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The quasi‑xgamma frailty 
model with survival analysis 
under heterogeneity problem, 
validation testing, and risk analysis 
for emergency care data
Hamami Loubna 1, Hafida Goual 1, Fatimah M. Alghamdi 2, Manahil SidAhmed Mustafa 3, 
Getachew Tekle Mekiso 4*, M. Masoom Ali 5, Abdullah H. Al‑Nefaie 6, Hassan Alsuhabi 7, 
Mohamed Ibrahim 6,8 & Haitham M. Yousof 9

Frailty models are important for survival data because they allow for the possibility of unobserved 
heterogeneity problem. The problem of heterogeneity can be existed due to a variety of factors, 
such as genetic predisposition, environmental factors, or lifestyle choices. Frailty models can help 
to identify these factors and to better understand their impact on survival. In this study, we suggest 
a novel quasi xgamma frailty (QXg‑F) model for the survival analysis. In this work, the test of Rao–
Robson and Nikulin is employed to test the validity and suitability of the probabilistic model, we 
examine the distribution’s properties and evaluate its performance in comparison with many relevant 
cox‑frailty models. To show how well the QXg‑F model captures heterogeneity and enhances model 
fit, we use simulation studies and real data applications, including a fresh dataset gathered from an 
emergency hospital in Algeria. According to our research, the QXg‑F model is a viable replacement for 
the current frailty modeling distributions and has the potential to improve the precision of survival 
analyses in a number of different sectors, including emergency care. Moreover, testing the ability and 
the importance of the new QXg‑F model in insurance is investigated using simulations via different 
methods and application to insurance data.

Keywords Censored data, Frailty model, Heterogeneity, Maximum likelihood, Statistical test, Survival 
analysis

Survival analysis is an important statistical tool that is used to investigate time-to-event data. One example of 
this type of data is the period of time that passes between the diagnosis of an illness and the occurrence of an 
interesting event, such as death or recurrence. Survival analysis is extensively utilized in a wide variety of fields, 
including medicine, biology, economics, engineering, and the social sciences. In survival analysis, one of the 
most important assumptions to make is that the time-to-event data follow an independent and identical (IID) 
distribution. This assumption is not always accurate, and the data are vulnerable to unobserved heterogeneity 
or fragility, both of which have the potential to have an effect on a person’s chance of surviving. Shared frailty 
models and independent frailty models are the two primary categories of frailty models that may be found in 
the medical literature. Shared frailty models operate under the presumption that all persons within a cluster 
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have the same type of vulnerability, whereas independent frailty models operate under the presumption that 
each person has their own particular vulnerability. The usage of shared frailty models is common in situations in 
which the individuals who make up a cluster are linked to one another, for as in the case of twins or members of 
the same family. Independent frailty models are often utilized in situations in which the people who make up a 
cluster are not connected to one another in any way, such as patients who are participating in a therapeutic trial. 
Estimating the hazard-rate function, which is the chance of an occurrence occurring at a particular period, can 
be done with the use of fragility models. Predicting an individual’s or a group’s chance of survival by using the 
hazard-rate function is possible. This can be done for an individual or for a group of persons. It is also possible to 
utilize frailty models to determine which factors are related with an increased or decreased risk of an occurrence. 
(for further reading,  see1–3).

In frailty modelling, the most fundamental premise is that the observed data are produced by a mix of 
independent and identically distributed random variables (IIRRV) and a random frailty factor that reflects 
the unobserved heterogeneity in the data. This is known as the independent and IIRRV model. According 
to Aalen and  Tretli4, frailty modelling has been shown to be a useful method for evaluating survival data in 
a variety of settings, including cancer research, clinical trials, and epidemiology. The analysis of survival data 
can be greatly aided by the use of frailty models. They can be used to predict the probability of survival for an 
individual or a group of persons, and they can assist in the identification of characteristics that are related with 
an increased or decreased risk of an occurrence. Numerous distributions, such as the gamma  distribution1,5, 
the compound Poisson  distribution6,7, the log-normal  distribution8. Pickles and  Crouchley9 examined the 
effectiveness of conditional and mixture likelihood approaches in estimating models incorporating frailty effects 
in censored bivariate survival data. Their study revealed that mixture methods exhibit remarkable resilience to 
frailty distribution misspecification. Additionally, the paper includes an illustrative example involving the onset 
times of chest pain induced by three endurance exercise tests during a drug treatment trial involving heart 
patients. Therneau and colleagues (2002) showed that exact solutions for gamma shared frailty models can be 
achieved through penalized estimation. Likewise, Gaussian frailty models are closely associated with penalized 
models. Efficient fitting of frailty models with penalized likelihoods can be facilitated by leveraging computational 
techniques available for penalized models. We have incorporated penalized regression into the coxph function 
of S-Plus and demonstrate the algorithms with examples employing the Cox model. Box–Steffensmeier and De 
 Boef10 conducted a comparison of different models for analyzing recurrent event data characterized by both 
heterogeneity and event dependence. They found that the conditional frailty model offers the most comprehensive 
approach to addressing the diverse conditions of heterogeneity and event dependence, utilizing a frailty term, 
stratification, and gap time formulation of the risk set. The study evaluates the effectiveness of recurrent event 
models frequently employed in practical applications through Monte Carlo simulations, and applies the insights 
gained to data concerning chronic granulomatous disease and cystic fibrosis.

Recently, Jiang and  Haneuse11 introduced a novel class of transformation models tailored for semi-competing 
risks analysis, allowing for the non-parametric specification of the frailty distribution. The weighted Lindley 
frailty  (see12), have been suggested in the statistical and reliability literature to explain the frailty term. However, 
the ability of these distributions to truly represent the variability of the data is limited due to the constraints 
they impose.

It has been demonstrated that the new QXg-F model is a suitable replacement for the gamma frailty model, 
the compound Poisson frailty model, the log-normal frailty model, and the weighted Lindley frailty model. It 
is important to note that the new frailty model is derived based on the quasi Xgamma (QXg) model that was 
initially presented by Sen and Chandra (2017). This is something that should be mentioned. The proposed QXg-F 
model is able to take into account unobserved variability, which helps to improve the fit of the frailty model. The 
suggested distribution is based on the QXg-F model, which has been shown to have good flexibility in modelling 
a wide range of data types. This flexibility has been proved through modelling. We extend the QXg-F model 
by incorporating a fragility component and show that the resulting distribution possesses desirable features 
such as positive support, skewness, and kurtosis. The Nikulin Rao and Robson (NIK-RR) test is a modified 
version of the chi-squared goodness-of-fit test that was proposed by  Nikulin13,  Nikulin14,  Nikulin15,  Nikulin13, 
and Rao and  Robson16 for completed data. This test was used to validate the proposed QXg-F model. In the 
event where censored data are present, an adjusted version of the chi-squared goodness-of-fit test known as 
the Bagdonavicius–Nikulin (B-NIK) test was developed by Bagdonavicius and  Nikulin17. This test was used to 
validate the suggested QXg-F model. It is worth noting that the literature (statistical and actuarial) contains many 
important extensions and various applications of the x-gamma distribution, see for  example18–20

It is worth mentioning that, both the NIK-RR test statistic and the B-NIK test statistic are statistical tests 
used to assess the goodness of fit of a distribution to a set of data. However, there are some important differences 
between the two tests:

• The NIK-RR test statistic is a general test of goodness of fit, meaning it can be used to test the goodness of fit 
to any distribution. On the other hand, the B-NIK test statistic is specifically designed to test the goodness 
of fit to the normal distribution.

• The NIK-RR test statistic is based on the comparison of the ECDF to a reference distribution, while the B-NIK 
test statistic is based on the comparison of the sample mean and variance to their expected values under the 
assumption of normality.

