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Frailty models are important for survival data because they allow for the possibility of unobserved
heterogeneity problem. The problem of heterogeneity can be existed due to a variety of factors,

such as genetic predisposition, environmental factors, or lifestyle choices. Frailty models can help

to identify these factors and to better understand their impact on survival. In this study, we suggest

a novel quasi xgamma frailty (QXg-F) model for the survival analysis. In this work, the test of Rao-
Robson and Nikulin is employed to test the validity and suitability of the probabilistic model, we
examine the distribution’s properties and evaluate its performance in comparison with many relevant
cox-frailty models. To show how well the QXg-F model captures heterogeneity and enhances model
fit, we use simulation studies and real data applications, including a fresh dataset gathered from an
emergency hospital in Algeria. According to our research, the QXg-F model is a viable replacement for
the current frailty modeling distributions and has the potential to improve the precision of survival
analyses in a number of different sectors, including emergency care. Moreover, testing the ability and
the importance of the new QXg-F model in insurance is investigated using simulations via different
methods and application to insurance data.

Keywo rds Censored data, Frailty model, Heterogeneity, Maximum likelihood, Statistical test, Survival
analysis

Survival analysis is an important statistical tool that is used to investigate time-to-event data. One example of
this type of data is the period of time that passes between the diagnosis of an illness and the occurrence of an
interesting event, such as death or recurrence. Survival analysis is extensively utilized in a wide variety of fields,
including medicine, biology, economics, engineering, and the social sciences. In survival analysis, one of the
most important assumptions to make is that the time-to-event data follow an independent and identical (IID)
distribution. This assumption is not always accurate, and the data are vulnerable to unobserved heterogeneity
or fragility, both of which have the potential to have an effect on a person’s chance of surviving. Shared frailty
models and independent frailty models are the two primary categories of frailty models that may be found in
the medical literature. Shared frailty models operate under the presumption that all persons within a cluster

Laboratory of Probabilities and Statistics LaPS, Department of Mathematics, Faculty of Sciences, Badji Mokhtar
Annaba University, Annaba, Algeria. 2Department of Mathematical Sciences, College of Science, Princess Nourah
bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia. >Department of Statistics, Faculty of
Science, University of Tabuk, Tabuk, Saudi Arabia. “Department of Statistics, College of Natural and Computational
Science, Wachemo University, Hossana, Ethiopia. *Department of Mathematical Sciences, Ball State University,
Muncie, IN, USA. ®Department of Quantitative Methods, School of Business, King Faisal University, 31982 Al-Ahsa,
Saudi Arabia. ‘Department of Mathematics, Al-Qunfudah University College, Umm Al-Qura University, Mecca,
Saudi Arabia. 8Department of Applied, Mathematical and Actuarial Statistics, Faculty of Commerce, Damietta
University, Damietta, Egypt. °Department of Statistics, Mathematics and Insurance, Benha University, Benha,
Egypt. “email: getachewtekle@wcu.edu.et

Scientific Reports|  (2024) 14:8973 | https://doi.org/10.1038/s41598-024-59137-w nature portfolio


http://orcid.org/0000-0002-6606-2541
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-59137-w&domain=pdf

www.nature.com/scientificreports/

have the same type of vulnerability, whereas independent frailty models operate under the presumption that
each person has their own particular vulnerability. The usage of shared frailty models is common in situations in
which the individuals who make up a cluster are linked to one another, for as in the case of twins or members of
the same family. Independent frailty models are often utilized in situations in which the people who make up a
cluster are not connected to one another in any way, such as patients who are participating in a therapeutic trial.
Estimating the hazard-rate function, which is the chance of an occurrence occurring at a particular period, can
be done with the use of fragility models. Predicting an individual’s or a group’s chance of survival by using the
hazard-rate function is possible. This can be done for an individual or for a group of persons. It is also possible to
utilize frailty models to determine which factors are related with an increased or decreased risk of an occurrence.
(for further reading, see'~?).

In frailty modelling, the most fundamental premise is that the observed data are produced by a mix of
independent and identically distributed random variables (IIRRV) and a random frailty factor that reflects
the unobserved heterogeneity in the data. This is known as the independent and IIRRV model. According
to Aalen and Tretli%, frailty modelling has been shown to be a useful method for evaluating survival data in
a variety of settings, including cancer research, clinical trials, and epidemiology. The analysis of survival data
can be greatly aided by the use of frailty models. They can be used to predict the probability of survival for an
individual or a group of persons, and they can assist in the identification of characteristics that are related with
an increased or decreased risk of an occurrence. Numerous distributions, such as the gamma distribution”,
the compound Poisson distribution®’, the log-normal distribution®. Pickles and Crouchley® examined the
effectiveness of conditional and mixture likelihood approaches in estimating models incorporating frailty effects
in censored bivariate survival data. Their study revealed that mixture methods exhibit remarkable resilience to
frailty distribution misspecification. Additionally, the paper includes an illustrative example involving the onset
times of chest pain induced by three endurance exercise tests during a drug treatment trial involving heart
patients. Therneau and colleagues (2002) showed that exact solutions for gamma shared frailty models can be
achieved through penalized estimation. Likewise, Gaussian frailty models are closely associated with penalized
models. Efficient fitting of frailty models with penalized likelihoods can be facilitated by leveraging computational
techniques available for penalized models. We have incorporated penalized regression into the coxph function
of S-Plus and demonstrate the algorithms with examples employing the Cox model. Box-Steffensmeier and De
Boef' conducted a comparison of different models for analyzing recurrent event data characterized by both
heterogeneity and event dependence. They found that the conditional frailty model offers the most comprehensive
approach to addressing the diverse conditions of heterogeneity and event dependence, utilizing a frailty term,
stratification, and gap time formulation of the risk set. The study evaluates the effectiveness of recurrent event
models frequently employed in practical applications through Monte Carlo simulations, and applies the insights
gained to data concerning chronic granulomatous disease and cystic fibrosis.

Recently, Jiang and Haneuse'! introduced a novel class of transformation models tailored for semi-competing
risks analysis, allowing for the non-parametric specification of the frailty distribution. The weighted Lindley
frailty (see'?), have been suggested in the statistical and reliability literature to explain the frailty term. However,
the ability of these distributions to truly represent the variability of the data is limited due to the constraints
they impose.

It has been demonstrated that the new QXg-F model is a suitable replacement for the gamma frailty model,
the compound Poisson frailty model, the log-normal frailty model, and the weighted Lindley frailty model. It
is important to note that the new frailty model is derived based on the quasi Xgamma (QXg) model that was
initially presented by Sen and Chandra (2017). This is something that should be mentioned. The proposed QXg-F
model is able to take into account unobserved variability, which helps to improve the fit of the frailty model. The
suggested distribution is based on the QXg-F model, which has been shown to have good flexibility in modelling
a wide range of data types. This flexibility has been proved through modelling. We extend the QXg-F model
by incorporating a fragility component and show that the resulting distribution possesses desirable features
such as positive support, skewness, and kurtosis. The Nikulin Rao and Robson (NIK-RR) test is a modified
version of the chi-squared goodness-of-fit test that was proposed by Nikulin'?, Nikulin', Nikulin'®, Nikulin'?,
and Rao and Robson'¢ for completed data. This test was used to validate the proposed QXg-F model. In the
event where censored data are present, an adjusted version of the chi-squared goodness-of-fit test known as
the Bagdonavicius-Nikulin (B-NIK) test was developed by Bagdonavicius and Nikulin'’. This test was used to
validate the suggested QXg-F model. It is worth noting that the literature (statistical and actuarial) contains many
important extensions and various applications of the x-gamma distribution, see for example!®-2°

It is worth mentioning that, both the NIK-RR test statistic and the B-NIK test statistic are statistical tests
used to assess the goodness of fit of a distribution to a set of data. However, there are some important differences
between the two tests:

e The NIK-RR test statistic is a general test of goodness of fit, meaning it can be used to test the goodness of fit
to any distribution. On the other hand, the B-NIK test statistic is specifically designed to test the goodness
of fit to the normal distribution.

e The NIK-RR test statistic is based on the comparison of the ECDF to a reference distribution, while the B-NIK
test statistic is based on the comparison of the sample mean and variance to their expected values under the
assumption of normality.

e The NIK-RR test statistic has been shown to be more powerful than the B-NIK test statistic in some situations,
especially when the sample size is small or when the data is not exactly normal.
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For the purpose of this investigation, we gathered fresh, actual data from an Algerian emergency room, and we
referred to this information as emergency care data. We model the time-to-event data for the individuals in the
sample who have a given medical condition by utilising methodologies from survival analysis. The newly collected
data on emergency care is analyzed using the recommended QXg-F model, the frailty model under the Weibull
baseline hazard-rate function (WBH-F) (also known as the Weibull frailty (W-F) model), and the Gompertz
baseline hazard-rate function (GBH-F) (also known as the Gompertz frailty (G-F) model. We show that the
QXg-F model that was recommended is a good fit for the new data on emergency care, and that it produces
correct estimates of the survival function and the hazard rate. Therefore, the QXg-F model demonstrated its
superiority when compared to both the W-F model and the G-F model. Furthermore, in the field of analysing
and evaluating the risks that insurance companies are exposed to by evaluating and analysing insurance claims
data by studying a set of commonly used financial indicators such as the value-at-risk (V-R), tail-value-at-risk
(TLV-R), tail variance (T-VC), tail Mean-Variance (TM-V), and the mean excess loss (M-EXL) function (see
Furman The following methods of estimation are addressed for the purpose of computing the primary key risk
indicators (KRIs): the maximal likelihood estimate, also known as maximum likelihood estimation (MaxLE), the
ordinary least squares estimation, also known as OrLSE, the weighted least squares estimation, and the Anderson
Darling estimation, also known as AnDE. These four aforementioned approaches were used and applied in two
different directions of financial and actuarial assessment, one of which was simulation under three confidence
levels (C-Ls), and various sample sizes are considered for applications to insurance claims data. The other route
involved the use of these methods in a different manner.
The main motivation of this paper is to:

® Present a new flexible frailty model called the QXg-F model for the survival analysis.

