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Evaluating the impacts of climate 
change and land‑use change 
on future droughts in northeast 
Thailand
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The impacts of climate change (CC) on droughts are well documented, but the effects of land‑use 
change (LUC) are poorly understood. This study compares the projected individual and combined 
impacts of these stressors on future droughts (2021–2050), with respect to baseline (1981–2010) in 
one of the major tributaries of the Mekong River. LUC impacts on hydrological droughts are minimal 
compared to CC, with the latter expected to shorten the recurrence interval of a 20‑year return period 
event to every 14 years. Both CC and LUC have significant impacts on agricultural droughts with 
heightened sensitivity. ‘Once in a Decade’ agricultural droughts will be 40% (35%) longer and 88% 
(87%) more severe under the CC (LUC) scenario. Under both stressors, the events occurring every 
20 years will be twice as frequent. Results highlight the intensification of future droughts and the 
urgency for actions to mitigate/adapt to climate change and manage land use. Future policy shall 
holistically address agricultural water management, sustainable land use management, and crop 
management to cope with future droughts. We recommend developing resilient agricultural practices, 
enhanced water resource management strategies, and incorporating drought risk into land‑use 
planning to mitigate the compounded impacts of CC and LUC.

It is unanimous that climate change (CC) and land-use change (LUC) driven by anthropogenic activities have 
increased risks in the water resources system in several regions across the globe and are likely to continue in 
the  future1. CC has intensified extreme hydro-climatic events, and they are most likely to continue to increase 
the frequency and intensity of such events in the near-future  period2,3. 2014–2023 is the warmest ten years in 
a 174-year observational record, with global temperature 1.19 ± 0.12 °C above the pre-industrial era and the 
concentration of three main greenhouse gases—carbon dioxide, methane, and nitrous oxide reaching record 
 levels4. A temperature rise of 1.5 °C is highly likely to be reached/exceeded in the 2021–2040  period5. Global 
warming will change the global climate system, primarily by affecting the transport of moisture and energy 
through large-scale atmospheric  circulation6. It alters the hydrological processes and various elements of the 
hydrological cycle (precipitation, evapotranspiration, soil moisture, groundwater, runoff, etc.). Global warming 
is expected to intensify the global water cycle further, exacerbate extreme events (including floods and droughts), 
and lead to a global redistribution of water resources at multiple temporal and spatial  scales7. Based on a global 
risks perception survey, the top three risks perceived are directly linked to climate change and natural  disasters8. 
By the end of this century, climate risk is projected to increase substantially by 2–4  folds9. In the last twenty years, 
global costs of extreme weather attributable to CC are estimated at USD 143 billion per  year10.

LUC are mainly driven by a combination of anthropogenic factors such as socio-economy, politics, environ-
ment, and technology; however, they are also affected directly/indirectly by climate change through alteration 
of disturbance patterns and species distributions and expansion in new  areas11,12. Climate change can also be 
a catalyst to promote anthropogenic drivers of LUC. A recent study shows that almost one-third of the earth’s 
surface has undergone land use change during 1960–2019, with deforestation and agricultural expansion in 
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the Global South and afforestation and cropland abandonment in the Global  North13. Between 1982 and 2015, 
anthropogenic climate change and land use changes resulted in degradation of 5.43 million  km2 of dryland to 
 desertification14. LUC will alter interception by the canopy, surface roughness, soil properties of the watershed, 
albedo, and evapotranspiration, thus affecting the hydrological cycle. At the same time, CC influences the hydro-
logical cycle by changing precipitation, evapotranspiration, soil moisture, groundwater storages, magnitude, and 
timing of  runoff15,16.

Droughts are one of the major natural disasters which have severe implications for humans and the environ-
ment. During 1970–2019, droughts were responsible for the largest loss of human lives (650,000 deaths)17. The 
deficiency of precipitation results in meteorological droughts; deficiency in soil moisture results in agricultural 
droughts; deficiency in flow results in hydrological  droughts18; and reduced groundwater head and gradients 
result in groundwater  droughts19. Recently, the notion of ecological droughts has been introduced: shortfalls in 
water availability required to sustain the  ecosystems20. Meteorological drought normally propagates down the 
hydrological cycle, resulting in hydrological, agricultural, and other types of drought, such as socioeconomic and 
ecological  droughts21. Different drought types mostly have positive correlations and are likely to respond to the 
same trigger, while they may have differences in temporal and spatial  scales22. Climate change affects drought 
propagation at shorter temporal scales, while human activities, including land use change, increase the response 
time at longer temporal  scales23.