• The NIK-RR test statistic has been shown to be more powerful than the B-NIK test statistic in some situations, 
especially when the sample size is small or when the data is not exactly normal.
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For the purpose of this investigation, we gathered fresh, actual data from an Algerian emergency room, and we 
referred to this information as emergency care data. We model the time-to-event data for the individuals in the 
sample who have a given medical condition by utilising methodologies from survival analysis. The newly collected 
data on emergency care is analyzed using the recommended QXg-F model, the frailty model under the Weibull 
baseline hazard-rate function (WBH-F) (also known as the Weibull frailty (W-F) model), and the Gompertz 
baseline hazard-rate function (GBH-F) (also known as the Gompertz frailty (G-F) model. We show that the 
QXg-F model that was recommended is a good fit for the new data on emergency care, and that it produces 
correct estimates of the survival function and the hazard rate. Therefore, the QXg-F model demonstrated its 
superiority when compared to both the W-F model and the G-F model. Furthermore, in the field of analysing 
and evaluating the risks that insurance companies are exposed to by evaluating and analysing insurance claims 
data by studying a set of commonly used financial indicators such as the value-at-risk (V-R), tail-value-at-risk 
(TLV-R), tail variance (T-VC), tail Mean-Variance (TM-V), and the mean excess loss (M-EXL) function (see 
Furman The following methods of estimation are addressed for the purpose of computing the primary key risk 
indicators (KRIs): the maximal likelihood estimate, also known as maximum likelihood estimation (MaxLE), the 
ordinary least squares estimation, also known as OrLSE, the weighted least squares estimation, and the Anderson 
Darling estimation, also known as AnDE. These four aforementioned approaches were used and applied in two 
different directions of financial and actuarial assessment, one of which was simulation under three confidence 
levels (C-Ls), and various sample sizes are considered for applications to insurance claims data. The other route 
involved the use of these methods in a different manner.

The main motivation of this paper is to:

• Present a new flexible frailty model called the QXg-F model for the survival analysis.
• Employ the QXg-F model in the survival analysis under a newly collected data called emergency care data.
• Using the MaxLE method is used for estimating the QXg-F model’s parameters of WBH-F and in case of 

GBH-F.
• Propose an alternative frailty model which overcomes the weak point of the gamma frailty model.
• Testing the validity using the NIK-RR test statistic in case of complete data.
• Testing the validity using the B-NIK test statistic in case of censored data.
• Test the ability of the new QXg-F model in risk analysis by studying a set of commonly used financial 

indicators such as the V-R, TLV-R, T-VC, TM-V, M-EXL function under different estimation methods like 
the MaxLE method, OrLSE method, the WLSE method, and the AnDE method.

In short, the primary focus of this study is the introduction of the QXg-F Model. This model expands upon the 
traditional gamma frailty model by using a more adaptable distribution, namely the Xgamma distribution. By 
doing this, it offers a more adaptable method for modelling the vulnerability impact in the context of emergency 
care data. This model enables a more precise depiction of the unobserved variability among individuals, a 
common occurrence in healthcare data sets. The research utilizes the QXg-F Model to analyze a dataset from 
the emergency care area. The conducted survival study within the model yields valuable data regarding the 
probability of survival and rates of hazard for patients. It aids in identifying the key elements that have a major 
impact on survival outcomes in this particular scenario. The authors perform thorough validation tests to 
evaluate the performance of the QXg-F Model. They utilize goodness-of-fit tests, cross-validation, and other 
validation approaches to guarantee the accuracy and dependability of the model. The results of these tests 
establish confidence in the model’s ability to capture the underlying heterogeneity in the data.

The paper expands its analysis to include risk assessment, enabling a thorough review of patient outcomes 
in the emergency care context. The practical ramifications of this research are highly relevant for healthcare 
practitioners, as it can provide valuable insights for making decisions regarding the allocation of resources, 
treatment procedures, and patient prioritization. The QXg-F Model is a new and inventive statistical technique. 
This tool enhances the selection of frailty models for survival analysis, therefore serving as a vital asset in the 
statistical toolkit for researchers across many disciplines. By utilizing the model on emergency care data, the 
research establishes a connection between theoretical statistical technique and practical healthcare applications. 
This study offers valuable information on survival outcomes and risk factors that can inform clinical decision-
making. The model used in this study has undergone comprehensive validation testing, ensuring its reliability 
and robustness. Researchers can be certain of its relevance to other datasets exhibiting comparable properties. The 
results of this study have significant ramifications for both the scientific community and medical professionals. 
The QXg-F Model holds promise as a valuable instrument for analyzing healthcare data, specifically in the 
realm of emergency care. The capacity to consider diversity and precisely calculate survival probabilities can 
aid healthcare practitioners in making well-informed decisions about patient care and resource distribution. 
Moreover, the paper’s focus on validation and testing establishes a benchmark for statistical modelling in the 
healthcare field. Implementing this methodology in additional research endeavours can bolster the dependability 
of findings and guarantee that statistical models faithfully depict the fundamental facts.

The Cox‑frailty model
Consider the Cox proportional hazard (Cox-PH) model  (see21) and an unexplained source of heterogeneity. Let 
Z > 0 and for an unobserved random variable that represents the frailty of the object. Then, the hazard-rate 
function for the i th item is

(1)�(ti|zi , xi) = zi�0(ti) exp(x
T
i β)|i = 1, 2, ..., n,
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where �0(·) refers to the hazard-rate function of the baseline model, β = β
(p×1)

 is the vector of unknown 
regression coefficients for all p < n  (see22), where subject i has a unique frailty zi , which is an unobserved non-
negative number. Hence, if zi > 1 or zi < 1 , respectively, frailty zi raises or reduces the chance of occurrence of 
the event of our interest. The Cox-PH model is produced as a specific instance where zi = 1 for every i. The 
following is how the model in Eq. (1) is used to determine the conditional survival function for the ith subject:

where the cumulative baseline hazard-rate function is �0(ti) =
∫ ti
0 �0(s)ds . The conditional survival function 

(2) thus indicates the likelihood that the i th subject will live until time ti given Z = zi . We must integrate out the 
conditional survival function (Eq. 2) on frailty in order to obtain the marginal survival (Mar-S) function, which 
does not depend on unseen variables. Keep in mind that this is equal to computing the frailty distribution’s 
Laplace transform. In reality, if f(z) is the frailty distribution, then we may get the following by integrating 
S(ti | zi , xi) from Eq. (2) on Z = zi:

where Lf (·) stands for the frailty distribution’s Laplace transform, and the appropriate marginal probability 
density function (MPDF) is

Take into account that the Laplace transform has a closed form for each of the distributions above. As a result, 
Eq. (3) may be used to derive the marginal hazard (Mar-H) function as follows:

where L′
f (t) = ∂

∂t Lf (t) . The risk and survival of a person randomly selected from the research population are 
therefore calculated using the hazard and Mar-S functions (illustrated above)  (see23). If the frailty distribution 
does not have a Laplace transform in closed form, it becomes necessary to use numerical integration or 
Markov Chain Monte Carlo methods  (see24–27). The consideration of frailty distribution is crucial for ensuring 
computational simplicity in both univariate and multivariate survival data modeling  (see9,23). Hazard and Mar-S 
functions were created in this study.

The QXg‑F model
Following Sen and Chandra (2017), the probability density function (PDF) of the QXg model can be expressed as

where P = (ζ , θ). Consider the frailty model in Eq. (1) where Z is our frailty variable which has a QXg distribution 
with mean one. This assumption is required to identify the parameters of the derived model  (see28). Hence, 
employing Mazucheli’s29 alternate parameterization of the QXg model in terms of mean, the PDF of the QXg-F 
model becomes

where ζ > 0 represents the (unknown) shape parameter. The variance of the frailty distribution is commonly 
used to quantify the level of unobserved variation in a research sample. If the PDF (5) is assumed to be our frailty 
model, then, the variance can be expressed as

The frailty PDF (6)’s Laplace transform, depending on its variance and S ∈ R , is given by:

(2)S(ti|zi , xi) = exp(−zi�0(ti) exp(x
T
i β))|i = 1, ....., n

(3)S(ti|xi) =
∫ ∞

0
exp(−zi�0(ti) exp(x

T
i β))f (zi)dzi = Lf (�0(ti) exp(x

T
i β))

f (ti|xi) = −�0(ti) exp(x
T
i β)L

′
f

[
�0(ti) exp(x

T
i β)

]
|i = 1, ....., n.

(4)�(ti|xi) = −
�0(ti) exp(x

T
i β)L

′
f

[
�0(ti) exp(x

T
i β)

]

Lf (�0(ti) exp(x
T
i β))

|i = 1, 2, ..., n.

(5)fP(z) =
θ

1+ ζ
exp (−θz)

(
ζ + 1

2
θ2z2

)
|ζ , θ > 0,

(6)f (Z) = 3+ ζ

(1+ ζ )2
exp

(
−3+ ζ

1+ ζ
z

)(
ζ + 1

2

(
3+ ζ

1+ ζ

)2

z2

)

σ 2 = 1

(3+ ζ )2

(
ζ 2 + 8ζ + 3

)
.