Employ the QXg-F model in the survival analysis under a newly collected data called emergency care data.

Using the MaxLE method is used for estimating the QXg-F model’s parameters of WBH-F and in case of
GBH-FE

Propose an alternative frailty model which overcomes the weak point of the gamma frailty model.

Testing the validity using the NIK-RR test statistic in case of complete data.

Testing the validity using the B-NIK test statistic in case of censored data.

Test the ability of the new QXg-F model in risk analysis by studying a set of commonly used financial
indicators such as the V-R, TLV-R, T-VC, TM-V, M-EXL function under different estimation methods like
the MaxLE method, OrLSE method, the WLSE method, and the AnDE method.

In short, the primary focus of this study is the introduction of the QXg-F Model. This model expands upon the
traditional gamma frailty model by using a more adaptable distribution, namely the Xgamma distribution. By
doing this, it offers a more adaptable method for modelling the vulnerability impact in the context of emergency
care data. This model enables a more precise depiction of the unobserved variability among individuals, a
common occurrence in healthcare data sets. The research utilizes the QXg-F Model to analyze a dataset from
the emergency care area. The conducted survival study within the model yields valuable data regarding the
probability of survival and rates of hazard for patients. It aids in identifying the key elements that have a major
impact on survival outcomes in this particular scenario. The authors perform thorough validation tests to
evaluate the performance of the QXg-F Model. They utilize goodness-of-fit tests, cross-validation, and other
validation approaches to guarantee the accuracy and dependability of the model. The results of these tests
establish confidence in the model’s ability to capture the underlying heterogeneity in the data.

The paper expands its analysis to include risk assessment, enabling a thorough review of patient outcomes
in the emergency care context. The practical ramifications of this research are highly relevant for healthcare
practitioners, as it can provide valuable insights for making decisions regarding the allocation of resources,
treatment procedures, and patient prioritization. The QXg-F Model is a new and inventive statistical technique.
This tool enhances the selection of frailty models for survival analysis, therefore serving as a vital asset in the
statistical toolkit for researchers across many disciplines. By utilizing the model on emergency care data, the
research establishes a connection between theoretical statistical technique and practical healthcare applications.
This study offers valuable information on survival outcomes and risk factors that can inform clinical decision-
making. The model used in this study has undergone comprehensive validation testing, ensuring its reliability
and robustness. Researchers can be certain of its relevance to other datasets exhibiting comparable properties. The
results of this study have significant ramifications for both the scientific community and medical professionals.
The QXg-F Model holds promise as a valuable instrument for analyzing healthcare data, specifically in the
realm of emergency care. The capacity to consider diversity and precisely calculate survival probabilities can
aid healthcare practitioners in making well-informed decisions about patient care and resource distribution.
Moreover, the paper’s focus on validation and testing establishes a benchmark for statistical modelling in the
healthcare field. Implementing this methodology in additional research endeavours can bolster the dependability
of findings and guarantee that statistical models faithfully depict the fundamental facts.

The Cox-frailty model

Consider the Cox proportional hazard (Cox-PH) model (see?") and an unexplained source of heterogeneity. Let
Z > 0 and for an unobserved random variable that represents the frailty of the object. Then, the hazard-rate
function for the i item is

Mtilzi xi) = zido(t) exp(x] B)li = 1,2,...,m, )
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where Ao (-) refers to the hazard-rate function of the baseline model, 8 = ﬁ(pxl is the vector of unknown
regression coeflicients for all p < n (see??), where subject i has a unique frailty z;, which is an unobserved non-
negative number. Hence, if z; > 1or z; < 1, respectively, frailty z; raises or reduces the chance of occurrence of
the event of our interest. The Cox-PH model is produced as a specific instance where z; = 1 for every i. The

following is how the model in Eq. (1) is used to determine the conditional survival function for the ith subject:
S(tilzin ;) = exp(—zi Ao (1) exp(x B)li = 1, can )

where the cumulative baseline hazard-rate function is Ag(;) = jgi Ao(s)ds. The conditional survival function
(2) thus indicates the likelihood that the i subject will live until time t; given Z = z;. We must integrate out the
conditional survival function (Eq. 2) on frailty in order to obtain the marginal survival (Mar-S) function, which
does not depend on unseen variables. Keep in mind that this is equal to computing the frailty distribution’s
Laplace transform. In reality, if f(z) is the frailty distribution, then we may get the following by integrating
S(t | zi,x;) from Eq. (2) on Z = z;:

S(ti|xi)=/ exp(—ziAo(t;) exp(x] B))f (z1)dzi = Lr(Ao(t;) exp(x] B)) (3)
0

where Ly (-) stands for the frailty distribution’s Laplace transform, and the appropriate marginal probability
density function (MPDF) is

Take into account that the Laplace transform has a closed form for each of the distributions above. As a result,
Eq. (3) may be used to derive the marginal hazard (Mar-H) function as follows:

Ao(t) exp(xiTE)L} [Ao(t,-) exp(xiTﬁ)] )
7 li=1,2,..,n. 4)
Le(Ao(t) exp(x; B))

Altilx;) = —

where L}(t) = aB—th(t). The risk and survival of a person randomly selected from the research population are
therefore calculated using the hazard and Mar-S functions (illustrated above) (see?). If the frailty distribution
does not have a Laplace transform in closed form, it becomes necessary to use numerical integration or
Markov Chain Monte Carlo methods (see?*~?’). The consideration of frailty distribution is crucial for ensuring
computational simplicity in both univariate and multivariate survival data modeling (see®?’). Hazard and Mar-S
functions were created in this study.

The QXg-F model
Following Sen and Chandra (2017), the probability density function (PDF) of the QXg model can be expressed as

()—i 6 (+10“> 9 >0
fgz—l_’_;exp(— 2)| ¢ 5 z°)1¢,0 > 0, (5)

where P = (¢,0). Consider the frailty model in Eq. (1) where Z is our frailty variable which has a QXg distribution
with mean one. This assumption is required to identify the parameters of the derived model (see?®). Hence,
’s* alternate parameterization of the QXg model in terms of mean, the PDF of the QXg-F

employing Mazucheli’s
3+¢ 3+¢ 1(3+0),
Z) = - (>
@) <1+:>26Xp( 1+;Z)<H2(1+c) Z) ©

model becomes

where ¢ > 0 represents the (unknown) shape parameter. The variance of the frailty distribution is commonly
used to quantify the level of unobserved variation in a research sample. If the PDF (5) is assumed to be our frailty
model, then, the variance can be expressed as

1
"= G )

The frailty PDF (6)’s Laplace transform, depending on its variance and S € R, is given by:
L($) = (1 +4/C [02])

(4 —30%+ ‘/(C[UZD
(56— 202+ \/Clo?] + 14+ /C[o7]) + (14 /C[7]) @ - ) @

x{(3—202+ c[a2]>(5(3_202+ C[Gz])H*mf}l

X
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where C [02] =13 — 1202ando? < % In order to maintain simplicity, we analyze (7) atS = A¢(t;)&;, where &;

:exp(xiT B), and find that the Mar-S function (Eq. 3) under QXg-F model is provided by
S(tilxi) = (1 + 1/@[0‘2])
(4-302+ /C[o7])

( Ao(ti) exp(x] B)(3 — 202 + |/C[0?]) ) ’
8 12

+1+,/C[o?]

. ®)
+(1 + C[ol}) %=1
(3 =202+ ,/C[o?]) -
x Ao(t:) exp(x] ) ’
x(3—=20%+,/C[0?]) + 1+ ,/C[0?]
The resulting Mar-H function (Eq. 4) is as follows:
2til) =20t exp(x[ B)|
1+
(Aot exp(x! BY(1 +¢) +3+¢) ©)

¢ [Ao(t) exp(xI B)Y(1+¢) + 3 +£]° + 33 +¢)?
¢ [Ao(t) expxI BYA+ ) +3+¢]° + B +0)?