The frequency and area of global agricultural droughts are projected to increase in the future, especially in 
the northern  hemisphere24. Under climate change, the severity and frequency of droughts is reported to increase 
in several regions across the globe, including in the Willamette River basin, U.S.25; in the upper Yangtze River 
basin,  China26; Godavari River basin,  India27; in South  Korea28,29; in the Lower Mekong River basin,  Vietnam30; 
in Lancang-Mekong River  Basin31; in the Johor River basin,  Malaysia32; in the  Mediterranean33; in  Europe34. It 
is univocal from these studies that climate change will aggravate future droughts globally. A rise in temperature 
will increase the evapo-transpiration demands, accompanied by increased temporal variabilities of precipitation 
(although some regions might observe increased precipitation), thus adversely affecting droughts.

In addition to CC, land-use change (LUC) affects the hydrological cycle and has implications for hydro-
metrological extremes. Land surface processes affect the severities of various extreme events such as heat waves, 
droughts, etc.35. This study also found that the conversion of natural forests to cropland and pastures in the 
mid-latitudes increased the frequency of hot-dry summary from 1 in 10 years to 1 in 2–3 years. A study in the 
agricultural region of Marathwada, India, found that anthropogenic factors have at least quintupled the risk of 
agricultural  droughts36. Similarly, increased sea surface temperatures due to anthropogenic activities contributed 
to the East African drought of  201737. The combined impacts of CC and LUC cannot be considered linearly cumu-
lative but could be considerably different than the combined sum of the individual  drivers38. Moreover, CC and 
LUC impacts may also vary  temporally15. LUC impacts can be significant for drought analysis as an alteration in 
water balance elements, such as evapotranspiration and soil moisture over a prolonged period, can further worsen 
drought conditions. Therefore, it is necessary to consider both drivers of change for assessing future drought.

Although the CC impacts on droughts are well documented, the understanding of LUC impacts is limited. 
Few recent studies have attempted to quantify the impacts of both drivers on hydrological  droughts39,40 and have 
inferred that CC is the major contributor to the projected increase in drought frequency. For the agriculture-
dominated river basins, soil moisture is an important hydrological variable and a good indicator of agricultural 
droughts, and a significant knowledge gap exists in this domain. A study in the Mun River basin, Thailand, 
found that both CC and LUC will decrease soil moisture, although the former will likely increase and the latter 
will decrease water yield in the near  future41. A comprehensive study of individual and combined impacts of 
CC and LUC on hydrological and agricultural droughts is lacking. Planners and policymakers in the water and 
agriculture sectors can make informed decisions to manage risk and resilience if they have access to information. 
Improving projections and understanding of future drought characteristics can assist in formulating suitable 
policies, strategies, and measures to address climate-related risks and manage land uses, even to neutralize the 
adverse impacts of climate change. It will also have applicability in drought-risk assessments, disaster-risk reduc-
tion, disaster preparedness, and infrastructure planning to cope with future changes. Thus, the present study is a 
novel attempt to fill this knowledge gap with a case study in the Mun River Basin of Thailand, a tributary of the 
Mekong River (Fig. 1). The climate change scenario developed using eight climate models from the sixth phase 
of the Coupled Model Intercomparison Project (CMIP6) for the near-future period (2021–2050) is used to assess 
changes in future droughts with respect to the baseline period of 1981–201042.

Similarly, two land use change scenarios, namely, ‘Business As Usual’ (BAU) and ‘Combination of Forest 
Conservation and Urban Growth’ (CCU), developed in the previous  study43, are considered in the study. Five 
future cases are analyzed to assess the individual and combined impacts of CC and LUC on agricultural and 
hydrological droughts. They are (a) climate change only (CC_only), (b) land-use change under BAU (LU_BAU_
only), (c) Land-use change under CCU (LU_CCU_only), (d) climate change and land-use change under BAU 
(CC + BAU), and (e) climate change and land-use change under CCU (CC + CCU). Meteorological droughts are 
assessed using the Standardized Precipitation Index (SPI)44, hydrological droughts using the Standardized Runoff 
Index (SRI)45, and agricultural droughts using the Standardized Soil Moisture Index (SSMI)21 (please refer to 
“Materials and methods” for details on climate change scenario, land-use change scenarios, and hydrological 
modeling for the study basin).