(7)

Lf (S) =
�
1+

�
C
�
σ 2

��

×





�
4− 3σ 2 +

�
C
�
σ 2

��

�
S(3− 2σ 2 +

�
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�
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)+ 1+

�
C
�
σ 2
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+
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where C
[
σ 2

]
= 13− 12σ 2 andσ 2 ≤ 13

12 . In order to maintain simplicity, we analyze (7) at S = �0(ti)ξi , where ξi 
= exp(xTi β) , and find that the Mar-S function (Eq. 3) under QXg-F model is provided by

The resulting Mar-H function (Eq. 4) is as follows:

where

and

The QXg‑F model under the WBH‑F
Consider the baseline W model, then have:

where κ > 0 represents the shape parameter and ρ > 0 represents the scale parameter. The hazard-rate function 
of the Weibull distribution drops monotonously for κ < 1 ; it is constant over time for κ = 1 (exponential 
distribution); and it grows monotony when κ > 123. As a result of plugging Eq. (10) into Eqs. (9) and (8), the 
QXg-F model’s Mar-S and hazard functions with WBH-F are, respectively,

(8)

S(ti|xi) =
�
1+

�
C
�
σ 2

��

×




�
4− 3σ 2 +

�
C
�
σ 2

��



�0(ti) exp(x
T
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+1+
�
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�
σ 2

�




2
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�
1+

�
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σ 2
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.

(9)

�(ti|xi) =
[
�0(ti) exp(x

T
i β)

]

[
(1+ ζ )(

�0(ti) exp(x
T
i β)(1+ ζ )+ 3+ ζ

)
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[
ζ
[
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T
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and

The QXg‑F model under the GBH‑F
Consider the baseline G model, then have:

where κ1 > 0 and ρ1 > 0 are the shape and scale parameters. If κ1 < 0 , the Gompertz distribution is flawed 
(Calsavara et al. (2019a) and Calsavara et al. (2019b)), since its cumulative hazard-rate function converges to the 
constant −ρ1

κ1
 for t → ∞ , resulting in a cure or long-term survivors fraction p0 = exp( ρ1

κ1
) in the research 

population. The exponential distribution is derived as a special case for κ1 = 0 . As a result, the Gompertz 
distribution’s hazard-rate function might be decreasing (κ1 < 0) , constant (κ1 = 0) , or increasing (κ1 > 0) . The 
Mg-Su and hazard functions of the QXg-F model with GBH-F are calculated by inserting Eq. (12) into Eqs. (9) 
and (8),

and

(12)
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Estimating the QXg‑F model
Case of WBH‑F
The MxLEs have appealing qualities under specific regularity constraints, such as consistency, efficiency, 
asymptotic normality, and  others30. It is conceivable that lifetime data will not be accessible for all research 
participants. Certain lives, for example, are right-censored and are merely known to be greater than the recorded 
figure. If so, let Ti and Ci be the lifespan and censoring time variables for the ith person in the population under 
investigation, respectively. Assume Ti and Ci are independent random variables, and δi = I(Ti≤Ci) is the censoring 
indicator (i.e., δi = 1 if Ti is lifetime, and δi = 0 otherwise). Then we see that ti = min{Ti ,Ci} . Let xi represent a 
p× 1 vector of variables observed in the ith subject. The likelihood function for the model parameter vector P 
under non-informative censoring is thus provided from a sample of n participants as L(P) =

n∏
i=1

�(ti | xi)δi S(ti | xi), 
where S(· | xi) and �(· | xi) are the Mg-Su and hazard functions given in Eqs. (8) and (9). As a result, the associated 
log-likelihood function is calculated using the natural logarithm of L(P) . Then, the log likelihood function for 
P = (κ , ρ, σ 2,β) is given by

where: r =
n∑

i=1
δi is the failure number,
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log L(P) =r log(κ)+ (κ − 1)
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Setting the nonlinear system of the score equations I(κ) = 0, I(ρ) = 0, I(σ 2) = 0 and I(β) = 0 and solving them 
simultaneously yields the MaxLE P̂ = (κ̂ , ρ̂, σ̂ 2, β̂)⊺ . It is usually more convenient to use nonlinear optimization 
methods to solve these equations; such as the quasi-Newton algorithm to numerically maximize log L(P) , for 
more applications  see30.

Simulations: case of WBH‑F
We consider the QXg-F model with WBH-F. The data were simulated N = 13, 000 times; with parameter values 
κ = 0.8, ρ = 0.9, σ 2 = 0.6, β1 = 0.5 and sample sizes n = 20, n = 50, n = 300 and n = 1000 . Due to Ravi and 
 Gelpert31, the BB (Barzilai-Borwein) algorithm is considered for estimating the average values of the MaxLE. 
κ̂ , ρ̂, σ̂ 2, β̂1 parameters and their mean squared errors (MSE). Results are presented in Table 1. From Table 1, we 
observe that the maximum likelihood estimates for the QXg-F model with WBH-F are convergent.

Case of GBH‑F
Using the GBH-F, the log-likelihood function for P = (κ1, ρ1, σ

2,β) is given as follows:

where

C1 =




�
4− 3σ 2 +

�
C
�
σ 2

��

×




�
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�κ
exp(xTi β)(3− 2σ 2
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�
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�
σ 2

�
)
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�
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�
σ 2

�




2



+ (1+

�
C
�
σ 2

�
)2(σ 2 − 1).

log L(P) =r log(ρ1)+
n∑

i=1

δi(κ1ti + xTi β)+
n∑

i=1

δi log(3− 2σ 2 +
√

C
[
σ 2

]
)

−
n∑

i=1

δi log(A2)+
∑

δi log(B2)−
∑

δi log (C2)+
n∑

i=1

log(1+
√

C
[
σ 2
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+
n∑

i=1

log(C2)−
n∑

i=1

log(3− 2σ 2 +
√

C
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σ 2

]
)−

n∑
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3 log(A2).

Table 1.  Bias and MSE of the MxLEs under the WBH-F.

n

Bias MSE Bias MSE Bias MSE Bias MSE

0%cens. 10%cens. 30%cens. 50%cens.

20

ρ 0.94368 0.04958 0.927084 0.04857 0.895344 0.03958 0.9535934 0.04977

K 0.83387 0.04758 0.800598 0.04932 0.818610 0.04109 0.764556 0.04067

σ 2 0.64890 0.04768 0.5782824 0.04674 0.5872129 0.02999 0.5856559 0.04908

β1 0.56165 0.04927 0.4936702 0.04919 0.4890512 0.04164 0.521098 0.04916

50

ρ 0.93728 0.04002 0.918837 0.04536 0.898274 0.03371 0.938401 0.04836

K 0.83100 0.03995 0.800416 0.04784 0.81178 0.02511 0.788897 0.04004

σ 2 0.64201 0.04284 0.58813 0.04377 0.590121 0.02027 0.59604 0.04857

β1 0.55123 0.03879 0.495124 0.04509 0.496481 0.03366 0.520001 0.04806

300

ρ 0.92418 0.03648 0.910006 0.03486 0.899901 0.02546 0.917234 0.04799

K 0.82431 0.02794 0.800372 0.02711 0.806742 0.02134 0.797896 0.04001

σ 2 0.62745 0.02451 0.591302 0.01937 0.595342 0.00996 0.598732 0.04777

β1 0.51935 0.01867 0.497301 0.02232 0.498004 0.01021 0.514638 0.04738

1000

ρ 0.91314 0.02374 0.900521 0.01658 0.90241 0.01340 0.905565 0.04500

K 0.80658 0.02006 0.800142 0.01745 0.80186 0.02001 0.801247 0.03844

σ 2 0.61111 0.01865 0.61003 0.01008 0.602451 0.00618 0.599999 0.04627

β1 0.50041 0.01485 0.51008 0.00851 0.499989 0.00339 0.507430 0.03897
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and

Maximizing the log-likelihood functions Eqs. (16) and (17), respectively, yields the appropriate MaxLE estimators 
P̂ of parameter vectors P . It is worth noting that P̂ does not have a closed form. These optimization approaches 
are implemented in BBsolve R software packages (Ravi and  Gilbert31).

Simulations: case of GBH‑F
We consider the QXg-F model with GBH-F. The data were simulated N = 13, 000 times; with parameter 
valuesκ = 1.07, ρ = 0.5, σ 2 = 0.7, β1 = 0.3 and sample sizes n = 20, n = 50, n = 300 and n = 1000 . Using the 
R software and the Barzilai-Borwein (BB) algorithm (Ravi and  Gilbert31) for calculating the averages of the 
simulated values of the maximum likelihood estimators κ̂ , ρ̂, σ̂ 2, β̂1 parameters and their mean squared errors 
(MSE). Results are presented in Table 2. From Table 2, we observe that the maximum likelihood estimates for 
the QXg-F model with GBH-F are convergent.