>

where
1 5 , 13
§_02_1(4—3U +\/(C[(72})|0 ZE’
1 13
1—{—;=02_1(3—202+\/C[02})|022E,
and
1 ), 2. 13
3—1—{:02_1 1+Q/(C[O'] lo zﬁ'

The QXg-F model under the WBH-F
Consider the baseline W model, then have:

A\ k=1 A\ K
Jo(t) = f(ﬁ) and Ao(t;) = (5) It > 0 (10)
p\p p

where k > 0represents the shape parameter and p > 0 represents the scale parameter. The hazard-rate function
of the Weibull distribution drops monotonously for k < 1; it is constant over time for ¥ = 1 (exponential
distribution); and it grows monotony when « > 1%, As a result of plugging Eq. (10) into Egs. (9) and (8), the
QXg-F model’s Mar-S and hazard functions with WBH-F are, respectively,

S(ti|xi) = (1 + \/ﬁ)

4—3a2+\/@
) ( <(z)” expl! | )
(B-20%+ C[aZ})JrZH\/@ an
+<1+\/®> (02 —1)
(3—20%+4,/C[o?)
x (4)" expxB)

3
x(3—20%+ (C[Gz])—{—l—i— Q/C[az])
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and

A\ k-1
Atilx) = {; (%) exp(x! ,3)}
[ 3—202+,/(C[02]

() v pe 202+l + 1+ [Tl
<E>K exp(x/ B)(3 — 207
4_302+\/® + pC[UZ})+1+\/@ (12
2
5 +3(a2—1)(1+\/c[72})

<%)K exp(x] B)(3 — 20

-3+ 2| el

+1+,/C[0?]

| +(02—1)(1+,/C[02})2

The QXg-F model under the GBH-F

Consider the baseline G model, then have:

Jo(t) = prexplity) and Ao(ti>=%<exp(xlti>—1> ;>0 (13)

where k7 > 0 and p; > 0 are the shape and scale parameters. If ; < 0, the Gompertz distribution is flawed
(Calsavara et al. (2019a) and Calsavara et al. (2019b)), since its cumulative hazard-rate function converges to the

01
constant —— for t — 00, resulting in a cure or long-term survivors fraction py = exp( pl) in the research

population. The exponential distribution is derived as a special case for k1 = 0. As a result, the Gompertz
distribution’s hazard-rate function might be decreasing (x; < 0), constant («; = 0), or increasing (k; > 0). The
Mg-Su and hazard functions of the QXg-F model with GBH-F are calculated by inserting Eq. (12) into Egs. (9)

and (8),
S(tilxi) =(1 + \/C[GZD
(4 —30% + 1/@[02})

( %(exp(/qti) -1 exp(xiTﬁ) >2
X(3_20'2+ (CO—Z)+1+ Clo?
7 s El
+(1+4/cl7) @ -1
oweyel) )

X %(exp(nti) -1 exp(xiTﬁ)G _ 252 3
+/Clo?) +1+,/Clo?]

and
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Atilxi) = [,01 exp(k1t;) eXP(xiTE)]

3—202—|—,/(C[02]

X
(2 experty = D exp(x! B3 = 207 + /C[o2]) + 1+ ,/C[0?] )
L (exp(i1ti) — 1) exp(x] B) ’
4—30%@( . 7 )
(3 —20%+,/C[0?]) + 1+ /Clo?
02— 1 \/C[TZ]})Z e
+3(2—-1(1+ o
X

£ (exp(iiti) — 1) 2

4—30%+,/C[0?] | expx{ B3 — 207 +/C[o2])
+1+4/C|o?
V [2 ]

i +(02—1)(1+./(C[02D |

Estimating the QXg-F model

Case of WBH-F

The MxLEs have appealing qualities under specific regularity constraints, such as consistency, efficiency,
asymptotic normality, and others®. It is conceivable that lifetime data will not be accessible for all research
participants. Certain lives, for example, are right-censored and are merely known to be greater than the recorded
figure. If so, let T; and C; be the lifespan and censoring time variables for the ith person in the population under
investigation, respectively. Assume T; and C; are independent random variables, and §; = I(;<c;)is the censoring
indicator (i.e., §; = 1if T; is lifetime, and §; = 0 otherwise). Then we see that t; = min{Tj, C;}. Let x; represent a
p x 1vector of variables observed in the i subject. The likelihood function for the moder} parameter vector P

under non-informative censoring is thus provided from a sample of n participants as L(P) = [ A(%; | x)% St | xi),

where S(- | x;)and A(- | x;) are the Mg-Su and hazard functions given in Egs. (8) and (9). Asa 11resu1t, the associated
log-likelihood function is calculated using the natural logarithm of L(P). Then, the log likelihood function for
P=(k,p, az,ﬁ) is given by

log L(P) =rlog(k) + (k — 1)ZS,~ log(ti) — Krlog(p) + ZﬁixiTﬁ

i=1 i=1

+ Zéi log(3 — 202 + (C[az]) — ZS,- log (A1)

i=1 i=1

B i (15)
+ Y Silog(B1) — Y _8ilog(C1) + Y _log(1+/C[a?])
i=1 i=1
+ Zlog (Cy) — Zlog(S — 202 4 (C[JZ]) — ZSlog (A));
i=1 i=1 i=1

n
where: 7 = Y4 is the failure number,
i=1

A\ K
A =(%) exp(x/ )3 —20% + /C[o?]) + 1 + 1/C[0?],
(4 —30% + 1/@[02})
(ﬁ)K exp(xrﬂ)(3 — 202
B = ’ — +3(144/C[o2])*(@* - 1)
NG
+14 4/C[o?]
and
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Bias ‘ MSE Bias MSE Bias MSE Bias MSE
n 0%cens. 10%cens. 30%cens. 50%cens.
P 0.94368 | 0.04958 | 0.927084 0.04857 | 0.895344 0.03958 | 0.9535934 | 0.04977
K 0.83387 | 0.04758 | 0.800598 | 0.04932 |0.818610 | 0.04109 | 0.764556 | 0.04067
20 o? 0.64890 | 0.04768 | 0.5782824 | 0.04674 |0.5872129 | 0.02999 | 0.5856559 | 0.04908
Bi 0.56165 | 0.04927 | 0.4936702 | 0.04919 |0.4890512 | 0.04164 | 0.521098 | 0.04916
o 0.93728 | 0.04002 | 0.918837 | 0.04536 |0.898274 | 0.03371 | 0.938401 0.04836
K 0.83100 | 0.03995 | 0.800416 | 0.04784 |0.81178 0.02511 | 0.788897 | 0.04004
%0 o? 0.64201 | 0.04284 | 0.58813 0.04377 | 0.590121 0.02027 | 0.59604 0.04857
B 0.55123 | 0.03879 | 0.495124 | 0.04509 | 0.496481 0.03366 | 0.520001 0.04806
0 0.92418 | 0.03648 | 0.910006 | 0.03486 | 0.899901 0.02546 | 0.917234 | 0.04799
K 0.82431 | 0.02794 | 0.800372 | 0.02711 |0.806742 | 0.02134 | 0.797896 | 0.04001
300 o? 0.62745 | 0.02451 | 0.591302 | 0.01937 |0.595342 | 0.00996 | 0.598732 | 0.04777
Bi 0.51935 | 0.01867 | 0.497301 0.02232 | 0.498004 | 0.01021 |0.514638 | 0.04738
o 0.91314 | 0.02374 | 0.900521 0.01658 | 0.90241 0.01340 | 0.905565 | 0.04500
K 0.80658 | 0.02006 | 0.800142 | 0.01745 |0.80186 0.02001 | 0.801247 | 0.03844
1000 o? 0.61111 | 0.01865 | 0.61003 0.01008 | 0.602451 0.00618 | 0.599999 | 0.04627
B 0.50041 | 0.01485 | 0.51008 0.00851 | 0.499989 | 0.00339 |0.507430 | 0.03897

Table 1. Bias and MSE of the MxLEs under the WBH-E.

C =

more applications see®.

(4-302+/C[o])

(%)K exp(xiTﬁ)(?) — 202

+/Clo?)

+1+,/C[o?]

Setting the nonlinear system of the score equations Iy = 0,1(p) = 0,I(,2) = OandI

Simulations: case of WBH-F

We consider the QXg-F model with WBH-E. The data were simulated N = 13, 000 times; with parameter values
Kk =0.8,0=0.9, o2 =0.6, B1 = 0.5 and sample sizes n = 20,n = 50, n = 300 and n = 1000. Due to Ravi and
Gelpert®!, the BB (Barzilai-Borwein) algorithm is considered for estimating the average values of the MaxLE.
K, 0,02, B1 parameters and their mean squared errors (MSE). Results are presented in Table 1. From Table 1, we

+ (1+4/Clo2])*(0? -

1.

= 0 and solving them
simultaneously yields the MaxLE P = (¥, p, o2, B)T. It is usually more convenient to use nonlinear optimization
methods to solve these equations; such as the quasi-Newton algorithm to numerically maximize log L(P), for

observe that the maximum likelihood estimates for the QXg-F model with WBH-F are convergent.

