The results of the top prediction models for 
identifying quality attributes using the various variable selection techniques are shown in Figs. 5 and 6.

Prediction of pH
The prediction of pH using the full wavelength range was not satisfactory because it did not yield accurate results. 
However, EWs exhibited an improved  prediction70. Despite this improvement, the RPD of the pH prediction 
could not match or exceed the Car prediction. This discrepancy can be attributed to the relatively low concentra-
tion of organic acids in the slip  fruits71. Here, Car prediction relied on a more distinct spectral signature, which 
made it easier to detect and quantify. The pH values in the cortex tissue were higher than those in the xylem 
tissue.

Regarding the levels of Car and pH in the different tissues, it is likely that there could be differences in the 
distribution of these compounds. It has been pointed out that Car are synthesized and stored in plastids in differ-
ent concentrations in different tissue  types72. It is also possible that the metabolism of Car and pH in the different 
tissues is regulated differently, leading to different Car and pH  levels38,39. Therefore, it is possible to have higher 
levels of Car in the xylem and lower levels in the cortex, and viceversa for pH levels. However, more research is 
needed to confirm this phenomenon.

We noticed that the LS-SVM model effectively evaluated the internal qualities of carrots, specifically the pH 
level, as shown in Table 4. On the other hand, the PLSR presents a substantial discrepancy between the correction 
set and the prediction generated. Furthermore, the degree of dispersion in the predictions for the data points is 
considerable, suggesting that the PLSR model exhibits inadequate accuracy in fitting predictions and stability 
concerning pH quality, as can be seen in Figs. 5a,b and 6a,b. This model can be applied to detect and assess the 
pH of carrots, providing valuable theoretical support and serving as a foundation for developing online carrot 
detection equipment. Future research can focus on exploring additional spectral regions and refining the models 
to improve pH prediction accuracy and further enhance the overall performance of the models.

Moreover, the implementation of the LS-SVM model for assessing carrot quality holds promise for enhancing 
the agricultural industry. Accurately assessing the pH level of carrots enables farmers and producers to make 
informed decisions regarding harvesting, storage, and distribution. This process ultimately enhances the market 
value of the crop and overall quality. Furthermore, successfully applying the LS-SVM model in carrot quality 
evaluation highlights its potential for use in other fruits and vegetables. This result aligns with the Shao et al.73 
findings. These authors demonstrated that LS-SVM models exhibit strong predictive capabilities for internal 
fruit  attributes74,75. This discovery opens doors for further research and development in agricultural technology, 
potentially enhancing quality control processes and overall productivity within the industry.

Prediction of carotenoid
Research has extensively studied Car in carrot root systems, including tomatoes and  peppers76,77. For example, 
Perrin et al. found various Car in carrots with varying root colors. A related work revealed that the orange plant 
phloem had more Car than its xylem and was in the carrot roots. Another study also documented that the red 
genotype phloem and xylem Car were  similar78,79. The overall results of the Car and pH prediction of the two 
sides showed significant differences using different regression methods. Further analysis of the characteristic 
wavelengths for Car and pH showed significant similarities between the two regions. Here, Car was mainly dis-
tributed on the xylem side, with higher concentrations in the pericarp region of the carrot slice. This difference 
may be due to differences in Car synthesis and transport between the two tissues. Perrin et al.78 found that the 
varying expression patterns of the genes involved in Car production in various tissues could account for the vari-
ations in the accumulation in various root tissues. This aligns with our finding, implying that the cortex side had 
much lower Car concentrations compared with the xylem tissue. The LS-SVM model predicted significant set of 
 R2

prevalues, smaller RMSE values, greater prediction accuracy, and an RPD of 2.30 for the Car of Fz compared to 
PLSR prediction models, as shown in Table 2 and Figs. 5c,d, and 6c,d. With the least dispersion, the measured and 
predicted values of the Car of Fz in the LS-SVM model’s calibration and prediction sets are situated on opposite 
sides of the 45° line. This signifies that the model possesses optimal fitting accuracy and stability.

Conclusion
This study investigated HSI to determine carrots’ internal quality, Car, and pH, focusing on the effects of sampling 
regions of two cultivars. The results indicated that the cortex or xylem region can accurately predict Car and pH, 
with a significant difference in prediction performance between the two regions. The characteristic wavelengths 
for Car and pH prediction using different sampling regions were not identical. This suggests that assessing the 
cortex and xylem regions could be used to predict these attributes more precisely and cost-effectively. This finding 
is significant as it provides flexibility in the sampling process and allows a more straight forward implementation 



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8514  | https://doi.org/10.1038/s41598-024-59151-y

www.nature.com/scientificreports/

of HSI in determining internal quality attributes in carrots. This technique can also help farmers better under-
stand their crop’s condition and monitor different attributes depending on their supply chains. Overall, our 
study provides a reference for implementing multispectral technologies for the internal quality assessment of 
carrots. Adopting HSI can provide accurate and non-destructive testing of internal quality attributes in carrots, 
benefiting the food industry and, ultimately, the consumers. Further research is needed to fully understand the 
potential of these models for predicting pH levels in different fruit tissues and under different environmental 
conditions. Studies are also required to explore different spectral regions to improve the prediction of internal 
quality attributes in carrots.

Data availability
The data used in this study are available upon request. Please contact Shu he zheng at zsh@fafu.edu.cn for access 
to the data.
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