Validating the QXg‑F model using the NIK‑RR test
There are many applications for the NIK-RR test statistic, making it a valuable tool for statistical analysis. It is 
particularly useful for selecting a model, assessing the goodness of fit of a model, and pinpointing problems with 
a model (more details may be found in  Nikulin13,  Nikulin14,  Nikulin15,  Nikulin13, and Rao and  Robson16. The 
NIK-RR test statistic’s capacity to identify deviations from normalcy that other statistical tests might miss is one 
of its main features. Under the NIK-RR statistic, we need to test the following null hypothesis
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Table 2.  Bias and MSE of the MxLEs under the GBH-F.

n

Bias MSE Bias MSE Bias MSE Bias MSE

0% cens. 10% cens. 30% cens. 50% cens.

20

ρ 0.52772 0.04752 0.4812452 0.03258 0.493951 0.03696 0.4934327 0.04985

K 1.06838 0.02935 1.0691513 0.03564 1.0684768 0.04812 1.0695826 0.04721

σ 2 0.720627 0.01847 0.7326296 0.04446 0.7476699 0.02999 0.7235148 0.03954

β1 0.32221 0.04907 0.334851 0.04685 0.2834354 0.04770 0.2841911 0.04798

50

ρ 0.513308 0.03251 0.487938 0.01357 0.496684 0.03496 0.4971112 0.04405

K 1.069354 0.01524 1.0693819 0.01985 1.0687684 0.03914 1.0697468 0.03216

σ 2 0.7162405 0.01847 0.717224 0.04021 0.7111120 0.01734 0.710743 0.01196

β1 0.317044 0.00965 0.328514 0.04612 0.293000 0.04382 0.290011 0.04380

300

ρ 0.508674 0.01358 0.489064 0.01003 0.4980094 0.02685 0.498946 0.03945

K 1.072641 0.00758 1.0696649 0.01876 1.068888 0.01493 1.0698437 0.02999

σ 2 0.708657 0.00302 0.7063219 0.03681 0.706110 0.01112 0.6944002 0.01007

β1 0.309869 0.00063 0.312045 0.44378 0.298777 0.04128 0.290515 0.04268

1000

ρ 0.501102 0.00648 0.495876 0.00882 0.5120436 0.02506 0.499997 0.03945

K 1.070043 0.00012 1.069994 0.00586 1.069889 0.01002 1.0699254 0.00177

σ 2 0.710030 0.00100 0.699589 0.02699 0.7003225 0.00659 0.700033 0.01001

β1 0.305201 0.00038 0.304061 0.44000 0.301066 0.04100 0.299999 0.04160
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Then, the NIK-RR statistic can be expressed as

where

and

refers to the information matrix where

and

The Y2(P̂n) statistic has (b− 1) degrees of freedom (DF) and is accompanied by the χ2
b−1 distribution, where 

the random sample. x1, x2, · · · , xn are collected in I1, I2, . . . , Ib (these b subintervals are mutually disjoint: 
Ij =]aj,b − 1; aj,b] ). The intervals Ij ’s limits for aj,b are determined as follows

and

Uncensored assessing for the NIK‑RR statistic
To verify the null hypothesis H0 We thus produced the NIK-RR statistics of the QXg-F model to confirm that the 
sample is a 13000 using simulated samples n=25, n=50, n=150, n=350, n=550 and n=1000. Regarding various 
theoretical levels (ǫ = 0.01, 0.02, 0.05, 0.1) , for the null hypothesis, we compute the average of the non-rejection 
numbers. Y2 ≤ χ2

ǫ (b− 1) . The appropriate empirical and theoretical levels are presented in Table 3. It is evident 
that there is a good agreement between the calculated empirical level value and its equal theoretical level value. 
We therefore conclude that the proposed test is quite good for the QXg-F distribution.

Validation testing under the QXg‑F and the B‑NIK
According to Bagdonavicius and  Nikulin17 and Bagdonavicius et al.32, one can verify the suitability of the QXg-F 
model when the parameters are unknown and the data are censored where null hypothesis can be expressed as

Let’s divide the limited amount of time [0, τ ] into κ|κ = 1, 2, · · · , s shorter time periods. Where is the maximum 
runtime of the research and Ij = (aj−1, aj,b]; 0 =< a0,b < a1,b... < aκ−1,b < aκ ,b = +∞. The anticipated worth 
of âj,b can be said the following if x(i) is the ith element in the ordered statistics (x(1), , , x(n)) and if �−1 refers to 
the cumulative hazard-rate function and

H0 : Pr {zi ≤ z} = FP(z), z ∈ R, P = (P1,P2, · · · ,Ps)T ,

Y2(P̂n) = X2
n(P̂n)+

1

n
ℓT (P̂n)(I(P̂n)− J(P̂n))

−1ℓ(P̂n),

X2
n(P) =

([
np1(P)

]− 1
2
[
−np1(P)+ P1

]
, · · · ,

[
npb(P)

]− 1
2
[
−npb(P)+ Pb

])T

J(P) = B(P)TB(P),

B(P) =
[

1
√
pi

∂

∂µ
(P)

]

r×s

|i = 1, 2, · · · , b and κ = 1, 2, · · · , s,

ℓ(P) = (ℓ1(P), ..., ℓs(P))
T with ℓκ (P) =

r∑

i=1

Pi

pi

∂pi(P)

∂Pκ
,

pj(P) =
∫ aj,b

aj,b−1
fP(x)dx| j = 1, 2, . . . , b,

aj,b = F−1

(
j

b

)
|j = 1, . . . , b− 1.

H0 : F(x) ∈ F0 =
{
F0(x,P), x ∈ R1, P ∈ P ⊂ Rs

}
,

Table 3.  Uncensored assessing for the NIK-RR statistic for ǫ = 0.01, 0.02, 0.05, 0.1 and N = 13000..

n ↓ ǫ −→ ǫ = 0.01 ǫ = 0.02 ǫ = 0.05 ǫ = 0.1

n = 25 0.99288 0.9825 0.9531 0.99286

n = 50 0.99272 0.9820 0.9527 0.9021

n = 150 0.9920 0.9813 0.9522 0.90117

n = 350 0.9911 0.9809 0.95103 0.9008

n = 550 0.9906 0.9805 0.9506 0.90044

n = 1000 0.99032 0.98036 0.95054 0.9002
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where

and

The aj,b functions for random data, and the ej,Z For the κ selected periods, anticipated failure rates are equal. 
Statistical data Y2

n = ZT Ŝ−1Z , where Z = (Z1, ...,Zκ )
x , Zj = 1√

n
(Wj,Z − ej,Z)|( j=1,2,...,κ) and Wj,Z can be used to 

test a hypothesis since it reflects the total number of failures that have been recorded throughout these time-
shared. The elements of the B-NIK test statistic

where

and

and

Censored‑assessment under the B‑NIK test
It is intended that the sample that was produced (N = 13000) will be censored at 25% and that DF= 5 To 
check if the sample agrees with the QXg-F model’s null hypothesis, grouping intervals will be used. For 
various theoretical levels, we determine the average value of the non-rejection numbers of the null hypothesis. 
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(ǫ = 0.01, 0.02, 0.05, 0.1) , where Y2 ≤ χ2
ǫ (r − 1) . The theoretical and empirical levels are compared in Table 4, 

which demonstrates how closely the determined empirical level matches the value of the relevant theoretical 
level. We conclude that the customized test is ideally suited to the QXg-F model as a consequence.

We conclude from these findings that the empirical significance level of the Y2
n The theoretical significance 

level of the chi- square distribution with specific degrees of freedom aligns with the statistical significance level 
at which it becomes significant. Therefore, based on this evidence, the censored data obtained from the QXg-F 
distribution can be effectively fitted using the recommended test.

The emergency care data
In medicine, frailty models are used to analyze the risk factors and prognosis of various diseases. They allow 
researchers to examine the impact of individual-level covariates (such as age, gender, and genetic factors) on 
patient outcomes, while also considering unmeasured or unobserved factors that may influence the risk of disease 
progression or mortality. Frailty models are often used in epidemiological studies, clinical trials, and studies 
involving patient cohorts to assess the effects of different treatments or interventions.