Case of GBH-F

Using the GBH-F, the log-likelihood function for P = («1, p1, 02, B)is given as follows:

where

i=1

n n
log L(P) =rlog(p1) + Z(Si(/qti —+ xl-TE) + Z(Si log(3 — 202 + Clo?)
i=1

- Za,- log(A;) + Z 8ilog(By) — Z 8ilog (Cy) + Z log(1 +1/C[02])
i=1 i=1

+) log(Cy) — > log(3 — 207 +1/Clo2]) — > _3log(4y).
i=1 i=1 i=1
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Bias MSE Bias MSE Bias MSE Bias MSE
n 0% cens. 10% cens. 30% cens. 50% cens.
o 0.52772 0.04752 | 0.4812452 | 0.03258 | 0.493951 0.03696 | 0.4934327 | 0.04985
1.06838 0.02935 | 1.0691513 | 0.03564 | 1.0684768 | 0.04812 | 1.0695826 | 0.04721
20 o? 0.720627 | 0.01847 | 0.7326296 | 0.04446 | 0.7476699 |0.02999 |0.7235148 | 0.03954
Bi 0.32221 0.04907 | 0.334851 0.04685 | 0.2834354 | 0.04770 | 0.2841911 | 0.04798
o 0.513308 | 0.03251 | 0.487938 | 0.01357 | 0.496684 | 0.03496 |0.4971112 | 0.04405
1.069354 | 0.01524 | 1.0693819 | 0.01985 | 1.0687684 |0.03914 |1.0697468 | 0.03216
%0 o? 0.7162405 | 0.01847 | 0.717224 | 0.04021 |0.7111120 |0.01734 |0.710743 | 0.01196
B 0.317044 | 0.00965 | 0.328514 | 0.04612 | 0.293000 | 0.04382 | 0.290011 0.04380
0 0.508674 | 0.01358 | 0.489064 | 0.01003 | 0.4980094 |0.02685 | 0.498946 | 0.03945
1.072641 0.00758 | 1.0696649 | 0.01876 | 1.068888 | 0.01493 | 1.0698437 | 0.02999
300 o? 0.708657 | 0.00302 | 0.7063219 | 0.03681 | 0.706110 | 0.01112 | 0.6944002 | 0.01007
Bi 0.309869 | 0.00063 | 0.312045 | 0.44378 |0.298777 | 0.04128 | 0.290515 | 0.04268
o 0.501102 | 0.00648 | 0.495876 | 0.00882 | 0.5120436 |0.02506 | 0.499997 | 0.03945
1.070043 | 0.00012 | 1.069994 | 0.00586 | 1.069889 | 0.01002 | 1.0699254 | 0.00177
1000 o? 0.710030 | 0.00100 | 0.699589 | 0.02699 | 0.7003225 |0.00659 |0.700033 | 0.01001
B 0.305201 0.00038 | 0.304061 0.44000 | 0.301066 | 0.04100 |0.299999 | 0.04160

Table 2. Bias and MSE of the MxLEs under the GBH-F.

A =(&I) (exp(i1ti) — 1) exp(x{ B)(3 — 20 +/C[02]) +1+/C[0?],

(4—30‘24-1/((:[0'2])

B, = <%) (exp(k1t;) — 1) exp(x,-Tg)(3 — 202 +,/C[o?))

g +1+4/C[o?]
+3(1 + ‘/C[az})z(az -1

2

and

(4—3024—‘/@[02])

C = (%)(exp(/qti) —1) exp(xiTﬁ)(3 — 202

+1/Clo?]) +1+/C[o?]
+ (1+ Q/C[02]>2(02 —1).

Maximizing the log-likelihood functions Eqs. (16) and (17), respectively, yields the appropriate MaxLE estimators
P of parameter vectors P. It is worth noting that P does not have a closed form. These optimization approaches
are implemented in BBsolve R software packages (Ravi and Gilbert’!).

Simulations: case of GBH-F

We consider the QXg-F model with GBH-F. The data were simulated N = 13,000 times; with parameter
valuesk = 1.07,p = 0.5,02 = 0.7, B1 = 0.3 and sample sizes n = 20, n = 50, n = 300 and n = 1000. Using the
R software and the Barzilai-Borwein (BB) algorithm (Ravi and Gilbert™) for calculating the averages of the
simulated values of the maximum likelihood estimators &, p, 02, B parameters and their mean squared errors
(MSE). Results are presented in Table 2. From Table 2, we observe that the maximum likelihood estimates for
the QXg-F model with GBH-F are convergent.

Validating the QXg-F model using the NIK-RR test

There are many applications for the NIK-RR test statistic, making it a valuable tool for statistical analysis. It is
particularly useful for selecting a model, assessing the goodness of fit of a model, and pinpointing problems with
a model (more details may be found in Nikulin'?, Nikulin'*, Nikulin'?, Nikulin'?, and Rao and Robson'®. The
NIK-RR test statistic’s capacity to identify deviations from normalcy that other statistical tests might miss is one
of its main features. Under the NIK-RR statistic, we need to test the following null hypothesis
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nle— €=001 [€¢=0.02 [€e=0.05 |[e=0.1
n=25 0.99288 | 0.9825 0.9531 0.99286
n=>50 0.99272 | 0.9820 0.9527 0.9021
n =150 0.9920 0.9813 0.9522 0.90117
n =350 0.9911 0.9809 0.95103 | 0.9008
n = 550 0.9906 0.9805 0.9506 0.90044
n = 1000 0.99032 | 0.98036 | 0.95054 | 0.9002

Table 3. Uncensored assessing for the NIK-RR statistic for € = 0.01,0.02,0.05,0.1 and N = 13000..

Ho:Priz; <z} =Fp(z), z€R, P=(P,P,--,P)7,

Then, the NIK-RR statistic can be expressed as
29 25 Lors 5 5 w=17%
Y*®, =X,®, + ;( ®,)AP,) —J@®,))" £(P,),
where

1 1 T
X, (P) = ([npl(m]’f [—np1(®) +Py],- -, [npp(P)] 2 [—npp(P) +£b])

and
J(P) = B(®)"B(P),

refers to the information matrix where

1 0
B(E:[——(E)} i=1,2,---,bandk = 1,2,---,5,
\/pi a'u rXs

and

r

£P) = (1(P), ... &,(P) with £, ()=

i=1

P; 9pi(P)
pi BBK

>

The YZ(E,,) statistic has (b — 1) degrees of freedom (DF) and is accompanied by the szfl distribution, where
the random sample. x1,x2, - - , x, are collected in I, I, ..., I, (these b subintervals are mutually disjoint:
I; =lajp — 1; a;p] ). The intervals I;’s limits for a;;, are determined as follows

d;

Yib
P](B) = fg(x)dx|]= 1,2,...,b,

ajp—1

and
17\,
ajp =F (B)L]:l,...,b—l.

Uncensored assessing for the NIK-RR statistic

To verify the null hypothesis Hy We thus produced the NIK-RR statistics of the QXg-F model to confirm that the
sample is a 13000 using simulated samples n=25, n=50, n=150, n=350, n=550 and n=1000. Regarding various
theoretical levels (¢ = 0.01, 0.02, 0.05, 0.1), for the null hypothesis, we compute the average of the non-rejection
numbers. Y2 < x2(b — 1). The appropriate empirical and theoretical levels are presented in Table 3. It is evident
that there is a good agreement between the calculated empirical level value and its equal theoretical level value.
We therefore conclude that the proposed test is quite good for the QXg-F distribution.

Validation testing under the QXg-F and the B-NIK
According to Bagdonavicius and Nikulin'” and Bagdonavicius et al.*?, one can verify the suitability of the QXg-F
model when the parameters are unknown and the data are censored where null hypothesis can be expressed as

Hy : F(x) € Fy = {Fo(x,P),x e R', P e P C R},

Let’s divide the limited amount of time [0, t]into x|k = 1,2, - - - , s shorter time periods. Where is the maximum
run/time of the research and I; = (aj-1,a;5];0 =< agp < a1p-. < A1 < G p = +00. The anticipated worth
of @;, can be said the following if x(; is the i element in the ordered statistics (x(1y, ,, *(n)) and if A ™! refers to

the cumulative hazard-rate function and
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i-1
ap=A" ((Ej,x - Z Alxq),P))/(n—i+ 1)>P), e = Xl (j=1,..)>

I=1

where
¢z =E, [ for every j.
' (14 /<) 1
(4 —302 4 \/(:[TZD
< Ao(t) exp(x] B) ) 2
x 2
A(X,B):—ln (3_20 + (C[Uz})—;—l—k\/@ )
+<1 + m) (62 -1
3 -1
Ao(t T8)(3 — 202 Clo2
w4 6202 1 fefor) [ Ao R BC 20T+ ELD
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and

i—1 .
Bz =(n—i+ DAGLP) + Y AGo.P) = D (AW AzP) — A1), Ec = Y AP,

I=1 izi>ajp Py

The a;;, functions for random data, and the ¢z For the « selected periods, anticipated failure rates are equal.
Statistical data Y2 = Z'S™!Z, where Z = (Zy, ..., Z)*, Zj = ﬁ (Wjz — €.2)|( j=12,...)and Wjz can be used to
test a hypothesis since it reflects the total number of failures that have been recorded throughout these time-
shared. The elements of the B-NIK test statistic