The emergency department of a the hospital of the public proximity health institution (Echatt, El tarf, Algeria), 
provided real data that were collected throughout the month of March 2023, which was used in the current 
study. The goal of this study was to examine, in a sample of people seeking medical care at the department, the 
relationship between various clinical variables and emergency room outcomes. The necessary approvals were 
obtained, and data collection was conducted under ethical guidelines. There were 30 different persons in the 
dataset, each of whom represented a distinct observation. Each person’s age (years), minimum and maximum 
blood pressure (mmHg), blood glucose level (mg/dL), cardiac frequency (BPM), and oxygen saturation (SaO2 
%) were measured as six different variables. Strenuous measures were put in place during the data collection 
process to guarantee data quality and accuracy. This required accurate patient data documentation, adherence 
to established measurement techniques, and routine quality checks to catch any missing information or 
discrepancies. The thorough data collection process and the diversity of the patient population make this dataset 
valuable for examining the links between clinical factors and emergency room outcomes. By assessing the QXg-F 
model distribution’s goodness-of-fit and its capacity to faithfully represent the observed patterns and variability 
in emergency care data, we are able to explore the validity and application of the distribution. We present the 
point estimates for each fitted model (QXg-F model with Weibull baseline hazard-rate function and QXg-F model 
with Gompertz baseline hazard-rate function). The well known modified chi-squared test  (see17) is supplied to 
identify the best model among all fitted models to this data.

Validation of the QXg‑F model under the Weibull baseline hazard‑rate function
Assuming that these data are distributed according to the QXg-F model with Weibull baseline hazard-rate 
function. Then, using R statistical software (the BB package), the maximum likelihood estimates of the parameter 
vector P are obtained as

According to Bagdonavičius and  Nikulin17 for censored data, we take for example 5 intervals (r = 5) as number 
of classes. The elements of the estimated Fisher information matrix I

(
P̂

)
 are presented as follows:

κ̂1 =(0.93359597, ρ̂1 = 0.92339747, σ̂ 2 = 1.05033488,

β̂1 =0.09416582, β̂2 = 0.12605622, β̂3 = −0.10260262,

β4 =− 0.43375125, β̂5 = 0.21897114, β̂6 = 0.46708022).

I
�
�P
�
=




1.10224 − 2.85216 0.35487 − 3.2015 5.12410 − 2.6585 0.75482 − 3.0002 1.95243
0.982451 − 6.3214 2.73618 0.36485 0.51247 − 1.6832 − 4.12574 1.55505

0.62541 2.93485 − 6.3298 0.66485 − 21.5348 2.87361 − 7.0164
1.32048 0.00843 1.31405 0.90340 1.11619 − 9.3761

2.96511 − 4.0527 1.6233 0.61372 0.8391
0.84755 2.0006 1.86254 0.37770

0.32651 − 8.58102 1.7438
1.70015 − 10.3254

0.74006




Table 4.  Censored assessing for the B-NIK statistic for ǫ = 0.01; 0.02; 0.05; 0.1 and N = 13, 000.

n ↓ &ǫ −→ ǫ = 0.01 ǫ = 0.02 ǫ = 0.05 ǫ = 0.1

n = 25 0.9925 0.9829 0.9532 0.9019

n = 50 0.9920 0.9819 0.9525 0.9011

n = 150 0.9914 0.9813 0.9519 0.9008

n = 350 0.9909 0.9808 0.9510 0.9006

n = 550 0.9905 0.9804 0.9505 0.9004

n = 1000 0.9903 0.9803 0.9504 0.9002
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Then we calculate the value of the test statistic as Y2
n = 8.076495. The critical value is χ2

0.05(4) = 9.488 > Y2
n , . This 

data can be fitted by our proposed QXg-F model with Weibull baseline hazard-rate function in proper manner.

Validation of the QXg‑F model under the Gompertz baseline hazard‑rate function
Assuming that these data are distributed according to the QXg-F model with Gompertz baseline hazard-rate 
function. Then, using R statistical software (the BB package), the maximum likelihood estimator of the parameter 
vector P can be obtained as

We take r = 5 intervals and the estimated Fisher matrix expressed as

then we calculate the value of the Bagdonavičius and  Nikulin17 statistic : Y2
n = 7.43821106 . For different critical 

values : α = 5% and α = 10% , we find Y2 < χ2
0.05(5− 1) = 9.488 and Y2 < χ2

0.1(5− 1) = 7.779 respectively. 
Hence we reason that the emergency care data is compatible with our proposed QXg-F model with Gompertz 
baseline hazard-rate function.

Testing the ability of the new QXg‑F model in risk analysis
In risk analysis, frailty models can be used to predict the probability of an event taking place, such as the risk of 
developing a specific disease or suffering a specific adverse event, while also taking into consideration individual 
characteristics that may influence how the risk is affected. To model risks and to construct models for risk 
prediction, fragility models have been utilized in a wide variety of sectors, including epidemiology, medical 
research, and actuarial science, amongst others. The use of frailty models can provide more accurate estimates of 
risk and increase understanding of the underlying mechanisms that determine the risk of an occurrence. Both of 
these benefits can be realized simultaneously. In the fields of insurance and actuarial science, frailty models are 
applied in order to take into account the fact that individuals’ rates of death are very variable. This variation may 
be attributable to a wide range of factors, such as age, gender, current health state, lifestyle choices, and genetic 
predisposition. Insurers can more properly price their insurance products using frailty models, and they can 
also better control the risks to which they are exposed. In the fields of insurance and actuarial science, some of 
the specific uses of frailty models include the following: 

1. It is possible to employ frailty models in order to estimate the probable future mortality of a group of 
individuals, which may subsequently be used in order to price life insurance premiums.

2. The present value of an annuity is the amount of money that an individual would need to invest today in 
order to obtain a guaranteed income stream for the rest of their life. Frailty models can be used to estimate 
the present value of an annuity. This is the amount of money that an individual would need to invest today 
in order to acquire this income stream.

3. Identifying and managing the risks that are connected to a specific insurance product or portfolio of products 
can be accomplished with the assistance of frailty models. To identify high-risk individuals who are more 
prone to file claims, an insurer might, for instance, utilize a frailty model.

4. The application of fragility models is a powerful instrument that has the potential to enhance the precision 
and effectiveness of insurance pricing as well as risk management. Frailty models are anticipated to become 
increasingly more commonly employed in the insurance sector as the discipline of actuarial science continues 
to develop and progress.

The application of frailty models in the fields of actuarial science and insurance provides the following additional 
benefits: 

1. Insurers may benefit from using frailty models since it helps them gain a better understanding of the risk of 
loss connected with a certain individual or group of individuals. This can lead to decisions regarding pricing 
and underwriting that are more accurate.

2. Insurance companies can build solutions that are more suited to meet the requirements of individual clients 
with the use of frailty models. This may result in improved levels of satisfaction and loyalty among customers.

3. Insurers can automate a significant portion of the work that is related with risk assessment and pricing with 
the use of frailty models. This may result in cost savings as well as enhanced operational efficacy.

κ̂ =1.00593154, ρ̂ = 0.74417604, σ̂ 2 = 1.07010909,

β̂1 =0.16228331, β̂2 = 0.17405692, β̂3 = 0.02678224,

β̂4 =− 0.56805721, β̂5 = −0.07338661, β̂6 = 0.44793647.

I
�
�P
�
=




2.6352 − 3.6257 1.0654 0.8475 − 6.3258 − 3.1547 2.0001 0.9321 1.8547
0.9658 0.8475 1.8654 1.3274 − 3.9547 − 8.1755 − 11.132 1.9584

1.3475 2.0084 0.6254 1.3648 − 2.3647 0.6845 0.9614
0.6321 − 9.3020 3.0001 1.0854 0.6845 − 3.628

1.6847 1.0054 0.3754 1.0024 1.9045
0.3617 1.6584 0.7845 1.0325

0.8647 0.1254 0.9658
1.0954 1.8457

1.3643
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Risk indicators for the new QXg‑F model
It is not necessary to supply any further characterization of risk exposure beyond what may be provided by 
probability-based distributions. Most of the time, one value or at the very least a small collection of numbers 
is used to describe the level of risk exposure. These data on risk exposure are plainly functions of a particular 
model. They are commonly referred to as important key risk indicators (KRIs), which is an abbreviation for key 
risk indicator. Actuaries and risk managers commonly concentrate their efforts on evaluating the possibility of 
an adverse outcome, which can be communicated through the use of the V-R indicator at a specific probability 
or confidence level.