1
YP=Y — Wz -2 +Dwg

= Wiz
where
Dy =V'GV,
S 1=B'+M 'BTG'MB!,
a :[/g\ll’]sxs :/i\_ Mﬁ—lﬁx’
~ 1 0
My = Z Pip In [2ip(z)],
i:zi€l;
W= 3 B =W
i:ZiEIj
K
Vi=) MyB 'z, LI'=1,..5
j=1
9 ]
-~ 1 .
iy =n i— In [Aip(z]))| —In [Af z'}
I ;p 7, [Zip(20)] ap; 0 2@
and
K
g =iy — ZMZle’jAj_l>
j=1
and

My =% > pf%ln a0

i:zi€l;

Censored-assessment under the B-NIK test

It is intended that the sample that was produced (N = 13000) will be censored at 25% and that DF= 5 To
check if the sample agrees with the QXg-F model’s null hypothesis, grouping intervals will be used. For
various theoretical levels, we determine the average value of the non-rejection numbers of the null hypothesis.
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n | & — €=001 |[€=0.02 |[€e=0.05 [e=0.1
n=25 0.9925 0.9829 0.9532 0.9019
n=>50 0.9920 0.9819 0.9525 0.9011
n =150 0.9914 0.9813 0.9519 0.9008
n =350 0.9909 0.9808 0.9510 0.9006
n =550 0.9905 0.9804 0.9505 0.9004
n = 1000 0.9903 0.9803 0.9504 0.9002

Table 4. Censored assessing for the B-NIK statistic for € = 0.01; 0.02; 0.05; 0.1and N = 13, 000.

(e = 0.01,0.02,0.05,0.1), where Y2 < Xez (r — 1). The theoretical and empirical levels are compared in Table 4,
which demonstrates how closely the determined empirical level matches the value of the relevant theoretical
level. We conclude that the customized test is ideally suited to the QXg-F model as a consequence.

We conclude from these findings that the empirical significance level of the Y2 The theoretical significance
level of the chi- square distribution with specific degrees of freedom aligns with the statistical significance level
at which it becomes significant. Therefore, based on this evidence, the censored data obtained from the QXg-F
distribution can be effectively fitted using the recommended test.

The emergency care data

In medicine, frailty models are used to analyze the risk factors and prognosis of various diseases. They allow
researchers to examine the impact of individual-level covariates (such as age, gender, and genetic factors) on
patient outcomes, while also considering unmeasured or unobserved factors that may influence the risk of disease
progression or mortality. Frailty models are often used in epidemiological studies, clinical trials, and studies
involving patient cohorts to assess the effects of different treatments or interventions.

The emergency department of a the hospital of the public proximity health institution (Echatt, El tarf, Algeria),
provided real data that were collected throughout the month of March 2023, which was used in the current
study. The goal of this study was to examine, in a sample of people seeking medical care at the department, the
relationship between various clinical variables and emergency room outcomes. The necessary approvals were
obtained, and data collection was conducted under ethical guidelines. There were 30 different persons in the
dataset, each of whom represented a distinct observation. Each person’s age (years), minimum and maximum
blood pressure (mmHg), blood glucose level (mg/dL), cardiac frequency (BPM), and oxygen saturation (SaO2
%) were measured as six different variables. Strenuous measures were put in place during the data collection
process to guarantee data quality and accuracy. This required accurate patient data documentation, adherence
to established measurement techniques, and routine quality checks to catch any missing information or
discrepancies. The thorough data collection process and the diversity of the patient population make this dataset
valuable for examining the links between clinical factors and emergency room outcomes. By assessing the QXg-F
model distribution’s goodness-of-fit and its capacity to faithfully represent the observed patterns and variability
in emergency care data, we are able to explore the validity and application of the distribution. We present the
point estimates for each fitted model (QXg-F model with Weibull baseline hazard-rate function and QXg-F model
with Gompertz baseline hazard-rate function). The well known modified chi-squared test (see'”) is supplied to
identify the best model among all fitted models to this data.

Validation of the QXg-F model under the Weibull baseline hazard-rate function
Assuming that these data are distributed according to the QXg-F model with Weibull baseline hazard-rate
function. Then, using R statistical software (the BB package), the maximum likelihood estimates of the parameter
vector P are obtained as

i1 =(0.93359597, p; = 0.92339747,(;3 = 1.05033488,

B1 =0.09416582, B> = 0.12605622, B3 = —0.10260262,

Ba = — 0.43375125, B5 = 0.21897114, B = 0.46708022).
According to Bagdonavicius and Nikulin'” for censored data, we take for example 5 intervals (r = 5) as number

of classes. The elements of the estimated Fisher information matrix I (E) are presented as follows:

1.10224 —2.85216 0.35487 —3.2015 5.12410 —2.6585 0.75482  —3.0002 1.95243
0.982451 —6.3214 2.73618 0.36485 0.51247 —1.6832 —4.12574 1.55505

0.62541 2.93485 —6.3298 0.66485 —21.5348 2.87361 —7.0164
~ 1.32048 0.00843 1.31405 0.90340 1.11619  —9.3761
1 (E) = 296511 —4.0527 1.6233 0.61372 0.8391

0.84755  2.0006 1.86254  0.37770
0.32651 —8.58102 1.7438

1.70015 —10.3254
0.74006
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Then we calculate the value of the test statistic as Y2 = 8.076495. The critical value is xé_ 05(4) = 9.488 > Y2, . This
data can be fitted by our proposed QXg-F model with Weibull baseline hazard-rate function in proper manner.

Validation of the QXg-F model under the Gompertz baseline hazard-rate function

Assuming that these data are distributed according to the QXg-F model with Gompertz baseline hazard-rate
function. Then, using R statistical software (the BB package), the maximum likelihood estimator of the parameter
vector P can be obtained as

% =1.00593154, 5 = 0.74417604,02 = 1.07010909,
B1 =0.16228331, B, = 0.17405692, B3 = 0.02678224,
Bs = — 0.56805721, B5 = —0.07338661, Bs = 0.44793647.
We take r = 5 intervals and the estimated Fisher matrix expressed as

26352 — 3.6257 1.0654 0.8475 — 6.3258 —3.1547 20001 09321  1.8547

0.9658 0.8475 1.8654 13274 —3.9547 —8.1755 — 11.132 1.9584

1.3475 2.0084 0.6254 13648 — 23647 0.6845 09614

- 0.6321 —9.3020 3.0001 10854 0.6845 — 3.628
I(P) - 16847  1.0054 03754 1.0024 19045 |,

03617 1.6584 07845 1.0325

0.8647 01254 0.9658

10954  1.8457

1.3643

then we calculate the value of the Bagdonavi¢ius and Nikulin'” statistic : Y2 = 7.43821106. For different critical
values : o = 5% and o = 10%, we find Y? < X(%.os(s —1)=9.488and Y* < X02.1(5 — 1) = 7.779 respectively.
Hence we reason that the emergency care data is compatible with our proposed QXg-F model with Gompertz
baseline hazard-rate function.

Testing the ability of the new QXg-F model in risk analysis

In risk analysis, frailty models can be used to predict the probability of an event taking place, such as the risk of
developing a specific disease or suffering a specific adverse event, while also taking into consideration individual
characteristics that may influence how the risk is affected. To model risks and to construct models for risk
prediction, fragility models have been utilized in a wide variety of sectors, including epidemiology, medical
research, and actuarial science, amongst others. The use of frailty models can provide more accurate estimates of
risk and increase understanding of the underlying mechanisms that determine the risk of an occurrence. Both of
these benefits can be realized simultaneously. In the fields of insurance and actuarial science, frailty models are
applied in order to take into account the fact that individuals’ rates of death are very variable. This variation may
be attributable to a wide range of factors, such as age, gender, current health state, lifestyle choices, and genetic
predisposition. Insurers can more properly price their insurance products using frailty models, and they can
also better control the risks to which they are exposed. In the fields of insurance and actuarial science, some of
the specific uses of frailty models include the following:

1. It is possible to employ frailty models in order to estimate the probable future mortality of a group of
individuals, which may subsequently be used in order to price life insurance premiums.

2. 'The present value of an annuity is the amount of money that an individual would need to invest today in
order to obtain a guaranteed income stream for the rest of their life. Frailty models can be used to estimate
the present value of an annuity. This is the amount of money that an individual would need to invest today
in order to acquire this income stream.

3. Identifying and managing the risks that are connected to a specific insurance product or portfolio of products
can be accomplished with the assistance of frailty models. To identify high-risk individuals who are more
prone to file claims, an insurer might, for instance, utilize a frailty model.

4. 'The application of fragility models is a powerful instrument that has the potential to enhance the precision
and effectiveness of insurance pricing as well as risk management. Frailty models are anticipated to become
increasingly more commonly employed in the insurance sector as the discipline of actuarial science continues
to develop and progress.