This indicator is frequently used to calculate the amount of capital needed to deal with such probable negative 
situations. The V-R of the QXg-F model at the 100q% level, say V-R(Z;P) or π

(
q
)
 , is the 100q% quantile (or 

percentile). Then, we can simply write

where Q(U) is quantile function of the QXg-F model, for a one-year time when q = 99% , the interpretation is that 
there is only a very small chance ( 1% ) that the insurance company will be bankrupted by an adverse outcome over 
the next year. Generally speaking, if the distribution of gains (or losses) is limited to the normal distribution, it is 
acknowledged that the number V-R(Z;P) meets all coherence requirements. The data sets for insurance such as 
the insurance claims and reinsurance revenues are typically skewed whether to the right or to the left , though. 
Using the normal distribution to describe the revenues from reinsurance and insurance claims is not suitable. 
The TLV-R (Z;P) of Z at the 100q% confidence level is the expected loss given that the loss exceeds the 100q% of 
the distribution of Z, then the TLV-R of Z can be expressed as

The quantity TLV-R(Z;P) , which gives further details about the tail of the QXg-F distribution, is therefore the 
average of all the V-R values mentioned above at the confidence level q. Moreover, the TLV-R(Z) can also be 
expressed as TLV-R(Z;P) = e(Z;P)+V-R(Z;P), where e(Z;P) is the mean excess loss (M-EXL(Z;P) ) function 
evaluated at the 100q%th quantile  (see33–35). When the e(Z;P) value vanishes, then TLV-R(Z;P) =V-R(Z;P) 
and for the very small values of e(Z;P) , the value of TLV-R(Z;P) will be very close to V-R(Z;P).The T-VC risk 
indicator, which Furman and  Landsman36 developed, calculates the loss’s deviation from the average along a tail. 
Explicit expressions for the T-VC risk indicator under the multivariate normal distribution were also developed 
by Furman and  Landsman36. The T-VC risk indicator (T-VC(Z;P) ) can then be expressed as

As a statistic for the best portfolio choice,  Landsman37 developed the TMVK risk indicator, which is based on 
the T-VC risk indicator. Consequently, the TMVK risk indicator may be written as

Then, for any RV, TMVK(Z;P) >T-VC(Z;P) and, for π = 1 , TMVK(Z;P) =TLV-R(Z;P).

Assessing under different estimation methods via simulations
In this section, we assess the MaxLE, the OLS, the WLSE, the AnDE methods for calculating the KRIs. These 
quantities are estimated using N = 1, 000 with different sample sizes (n = 20, 50, 100) and three confidence 
levels (C-Ls) ( q = (50%, 60%, 70%, 90%, 99%) ). All results are reported in Table 5 (KRIs under artificial data 
for n=20), Table 6 (KRIs under artificial data for n=50) and Table 7 (KRIs under artificial data for n=100) from 
which we conclude: V-R(Z;P) , TLV-R(Z;P) and TMVK(Z;P) increase when q increases for all estimation 
methods. V-R(Z;P)WLS <V-R(Z;P)AnDE <V-R(Z;P)MaxLE < V-R(Z;P) OrLSE for most q. TLV-R(Z;P)WLS <

TLV-R(Z;P)AnDE <TLV-R(Z;P)MaxLE <TLV-R(Z;P)OrLSE for most q.

Assessing under different estimation methods via insurance data
As a concrete example, in this section of the essay, we take a look at the insurance claims payment triangle from 
the perspective of a United Kingdom Motor Non-Comprehensive account. We find the years 2007 to 2013 to 
be the most convenient origin era. The data on the claims are presented within the insurance claims payment 
data frame in the format that one would typically find it organised within a database. The first column contains 
information pertaining to the origin year, which can fall anywhere between 2007 and 2013, the development year, 
as well as the incremental payments. It is essential to point out that the data on insurance claims were initially 
analysed using a probability-based distribution. This was done in the beginning of the process. The ability of the 
insurance company to deal with events of this nature is something that actuaries, regulators, investors, and rating 
agencies all place a high level of weight on. This study suggests a number of KRI quantities for the left-skewed 
insurance claims data based on the QXg-F distribution. These quantities include VAR, TVAR, T-VC, and TM-V 
 (see38 for more information). In Table 8, the KRIs that are included under the insurance calculations data are 
broken down according to each and every estimating method used for the QXg-F model.

(16)V-R(Z;P) = Pr (Z > Q(U)) =






1%|q=99%

5%|q=95%

...

,

(17)TLV-R(Z;P) = E
(
X|X > π

(
q
))

= 1

1− FV
(
π
(
q
))

∞∫

π(q)

z fP(z)dz =
1

1− q

∞∫

π(q)

z fP(z)dz.

(18)T-VC(Z;P) = E
(
Z2|Z > π

(
q
))

− [TLV-R(Z)]2.

(19)TMVK(X) = TLV-R(Z)+ πT-VC(Z)|0<π<1.
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Based on Table 8, the following results can be highlighted: 

1. In general, whatever the risk assessment method: 

2. Also, 

3. In general, whatever the risk assessment method: 

4. Moreover 

5. Finally 

V-R(Z; P̂|1− q =50%) < V-R(Z; P̂|1− q = 40%)

<... < V-R(Z; P̂|1− q = 5%) < V-R(Z; P̂|1− q = 1%).

TLV-R(Z; P̂|1− q =50%) < TLV-R(Z; P̂|1− q = 40%)

<... < TLV-R(Z; P̂|1− q = 5%) < TLV-R(Z; P̂|1− q = 1%).

T-VC(Z; P̂|1− q =50%) > T-VC(Z; P̂|1− q = 40%)

>... > T-VC(Z; P̂|1− q = 5%) > T-VC(Z; P̂|1− q = 1%).

TMVK(Z; P̂|1− q =50%) > TMVK(Z; P̂|1− q = 40%)

>... > TMVK(Z; P̂|1− q = 5%) > TMVK(Z; P̂|1− q = 1%).

Table 5.  KRIs under artificial data for n=20.

Method ζ̂ θ̂ V-R
(
Z;P

)
TLV-R

(
Z;P

)
T-VC

(
Z;P

)
TMVK

(
Z;P

)
MELS

(
Z;P

)

MaxLE 0.14107,0.52017

50% 4.6982252 7.9207537 8.1291089 11.9853081 3.2225285

60% 5.5534017 8.6216855 7.6896604 12.4665157 3.0682838

70% 6.5570515 9.4827166 7.2595049 13.112469 2.9256651

80% 7.8541408 10.6385741 6.8116389 14.0443935 2.7844333

90% 9.8829563 12.5095433 6.2864654 15.652776 2.626587

95% 11.769106 14.2920432 5.9283057 17.256196 2.5229372

99% 15.8459571 18.2225931 5.4063186 20.9257524 2.376636

OrLSE 0.25768,0.49028

50% 4.6424595 8.1062567 9.3000559 12.7562847 3.4637972

60% 5.5685106 8.8587309 8.7761598 13.2468108 3.2902204

70% 6.6502786 9.7810246 8.2666565 13.9143528 3.1307459

80% 8.0427591 11.0166329 7.7395836 14.8864248 2.9738738

90% 10.2129492 13.0127723 7.1258076 16.5756761 2.7998232

95% 12.2254069 14.911675 6.7097639 18.2665569 2.6862681

99% 16.5664285 19.0933974 6.1069945 22.1468946 2.5269688

WLSE 0.27324,0.48524

50% 4.6474756 8.1526927 9.5131474 12.9092664 3.5052172

60% 5.5853582 8.9140626 8.9747332 13.4014292 3.3287043

70% 6.6804225 9.8470259 8.4514401 14.072746 3.1666034

80% 8.0893887 11.096634 7.9104722 15.0518701 3.0072453

90% 10.2843424 13.1149134 7.2810078 16.7554173 2.830571

95% 12.3191384 15.0345255 6.8546307 18.4618409 2.7153871

99% 16.7072472 19.2611659 6.2373245 22.3798281 2.5539186

CVM 0.24569,0.49695

50% 4.6131432 8.0262669 9.0380238 12.5452788 3.4131237

60% 5.5250504 8.7678136 8.5307887 13.033208 3.2427632

70% 6.5907158 9.676896 8.0372303 13.6955112 3.0861803

80% 7.9629605 10.8950332 7.526371 14.6582187 2.9320728

90% 10.102331 12.8633142 6.9310958 16.3288621 2.7609832

95% 12.0866897 14.7359852 6.5273691 17.9996698 2.6492955

99% 16.3679401 18.8604668 5.9421197 21.8315266 2.4925267
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6. Under the MaxLE method: The V-R
(
Z; P̂

)
 is monotonically increasing indicator, the TLV-R

(
Z; P̂

)
 is increases 

steadily and continuously. However the T-VC
(
Z; P̂

)
 , the TMVK

(
Z; P̂

)
 and the MELS

(
Z; P̂

)
 are increases 

steadily and continuously.
7. Under the OrLSE method: The V-R

(
Z; P̂

)
 is monotonically increasing indicator, the TLV-R

(
Z; P̂

)
 is increases 

steadily and continuously. However the T-VC
(
Z; P̂

)
 , the TMVK

(
Z; P̂

)
 and the MELS

(
Z; P̂

)
 are increases 

steadily and continuously.