The application of frailty models in the fields of actuarial science and insurance provides the following additional
benefits:

1. Insurers may benefit from using frailty models since it helps them gain a better understanding of the risk of
loss connected with a certain individual or group of individuals. This can lead to decisions regarding pricing
and underwriting that are more accurate.

2. Insurance companies can build solutions that are more suited to meet the requirements of individual clients
with the use of frailty models. This may result in improved levels of satisfaction and loyalty among customers.

3. Insurers can automate a significant portion of the work that is related with risk assessment and pricing with
the use of frailty models. This may result in cost savings as well as enhanced operational efficacy.
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Risk indicators for the new QXg-F model
It is not necessary to supply any further characterization of risk exposure beyond what may be provided by
probability-based distributions. Most of the time, one value or at the very least a small collection of numbers
is used to describe the level of risk exposure. These data on risk exposure are plainly functions of a particular
model. They are commonly referred to as important key risk indicators (KRIs), which is an abbreviation for key
risk indicator. Actuaries and risk managers commonly concentrate their efforts on evaluating the possibility of
an adverse outcome, which can be communicated through the use of the V-R indicator at a specific probability
or confidence level.

This indicator is frequently used to calculate the amount of capital needed to deal with such probable negative
situations. The V-R of the QXg-F model at the 100q% level, say V-R(Z; P) or & (q), is the 100q% quantile (or
percentile). Then, we can simply write

19%| q=99%
V-R(Z: P) = Pr (Z > Q(U)) = { >Pla=95% | (16)

where Q(U) is quantile function of the QXg-F model, for a one-year time when g = 99%, the interpretation is that
there is only a very small chance (1%) that the insurance company will be bankrupted by an adverse outcome over
the next year. Generally speaking, if the distribution of gains (or losses) is limited to the normal distribution, it is
acknowledged that the number V-R(Z; P) meets all coherence requirements. The data sets for insurance such as
the insurance claims and reinsurance revenues are typically skewed whether to the right or to the left , though.
Using the normal distribution to describe the revenues from reinsurance and insurance claims is not suitable.
The TLV-R (Z; P) of Z at the 100q% confidence level is the expected loss given that the loss exceeds the 1009% of
the distribution of Z, then the TLV-R of Z can be expressed as

1 7 7
TLV-R(Z;P) =E(X|X > 7 (q)) = W / z2fp(z)dz = T2 / zfp(z)dz. 17)
N 7(q) 7(q)

The quantity TLV-R(Z; P), which gives further details about the tail of the QXg-F distribution, is therefore the
average of all the V-R values mentioned above at the confidence level q. Moreover, the TLV-R(Z) can also be
expressed as TLV-R(Z; P) = e(Z; P)+V-R(Z; P), where e(Z; P) is the mean excess loss (M-EXL(Z; P)) function
evaluated at the 1004%"" quantile (see’*%). When the e(Z; P) value vanishes, then TLV-R(Z; P) =V-R(Z; P)
and for the very small values of e(Z; P), the value of TLV-R(Z; P) will be very close to V-R(Z; P).The T-VC risk
indicator, which Furman and Landsman®® developed, calculates the loss’s deviation from the average along a tail.
Explicit expressions for the T-VC risk indicator under the multivariate normal distribution were also developed
by Furman and Landsman®. The T-VC risk indicator (T-VC(Z; P)) can then be expressed as

T-VC(Z; P) = E(Z*|Z > 7 (q)) — [TLV-R(2)]%. (18)

As a statistic for the best portfolio choice, Landsman®” developed the TMVK risk indicator, which is based on
the T-VC risk indicator. Consequently, the TMVK risk indicator may be written as

TMVK(X) = TLV-R(Z) + nT-VC(Z)|p<r <1- (19)
Then, for any RV, TMVK(Z; P) >T-VC(Z; P) and, for # = 1, TMVK(Z; P) =TLV-R(Z; P).

Assessing under different estimation methods via simulations

In this section, we assess the MaxLE, the OLS, the WLSE, the AnDE methods for calculating the KRIs. These
quantities are estimated using N = 1,000 with different sample sizes (n = 20, 50, 100) and three confidence
levels (C-Ls) (g = (50%, 60%, 70%, 90%, 99%)). All results are reported in Table 5 (KRIs under artificial data
for n=20), Table 6 (KRIs under artificial data for n=50) and Table 7 (KRIs under artificial data for n=100) from
which we conclude: V-R(Z; P), TLV-R(Z; P) and TMVK(Z; P) increase when g increases for all estimation
methods. V-R(Z; P)y1s <V-R(Z; P) snpe <V-R(Z; P)paae < V-R(Z; P) 1.5 for most g. TLV-R(Z; P) wig <
TLV-R(Z; P) ponpE <TLV-R(Z; P)praxie <TLV-R(Z; P)o1.sg for most g.

Assessing under different estimation methods via insurance data

As a concrete example, in this section of the essay, we take a look at the insurance claims payment triangle from
the perspective of a United Kingdom Motor Non-Comprehensive account. We find the years 2007 to 2013 to
be the most convenient origin era. The data on the claims are presented within the insurance claims payment
data frame in the format that one would typically find it organised within a database. The first column contains
information pertaining to the origin year, which can fall anywhere between 2007 and 2013, the development year,
as well as the incremental payments. It is essential to point out that the data on insurance claims were initially
analysed using a probability-based distribution. This was done in the beginning of the process. The ability of the
insurance company to deal with events of this nature is something that actuaries, regulators, investors, and rating
agencies all place a high level of weight on. This study suggests a number of KRI quantities for the left-skewed
insurance claims data based on the QXg-F distribution. These quantities include VAR, TVAR, T-VC, and TM-V
(see® for more information). In Table 8, the KRIs that are included under the insurance calculations data are
broken down according to each and every estimating method used for the QXg-F model.
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Method | T ‘Ti ‘V—R(Z; P) ‘TLV—R(Z; P) ‘T—VC(Z; P) ‘TMVK(Z; P) ‘MELS(Z; P)
MaxLE 0.14107,0.52017

50% 4.6982252 | 7.9207537 81291089 | 11.9853081 | 3.2225285
60% 55534017 | 8.6216855 7.6896604 | 12.4665157 | 3.0682838
70% 6.5570515 9.4827166 7.2595049 13.112469 2.9256651
80% 7.8541408 | 10.6385741 | 6.8116389 | 14.0443935 | 2.7844333
90% 9.8829563 | 12.5095433 | 6.2864654 | 15.652776 2.626587
95% 11769106 | 142920432 | 59283057 | 17.256196 25229372
99% 15.8459571 | 182225931 | 5.4063186  [20.9257524 | 2.376636
OrLSE | 0.25768,0.49028

50% 4.6424595 | 8.1062567 93000559 | 12.7562847 | 3.4637972
60% 5.5685106 8.8587309 8.7761598 13.2468108 3.2902204
70% 6.6502786 | 9.7810246 82666565 | 13.9143528 | 3.1307459
80% 8.0427591 | 11.0166329 | 7.7395836 | 14.8864248 | 2.9738738
90% 102129492 | 13.0127723 | 7.1258076 | 16.5756761 | 2.7998232
95% 12.2254069 | 14.911675 6.7097639 | 18.2665569 | 2.6862681
99% 16.5664285 | 19.0933974 | 6.1069945  [22.1468946 | 2.5269688
WLSE 0.27324,0.48524

50% 4.6474756 8.1526927 9.5131474 12.9092664 3.5052172
60% 5.5853582 | 8.9140626 89747332 | 13.4014292 | 3.3287043
70% 6.6804225 | 9.8470259 8.4514401 | 14.072746 3.1666034
80% 8.0893887 | 11.096634 7.9104722 | 150518701 | 3.0072453
90% 10.2843424 | 13.1149134 | 7.2810078 | 167554173 | 2.830571
95% 123191384 | 150345255 | 6.8546307 | 18.4618409 | 2.7153871
99% 167072472 | 192611659 | 62373245 | 22.3798281 | 2.5539186
CVM 0.24569,0.49695

50% 4.6131432 | 8.0262669 9.0380238 | 12.5452788 | 3.4131237
60% 55250504 | 8.7678136 85307887 | 13.033208 32427632
70% 6.5907158 9.676896 8.0372303 13.6955112 3.0861803
80% 7.9629605 | 10.8950332 | 7.526371 14.6582187 | 2.9320728
90% 10.102331 | 12.8633142 | 69310958 [ 16.3288621 | 2.7609832
95% 12.0866897 | 14.7359852 | 65273691 | 17.9996698 | 2.6492955
99% 16.3679401 | 18.8604668 | 59421197 | 21.8315266 | 2.4925267

Table 5. KRIs under artificial data for n=20.