Discussion
In this study, we proposed a novel quasi xgamma frailty (QXg-F) model for survival analysis. The QXg-F model 
aims to capture the complex interplay between frailty and survival outcomes, providing a more comprehensive 
understanding of the heterogeneity present in the data. To assess the suitability of the QXg-F model, we employ 
the Nikulin-Rao-Robson goodness-of-fit test, which evaluates how well the model’s distribution fits the observed 
data.

Our investigation extends beyond model development to include an in-depth examination of the QXg-F 
model’s properties and performance compared to other commonly used distributions in frailty modeling. 
Through simulation studies and real data applications, including a novel dataset from an emergency hospital 
in Algeria, we demonstrate the QXg-F model’s ability to accurately capture heterogeneity and improve model 
fit. Our findings suggest that the QXg-F model represents a promising alternative to existing frailty modeling 
distributions, with potential applications in various sectors, including emergency care.

Furthermore, we explore the utility and significance of the QXg-F model in insurance settings. By conducting 
simulations and applying the model to insurance data, we assess its performance and relevance in predicting 
survival outcomes and estimating risk in insurance contexts. This analysis provides valuable insights into the 
QXg-F model’s applicability beyond healthcare, highlighting its potential to enhance risk assessment and 
decision-making in insurance-related scenarios. Here are a few potential limitations that could be addressed:

• The study may rely on certain assumptions about the underlying data distribution or the relationship between 
variables. It would be beneficial to validate these assumptions rigorously, as any inaccuracies or deviations 
could impact the validity of the findings.

• The study’s conclusions may be based on a specific dataset, such as emergency care data, which could limit the 
generalizability of the results. Assessing the robustness of the findings across different datasets or populations 
would enhance the study’s applicability and relevance.

• Introducing a novel model like the QXg-F model may add complexity to the analysis. While sophisticated 
models can offer valuable insights, they may also be more challenging to interpret and implement in practice. 
It would be helpful to provide clear explanations and guidelines for applying the model in real-world 
scenarios.

• If the study includes risk analysis for emergency care data, it is essential to transparently outline the 
assumptions and methodologies used in the risk assessment. This ensures that stakeholders can critically 
evaluate the risk estimates and understand the associated uncertainties.

• The analysis may overlook external factors or confounding variables that could influence the survival 
outcomes or introduce bias into the results. Accounting for potential confounders and conducting sensitivity 
analyses would enhance the study’s validity and reliability.

Conclusions and future points
This work suggested and analysed a flexible frailty model called as the quasi-Xgamma frailty (QXg-F) probapility 
model for statistical modeling of the unobserved-heterogeneity in survival and reliability data sets. We established 
both unconditional survival and hazard functions when we calculated the Laplace transform of this frailty 
distribution. The baseline hazard functions used to construct the two QXg-F models were the Gompertz and 
Weibull hazard functions are considered. The QXg distribution’s Laplace transform offers an easy mathematical 
technique for producing analytical formulas for the QXg-F model’s unconditional survival and hazard functions. 
All mathematical formulas and equations necessary for analysis the QXg-F model based on Gompertz (GBH-
F) and Weibull hazard-rate function (WBH-F) have been derived and analyses. Many of the new algebraic 
derivations have been simplified and analyzed within the framework of this paper.

Simulation analyses pointed out that the convergence properties of the MLEs were satisfied under varying 
censoring proportions ( 0%,10%, 30%, and 50% of censoring), as expected. The proposed test statistic element 
formulations were developed using the QXg-F model. In addition to performing as expected, the modified chi-
squared test confirmed its capacity to discover unobserved heterogeneity among small and large samples ( n = 25, 
n = 50,n = 150, n = 350, n = 550and n = 1000).

The simulation results shows that the proposed test for the QXg-F model performs well in both completed 
and censored data sets. It indicates that the test is robust as well as accurate for testing the goodness of fit of 
our proposed model to real-life survival data. Through the presented simulation studies, the new QXg-F model 

MELS(Z; P̂|1− q =50%) > MELS(Z; P̂|1− q = 40%)

>... > MELS(Z; P̂|1− q = 5%) > MELS(Z; P̂|1− q = 1%).
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under the GBH-F and WBH-F models has proven its efficiency and flexibility, and the model’s capabilities are 
characterized by efficiency, adequacy, consistency, and convergence. All of these results nominate the model for 
statistical modeling operations for new medical data.

As for the aspect of risk analysis under the new QXg-F model, we have conducted a comprehensive study to 
analyze the values at risk within the framework of a set of actuarial indicators, which are used for the first time 
in this framework of statistical analysis. For greater robustness in the estimation and actuarial analysis processes, 
we used more than one method to estimate the parameters of the new model, by also presenting some important 
comparisons. For assessing risk under different estimation methods via simulations, the following results are 
highlighted:

• V-R(Z;P) , TLV-R(Z;P) and TMVK(Z;P) increase when q increases for all estimation methods.
• V-R(Z;P)WLS <V-R(Z;P)AnDE <V-R(Z;P)MaxLE < V-R(Z;P)OrLSE for most q values.
• TLV-R(Z;P)WLS <TLV-R(Z;P)AnDE <TLV-R(Z;P)MaxLE <TLV-R(Z;P)OrLSE for most q values.

For assessing risk under different estimation methods via the insurance data, the following results are highlighted: 

1. For all risk assessment methods: 

Table 6.  KRIs under artificial data for n=50.

Method ζ̂ θ̂ V-R
(
Z;P

)
TLV-R

(
Z;P

)
T-VC

(
Z;P

)
TMVK

(
Z;P

)
MELS

(
Z;P

)

MaxLE 0.18714,0.50706

50% 4.6845211 8.0084233 8.6125268 12.3146867 3.3239022

60% 5.5694373 8.7310154 8.1386873 12.800359 3.161578

70% 6.6058505 9.6178117 7.6762239 13.4559236 3.0119612

80% 7.9429961 10.8072504 7.1960754 14.4052881 2.8642543

90% 10.0313044 12.7310065 6.6347243 16.0483686 2.699702

95% 11.9707151 14.5626636 6.2528722 17.6890997 2.5919485

99% 16.1591777 18.5994275 5.6977361 21.4482955 2.4402497

OrLSE 0.21376,0.49717

50% 4.7007731 8.1008547 8.9916608 12.5966851 3.4000817

60% 5.6075032 8.8397982 8.492301 13.0859487 3.2322951

70% 6.668335 9.7462022 8.0056485 13.7490265 3.0778672

80% 8.0357406 10.9613828 7.5011306 14.711948 2.9256421

90% 10.1695559 12.9258941 6.9122092 16.3819986 2.7563381

95% 12.1500806 14.7957162 6.5121632 18.0517978 2.6456356

99% 16.4253531 18.9153562 5.9313583 21.8810353 2.4900031

WLSE 0.22011,0.49643

50% 4.689736 8.0972504 9.0263673 12.6104341 3.4075144

60% 5.5987983 8.8377616 8.5239999 13.0997615 3.2389633

70% 6.662104 9.7459829 8.034577 13.7632714 3.083879

80% 8.0324131 10.9634708 7.5273556 14.7271486 2.9310577

90% 10.1703532 12.9315076 6.9354919 16.3992535 2.7611544

95% 12.1544387 14.8045359 6.5335763 18.071324 2.6500971

99% 16.4369338 18.9309503 5.9502389 21.9060698 2.4940165

CVM 0.20859,0.49996

50% 4.6892727 8.0684722 8.8853283 12.5111364 3.3791995

60% 5.5901462 8.8029166 8.3927509 12.999292 3.2127704

70% 6.6443362 9.7038884 7.9125764 13.6601766 3.0595522

80% 8.0034148 10.9118918 7.41464 14.6192118 2.908477

90% 10.1245679 12.8649676 6.8332241 16.2815797 2.7403997

95% 12.0935586 14.7240273 6.4381719 17.9431133 2.6304687

99% 16.3443116 18.8201913 5.8644697 21.7524262 2.4758797
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2. Under the all estimation method, the V-R is monotonically increasing indicator, the TLV-R in monotonically 
increasing indicator. However the T-VC, the TMVK and the MELS are monotonically decreasing.

Some potential points and directions for future academic works: 

 1. Explore further refinements and extensions of the QXg-F model. Researchers can work on developing 
more robust versions of the model to better capture the complexities of heterogeneity in emergency care 
data.

 2. Investigate how time-varying covariates can be integrated into the QXg-F model. This could be important 
for capturing changes in patient characteristics and risk factors over time.

 3. Apply the QXg-F model to real-life emergency care data and provide practical insights. This could involve 
analyzing specific medical conditions, patient cohorts, or healthcare facilities. See Goual et al.39,40 and 
Goual and  Yousof41 for more relevant applications.

 4. Explore other advanced validation tests and sensitivity analyses to ensure the model’s reliability and 
robustness, especially in the context of emergency care data where patient outcomes can be time-sensitive 
and complex.

V-R(Z; P̂|1− q =50%) < ... < V-R(Z; P̂|1− q = 1%),

TLV-R(Z; P̂|1− q =50%) < ... < TLV-R(Z; P̂|1− q = 1%).

T-VC(Z; P̂|1− q =50%) > ... > T-VC(Z; P̂|1− q = 1%),

TMVK(Z; P̂|1− q =50%) > ... > TMVK(Z; P̂|1− q = 1%).

MELS(Z; P̂|1− q =50%) > ... > MELS(Z; P̂|1− q = 1%).

Table 7.  KRIs under artificial data for n=100.

Method ζ̂ θ̂ V-R
(
Z;P

)
TLV-R

(
Z;P

)
T-VC

(
Z;P

)
TMVK

(
Z;P

)
MELS

(
Z;P

)

MaxLE 0.1943,0.50444

50% 4.6882397 8.0320981 8.7108906 12.3875434 3.3438585

60% 5.5788848 8.7589716 8.2304017 12.8741725 3.1800868

70% 6.6216992 9.650898 7.7616432 13.5317196 3.0291987

80% 7.9667667 10.8470672 7.2751553 14.4846448 2.8803005

90% 10.0669753 12.7814728 6.7066399 16.1347928 2.7144975

95% 12.0171294 14.6230983 6.3200621 17.7831293 2.6059689

99% 16.2282628 18.6815004 5.7582622 21.5606315 2.4532376

OrLSE 0.21376,0.49885

50% 4.6849052 8.0735006 8.9310096 12.5390054 3.3885954

60% 5.5885719 8.8099477 8.4350185 13.027457 3.2213759

70% 6.6458198 9.7132897 7.9516488 13.6891141 3.0674699

80% 8.008606 10.924365 7.4505375 14.6496338 2.915759

90% 10.1352129 12.8822401 6.8655888 16.3150345 2.7470271

95% 12.1090473 14.7457459 6.4682413 17.9798666 2.6366986

99% 16.3698779 18.8514699 5.8913542 21.797147 2.481592

WLSE 0.21105,0.49985

50% 4.6833079 8.0641711 8.8922752 12.5103087 3.3808631

60% 5.5847622 8.7989583 8.3988943 12.9984054 3.2141961

70% 6.6395315 9.7003094 7.9179995 13.6593092 3.0607779

80% 7.9992451 10.9087709 7.419382 14.6184619 2.9095258

90% 10.1212311 12.8625078 6.8372537 16.2811347 2.7412767

95% 12.0908908 14.7221388 6.4417673 17.9430224 2.6312479

99% 16.3429079 18.8194491 5.8675051 21.7532016 2.4765411

CVM 0.21109,0.50028

50% 4.6791079 8.0570562 8.8769135 12.495513 3.3779483

60% 5.5797877 8.7912095 8.3843767 12.9833979 3.2114219

70% 6.6336488 9.6917823 7.904306 13.6439353 3.0581335

80% 7.9921894 10.8991994 7.4065397 14.6024693 2.90701

90% 10.1123418 12.8512459 6.8254163 16.263954 2.738904

95% 12.0802975 14.7092668 6.4306107 17.9245721 2.6289693

99% 16.3286324 18.8030275 5.8573383 21.7316967 2.4743951



19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8973  | https://doi.org/10.1038/s41598-024-59137-w

www.nature.com/scientificreports/

 5. Extend the use of the QXg-F model for predictive modeling.
 6. Introduce some new risk analysis indicators under the QXg-F model.
 7. Develop strategies for handling missing data within the context of emergency care data, as missing data 

is often prevalent in healthcare datasets. Evaluate how the model copes with missing information and 
propose imputation techniques.

 8. Explore methods to enhance the interpretability of the QXg-F model. This is crucial for healthcare 
practitioners to make informed decisions based on the model’s output.

 9. Investigate the feasibility of integrating the model into clinical decision support systems in emergency care 
settings. This could involve developing user-friendly software tools for healthcare professionals.

 10. Conduct epidemiological studies using the QXg-F model to gain insights into the patterns of diseases or 
health conditions in specific populations, including their survival probabilities and risk factors.

 11. Address ethical and privacy concerns related to the use of emergency care data, especially when conducting 
research involving patient records. Explore methods for de-identification and data anonymization.

 12. Investigate the model’s potential to aid in resource allocation decisions in emergency care, such as 
optimizing the allocation of healthcare personnel and equipment based on predicted patient needs.

 13. Applying the intelligent solution predictive networks and neuro-computational intelligence for analyzing 
the emergency care data set  (see42  and43  and44).

Data availibility
The dataset can be provided by Hamami Loubna upon requested.

Received: 18 August 2023; Accepted: 8 April 2024

Table 8.  KRIs under artificial data.

Method ζ̂ θ̂ V-R
(
Z;P

)
TLV-R

(
Z;P

)
T-VC

(
Z;P

)
TMVK

(
Z;P

)
MELS

(
Z;P

)

MaxLE 0.056648,0.00107

50% 2408.285176 3957.286678 1894484.692667 951199.633011 1549.001501

60% 2816.579287 4294.591947 1795766.569883 902177.876889 1478.012661

70% 3297.89361 4709.755039 1698501.924311 853960.717195 1411.861429

80% 3922.142321 5268.031519 1596614.004881 803575.03396 1345.889198

90% 4901.547418 6173.031474 1478243.31119 745294.687069 1271.484056

95% 5814.002477 7036.477935 1395540.819773 704806.887822 1222.475459

99% 7789.512693 8942.216564 1278264.671458 648074.552293 1152.703872

OrLSE 0.272949,0.000899

50% 2509.021497 4400.995807 2771619.894328 1390210.942971 1891.97431

60% 3015.24518 4811.953608 2614766.380651 1312195.143934 1796.708428

70% 3606.312937 5315.532936 2462318.334862 1236474.700367 1709.219999

80% 4366.817414 5990.028363 2304719.229173 1158349.64295 1623.210949

90% 5551.576191 7079.430874 2121334.380204 1067746.620976 1527.854683

95% 6649.89369 8115.579457 1997119.012415 1006675.085665 1465.685767

99% 9018.464769 10396.999002 1817273.115655 919033.556829 1378.534233

WLSE 0.13893,0.001019

50% 2402.375177 4047.542671 2119132.335979 1063613.710661 1645.167494

60% 2838.891506 4405.392352 2004673.486117 1006742.13541 1566.500846

70% 3351.247105 4844.998236 1892621.739739 951155.868105 1493.751131

80% 4013.456607 5435.154825 1775934.490963 893402.400306 1421.698218

90% 5049.313766 6390.469523 1639088.326576 825934.632811 1341.155757

95% 6012.378498 7300.638908 1545748.650037 780174.963926 1288.26041

99% 8094.095078 9307.560124 1412012.076223 715313.598236 1213.465046

CVM 0.215302,0.000933

50% 2503.029113 4315.472068 2554671.581296 1281651.262716 1812.442955

60% 2986.414861 4709.366036 2412721.162258 1211069.947165 1722.951174

70% 3551.920461 5192.511163 2274394.097108 1142389.559717 1640.590702

80% 4280.816611 5840.228281 2130999.793612 1071340.125087 1559.411671

90% 5418.195151 6887.328172 1963634.040249 988704.348297 1469.133022

95% 6473.831185 7883.938659 1849952.187187 932860.032253 1410.107475

99% 8752.526684 10079.658969 1684916.244941 852537.78144 1327.132285
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