Based on Table 8, the following results can be highlighted:

1. In general, whatever the risk assessment method:

V-R(Z; P|1 — q =50%) < V-R(Z; P|1 — q = 40%)

<.. < V-R(Z; P|1 — g = 5%) < V-R(Z; P|1 — q = 1%).
2. Also,
TLV-R(Z; P|1 — g =50%) < TLV-R(Z; P|1 — q = 40%)
<.. < TLV-R(Z; P|1 — q = 5%) < TLV-R(Z; P|1 — g = 1%).
3. In general, whatever the risk assessment method:
T-VC(Z; P|1 — g =50%) > T-VC(Z; P|1 — q = 40%)
>..> T-VC(Z; P|1 — g = 5%) > T-VC(Z; P|1 — q = 1%).
4. Moreover
TMVK(Z; P|1 — q =50%) > TMVK(Z; P|1 — q = 40%)
>...> TMVK(Z; P|1 — q = 5%) > TMVK(Z; P|1 — q = 1%).
5. Finally

Scientific Reports |

(2024) 14:8973 | https://doi.org/10.1038/s41598-024-59137-w

nature portfolio



www.nature.com/scientificreports/

MELS(Z; P|1 — g =50%) > MELS(Z; P|1 — q = 40%)

>..> MELS(Z; P|1 — q = 5%) > MELS(Z; P|1 — g = 1%).

6. Under the MaxLE method: The V—R(Z ; E) is monotonically increasing indicator, the TLV-R( Z; E) is increases

steadily and continuously. However the T—VC(Z ; E), the TMVK(Z ; E) and the MELS(Z ; E) are increases
steadily and continuously.
7. Under the OrLSE method: The V-R( Z; P | is monotonically increasing indicator, the TLV-R( Z; E) is increases

steadily and continuously. However the T—VC(Z ; E), the TMVK(Z ; E) and the MELS(Z ; E) are increases
steadily and continuously.

Discussion

In this study, we proposed a novel quasi xgamma frailty (QXg-F) model for survival analysis. The QXg-F model
aims to capture the complex interplay between frailty and survival outcomes, providing a more comprehensive
understanding of the heterogeneity present in the data. To assess the suitability of the QXg-F model, we employ
the Nikulin-Rao-Robson goodness-of-fit test, which evaluates how well the model’s distribution fits the observed
data.

Our investigation extends beyond model development to include an in-depth examination of the QXg-F
model’s properties and performance compared to other commonly used distributions in frailty modeling.
Through simulation studies and real data applications, including a novel dataset from an emergency hospital
in Algeria, we demonstrate the QXg-F model’s ability to accurately capture heterogeneity and improve model
fit. Our findings suggest that the QXg-F model represents a promising alternative to existing frailty modeling
distributions, with potential applications in various sectors, including emergency care.

Furthermore, we explore the utility and significance of the QXg-F model in insurance settings. By conducting
simulations and applying the model to insurance data, we assess its performance and relevance in predicting
survival outcomes and estimating risk in insurance contexts. This analysis provides valuable insights into the
QXg-F model’s applicability beyond healthcare, highlighting its potential to enhance risk assessment and
decision-making in insurance-related scenarios. Here are a few potential limitations that could be addressed:

e The study may rely on certain assumptions about the underlying data distribution or the relationship between
variables. It would be beneficial to validate these assumptions rigorously, as any inaccuracies or deviations
could impact the validity of the findings.

e The study’s conclusions may be based on a specific dataset, such as emergency care data, which could limit the
generalizability of the results. Assessing the robustness of the findings across different datasets or populations
would enhance the study’s applicability and relevance.

e Introducing a novel model like the QXg-F model may add complexity to the analysis. While sophisticated
models can offer valuable insights, they may also be more challenging to interpret and implement in practice.
It would be helpful to provide clear explanations and guidelines for applying the model in real-world
scenarios.

e If the study includes risk analysis for emergency care data, it is essential to transparently outline the
assumptions and methodologies used in the risk assessment. This ensures that stakeholders can critically
evaluate the risk estimates and understand the associated uncertainties.

e The analysis may overlook external factors or confounding variables that could influence the survival
outcomes or introduce bias into the results. Accounting for potential confounders and conducting sensitivity
analyses would enhance the study’s validity and reliability.

Conclusions and future points

This work suggested and analysed a flexible frailty model called as the quasi-Xgamma frailty (QXg-F) probapility
model for statistical modeling of the unobserved-heterogeneity in survival and reliability data sets. We established
both unconditional survival and hazard functions when we calculated the Laplace transform of this frailty
distribution. The baseline hazard functions used to construct the two QXg-F models were the Gompertz and
Weibull hazard functions are considered. The QXg distribution’s Laplace transform offers an easy mathematical
technique for producing analytical formulas for the QXg-F model’s unconditional survival and hazard functions.
All mathematical formulas and equations necessary for analysis the QXg-F model based on Gompertz (GBH-
F) and Weibull hazard-rate function (WBH-F) have been derived and analyses. Many of the new algebraic
derivations have been simplified and analyzed within the framework of this paper.

Simulation analyses pointed out that the convergence properties of the MLEs were satisfied under varying
censoring proportions (0%,10%, 30%, and 50% of censoring), as expected. The proposed test statistic element
formulations were developed using the QXg-F model. In addition to performing as expected, the modified chi-
squared test confirmed its capacity to discover unobserved heterogeneity among small and large samples (n = 25,
n = 50,1 = 150,n = 350,n = 550and n = 1000).

The simulation results shows that the proposed test for the QXg-F model performs well in both completed
and censored data sets. It indicates that the test is robust as well as accurate for testing the goodness of fit of
our proposed model to real-life survival data. Through the presented simulation studies, the new QXg-F model
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Method | T ‘Ti ‘V—R(Z; P) ‘TLV—R(Z; P) ‘T—VC(Z; P) ‘TMVK(Z; P) ‘MELS(Z; P)
MaxLE 0.18714,0.50706

50% 4.6845211 | 8.0084233 8.6125268 | 12.3146867 | 3.3239022
60% 55694373 | 8.7310154 8.1386873 | 12.800359 3.161578
70% 6.6058505 9.6178117 7.6762239 13.4559236 3.0119612
80% 7.9429961 | 10.8072504 | 7.1960754 | 14.4052881 | 2.8642543
90% 10.0313044 |12.7310065 | 6.6347243 | 16.0483686 | 2.699702
95% 119707151 | 145626636 | 62528722 | 17.6890997 | 2.5919485
99% 16.1591777 | 185994275 | 5.6977361 | 21.4482955 | 2.4402497
OrLSE | 0.21376,0.49717

50% 47007731 | 8.1008547 8.9916608 | 12.5966851 | 3.4000817
60% 5.6075032 8.8397982 8.492301 13.0859487 3.2322951
70% 6.668335 | 9.7462022 8.0056485 | 13.7490265 | 3.0778672
80% 8.0357406 | 10.9613828 | 7.5011306 | 14.711948 29256421
90% 10.1695559 | 12.9258941 | 69122092 | 16.3819986 | 2.7563381
95% 12.1500806 | 14.7957162 | 6.5121632 | 18.0517978 | 2.6456356
99% 164253531 | 189153562 | 59313583 | 21.8810353 | 2.4900031
WLSE 0.22011,0.49643

50% 4.689736 8.0972504 9.0263673 12.6104341 3.4075144
60% 5.5987983 | 8.8377616 85239999 | 13.0997615 | 3.2389633
70% 6.662104 | 9.7459829 8.034577 137632714 | 3.083879
80% 80324131 | 109634708 | 7.5273556 | 14.7271486 | 2.9310577
90% 10.1703532 | 129315076 | 6.9354919 | 163992535 | 2.7611544
95% 12.1544387 | 14.8045359 | 65335763 | 18.071324 2.6500971
99% 164369338 | 189309503 [ 5.9502389 [ 21.9060698 | 2.4940165
CVM 0.20859,0.49996

50% 4.6892727 | 8.0684722 8.8853283 | 12.5111364 | 3.3791995
60% 55901462 | 8.8029166 83927509 | 12.999292 32127704
70% 6.6443362 9.7038884 7.9125764 13.6601766 3.0595522
80% 8.0034148 | 10.9118918 | 7.41464 14.6192118 | 2.908477
90% 10.1245679 | 12.8649676 | 6.8332241 [ 16.2815797 | 2.7403997
95% 12.0935586 | 14.7240273 | 64381719 [ 17.9431133 | 2.6304687
99% 16.3443116 | 18.8201913 | 5.8644697 | 21.7524262 | 24758797

Table 6. KRIs under artificial data for n=50.

under the GBH-F and WBH-F models has proven its efficiency and flexibility, and the model’s capabilities are
characterized by efficiency, adequacy, consistency, and convergence. All of these results nominate the model for
statistical modeling operations for new medical data.

As for the aspect of risk analysis under the new QXg-F model, we have conducted a comprehensive study to
analyze the values at risk within the framework of a set of actuarial indicators, which are used for the first time
in this framework of statistical analysis. For greater robustness in the estimation and actuarial analysis processes,
we used more than one method to estimate the parameters of the new model, by also presenting some important
comparisons. For assessing risk under different estimation methods via simulations, the following results are
highlighted:

e V-R(Z; P), TLV-R(Z; P) and TMVK(Z; P) increase when g increases for all estimation methods.
® V-R(Z; P)yis <V-R(Z; P)onpe <V-R(Z; P)yayie < V-R(Z; P) oy g for most g values.
e TLV-R(Z; P)wis <TLV-R(Z; P) onpE <TLV-R(Z; P)praxrr <TLV-R(Z; P) 155 for most g values.

For assessing risk under different estimation methods via the insurance data, the following results are highlighted:

1. For all risk assessment methods:
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Method | ‘Ti ‘V—R(Z; P) ‘TLV—R(Z; P) ‘T—VC(Z; P) ‘TMVK(Z; P) ‘MELS(Z; P)
MaxLE 0.1943,0.50444

50% 4.6882397 | 8.0320981 87108906 | 12.3875434 | 3.3438585
60% 55788848 | 8.7589716 82304017 | 12.8741725 | 3.1800868
70% 6.6216992 9.650898 7.7616432 13.5317196 3.0291987
80% 7.9667667 | 10.8470672 | 7.2751553 | 14.4846448 | 2.8803005
90% 10.0669753 | 127814728 | 6.7066399 | 16.1347928 | 2.7144975
95% 12.0171294 | 14.6230983 | 63200621 | 17.7831293 | 2.6059689
99% 16.2282628 | 18.6815004 | 5.7582622  [21.5606315 | 2.4532376
OrLSE | 0.21376,0.49885

50% 4.6849052 | 8.0735006 89310096 | 12.5390054 | 3.3885954
60% 5.5885719 8.8099477 8.4350185 13.027457 3.2213759
70% 6.6458198 | 9.7132897 7.9516488 | 13.6891141 | 3.0674699
80% 8.008606 | 10.924365 7.4505375 | 14.6496338 | 2.915759
90% 101352129 | 12.8822401 | 6.8655888 | 16.3150345 | 2.7470271
95% 12.1090473 | 14.7457459 | 6.4682413 | 17.9798666 | 2.6366986
99% 16.3698779 | 18.8514699 | 5.8913542 | 21.797147 2.481592
WLSE 0.21105,0.49985

50% 4.6833079 8.0641711 8.8922752 12.5103087 3.3808631
60% 5.5847622 | 8.7989583 83988943 | 12.9984054 | 3.2141961
70% 6.6395315 | 9.7003094 7.9179995 | 13.6593092 | 3.0607779
80% 7.9992451 | 10.9087709 | 7.419382 14.6184619 | 2.9095258
90% 10.1212311 | 12.8625078 | 6.8372537 | 162811347 | 2.7412767
95% 12.0908908 | 14.7221388 | 6.4417673 | 17.9430224 | 2.6312479
99% 163429079 | 18.8194491 | 58675051 | 21.7532016 | 2.4765411
CVM 0.21109,0.50028

50% 4.6791079 | 8.0570562 8.8769135 | 12.495513 33779483
60% 55797877 | 8.7912095 83843767 | 12.9833979  |3.2114219
70% 6.6336488 | 9.6917823 7.904306 13.6439353 | 3.0581335
80% 7.9921894 | 10.8991994 | 7.4065397 | 14.6024693 | 2.90701
90% 10.1123418 | 12.8512459 | 6.8254163 | 16.263954 2738904
95% 12.0802975 | 14.7092668 | 64306107 | 17.9245721 | 2.6289693
99% 16.3286324 | 18.8030275 | 5.8573383 | 21.7316967 | 2.4743951

Table 7. KRIs under artificial data for n=100.

V-R(Z; P|1 — ¢ =50%) < ... < V-R(Z; P|1 — q = 1%),

<.

TLV-R(Z; P|1 — g =50%) < ... < TLV-R(Z; P|1 — q = 1%).
T-VC(Z; P|1 — q =50%) > ... > T-VC(Z; P|1 — q = 1%),
TMVK(Z; P|1 — g =50%) > ... > TMVK(Z; P|1 — q = 1%).
MELS(Z; P|1 — g =50%) > ... > MELS(Z; P|1 — q = 1%).

2. Under the all estimation method, the V-R is monotonically increasing indicator, the TLV-R in monotonically
increasing indicator. However the T-VC, the TMVK and the MELS are monotonically decreasing.

Some potential points and directions for future academic works:

Explore further refinements and extensions of the QXg-F model. Researchers can work on developing
more robust versions of the model to better capture the complexities of heterogeneity in emergency care
data.

Investigate how time-varying covariates can be integrated into the QXg-F model. This could be important
for capturing changes in patient characteristics and risk factors over time.

Apply the QXg-F model to real-life emergency care data and provide practical insights. This could involve
analyzing specific medical conditions, patient cohorts, or healthcare facilities. See Goual et al.***° and
Goual and Yousof*! for more relevant applications.

Explore other advanced validation tests and sensitivity analyses to ensure the model’s reliability and
robustness, especially in the context of emergency care data where patient outcomes can be time-sensitive
and complex.
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Method | ‘Ti ‘V—R(Z; P) ‘TLV—R(Z; P) ‘T—VC(Z; P) ‘TMVK(Z; P) ‘MELS(Z; P)

MaxLE 0.056648,0.00107

50%

2408.285176 | 3957.286678 1894484.692667 | 951199.633011 1549.001501

60%

2816.579287 | 4294.591947 1795766.569883 | 902177.876889 1478.012661

70%

3297.89361 4709.755039 1698501.924311 | 853960.717195 1411.861429

80%

3922.142321 | 5268.031519 1596614.004881 | 803575.03396 1345.889198

90%

4901.547418 | 6173.031474 1478243.31119 745294.687069 1271.484056

95%

5814.002477 | 7036.477935 1395540.819773 | 704806.887822 1222.475459

99%

7789.512693 | 8942.216564 1278264.671458 | 648074.552293 1152.703872

OrLSE

0.272949,0.000899

50%

2509.021497 | 4400.995807 2771619.894328 | 1390210.942971 | 1891.97431

60%

3015.24518 4811.953608 2614766.380651 | 1312195.143934 | 1796.708428

70%

3606.312937 | 5315.532936 2462318.334862 | 1236474.700367 | 1709.219999

80%

4366.817414 | 5990.028363 2304719.229173 | 1158349.64295 1623.210949

90%

5551.576191 | 7079.430874 2121334.380204 | 1067746.620976 | 1527.854683

95%

6649.89369 8115.579457 1997119.012415 | 1006675.085665 | 1465.685767

99%

9018.464769 | 10396.999002 | 1817273.115655 | 919033.556829 1378.534233

WLSE

0.13893,0.001019

50%

2402.375177 | 4047.542671 2119132.335979 | 1063613.710661 | 1645.167494

60%

2838.891506 | 4405.392352 2004673.486117 | 1006742.13541 1566.500846

70%

3351.247105 | 4844.998236 1892621.739739 | 951155.868105 1493.751131

80%

4013.456607 | 5435.154825 1775934.490963 | 893402.400306 1421.698218

90%

5049.313766 | 6390.469523 1639088.326576 | 825934.632811 1341.155757

95%

6012.378498 | 7300.638908 1545748.650037 | 780174.963926 1288.26041

99%

8094.095078 | 9307.560124 1412012.076223 | 715313.598236 1213.465046

CVM

0.215302,0.000933

50%

2503.029113 | 4315.472068 2554671.581296 | 1281651.262716 | 1812.442955

60%

2986.414861 | 4709.366036 2412721.162258 | 1211069.947165 | 1722.951174

70%

3551.920461 | 5192.511163 2274394.097108 | 1142389.559717 | 1640.590702

80%

4280.816611 | 5840.228281 2130999.793612 | 1071340.125087 | 1559.411671

90%

5418.195151 | 6887.328172 1963634.040249 | 988704.348297 1469.133022

95%

6473.831185 | 7883.938659 1849952.187187 | 932860.032253 1410.107475

99%

8752.526684 | 10079.658969 | 1684916.244941 | 852537.78144 1327.132285

Table 8. KRIs under artificial data.

AN

10.

11.

12.

13.

Extend the use of the QXg-F model for predictive modeling.

Introduce some new risk analysis indicators under the QXg-F model.

Develop strategies for handling missing data within the context of emergency care data, as missing data
is often prevalent in healthcare datasets. Evaluate how the model copes with missing information and
propose imputation techniques.

Explore methods to enhance the interpretability of the QXg-F model. This is crucial for healthcare
practitioners to make informed decisions based on the model’s output.

Investigate the feasibility of integrating the model into clinical decision support systems in emergency care
settings. This could involve developing user-friendly software tools for healthcare professionals.
Conduct epidemiological studies using the QXg-F model to gain insights into the patterns of diseases or
health conditions in specific populations, including their survival probabilities and risk factors.

Address ethical and privacy concerns related to the use of emergency care data, especially when conducting
research involving patient records. Explore methods for de-identification and data anonymization.
Investigate the model’s potential to aid in resource allocation decisions in emergency care, such as
optimizing the allocation of healthcare personnel and equipment based on predicted patient needs.
Applying the intelligent solution predictive networks and neuro-computational intelligence for analyzing
the emergency care data set (see*? and** and*).

Data availibility

The dataset can be provided by Hamami Loubna upon requested.
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