Results
Observed drought characteristics
Figure 2 presents the basin-average drought characteristics during the 1981–2017 period. Among the three types 
of droughts, meteorological droughts have the lowest average duration and severity at all timescales. Agricultural 
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and hydrological drought characteristics are comparable, and corresponding values for hydrological droughts 
are the highest among the three droughts. Meteorological droughts, when propagating to hydrological droughts, 
have increased in drought durations and severities, as previously  reported46. At a 1-month timescale, the average 
durations of meteorological, agricultural, and hydrological droughts are 2.5, 5.5, and 5.4 months, respectively. 
Similarly, the three droughts have an average duration of 15.5, 21.0, and 22.0 months at a 12-month timescale, 
while the drought intensity is between 0.7 and 0.9. It is noted from Fig. 2d that drought events identified by SPEI 
are the highest and almost double those defined by SRI and SSMI, and from Fig. 2e and f, the 10-year return 
values for duration and severity are highest for hydrological droughts.

The spatial pattern of average drought severities computed using SPEI, SRI, and SSMI at four timescales over-
laid over the provincial boundary is presented in Fig. 3. Compared to SRI and SSMI, magnitudes of severities for 

Figure 1.  The Mun River basin in northeast Thailand. Dark red lines show provincial demarcation, blue circles 
are the meteorological stations, and blue triangles are the hydrological stations in the basin. The figure is created 
in ArcGIS Pro 3.1.0.

Figure 2.  The observed drought characteristics (a) duration, (b) intensity, (c) severity, (d) the number of events, 
(e) 10-year return values (RVs) of duration, and (f) 10-year return values (RVs) of severity during 1981–2017 
using SPEI, SRI, and SSMI. Drought intensities and severities are shown as absolute values. All sub-plots are 
created in Microsoft 365.
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SPEI are less in the entire basin. Duration and severity of meteorological drought are higher in the central part 
of Nakhon Ratchasima and Buriram provinces and the southern part of Si Sa Ket province. At the same time, 
the northern part of the basin (Maha Sarakham and Roi Et provinces) reported higher hydrological drought 
severities at all timescales. Similarly, agricultural drought severities are higher in the Nakhon Ratchasima and 
Si Sa Ket provinces. Although meteorological and agricultural droughts show similarities in spatial patterns, 
differences can be expected as propagation to agricultural and hydrological droughts involves complex non-
linear  processes21.

A high degree of association among considered droughts is observed. Table 1 shows the estimated propaga-
tion time of meteorological droughts using lag correlation. The highest correlation is highlighted by bold values, 
which show that SRI lags SPEI by one month at a 3-month timescale and by two months at 6- and 12-month 
timescales. Similarly, SSMI lags SPEI by one month at 6- and 12-month timescales. It is mainly due to the lags 

Figure 3.  Spatial pattern of average severities (shown as absolute values) of the meteorological, hydrological, 
and agricultural droughts at 1-, 3-, 6-, and 12-month timescales during the baseline period. All sub-plots are 
created using ggplot2 library in RStudio 2022.07.2 + 576 version.

Table 1.  Lag correlation of SPEI with SRI and SSMI at four timescales. Bold values represent the highest 
correlation.

Timescale Drought indices

Lag time (month)

0 1 2 3

1-month
SPEI & SRI 0.48 0.39 0.33 0.26

SPEI & SSMI 0.68 0.44 0.29 0.21

3-month
SPEI & SRI 0.60 0.67 0.61 0.51

SPEI & SSMI 0.71 0.71 0.59 0.41

6-month
SPEI & SRI 0.67 0.73 0.74 0.70

SPEI & SSMI 0.74 0.77 0.75 0.69

12-month
SPEI & SRI 0.73 0.78 0.79 0.77

SPEI & SSMI 0.77 0.79 0.78 0.76
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in the basin’s hydrological processes that govern the rainfall-runoff responses. An average lag time of 2 months 
between meteorological and hydrological droughts has been reported in the Chinese River  basins47,48.

Climate change and droughts
Projected meteorological drought characteristics (multi-model ensemble) under the CC scenario are shown in 
Fig. 4 (shown by the red bar). Compared to the baseline, the average meteorological drought duration, intensity, 
and severity across various timescales will increase in the near-future by 9–22%, 24–33%, and 45–63%, respec-
tively. However, the meteorological drought numbers will decrease by 7–15%. The maximum increase in the 
meteorological drought characteristics is projected at a longer timescale (12-month). Although there are some 
variations among the projections (shown using IQR in Supplementary Fig. S1) by individual GCMs, all climate 
models suggest an increase in the meteorological drought intensity, and seven out of eight models project an 
increase in meteorological drought severity in the near-future. The increase in duration and severity of mete-
orological droughts are also reflected in the higher magnitudes of their 10-year RVs (increases of 21–28% for the 
duration and 55–74% for the severity of the meteorological drought). The total number of events will decrease 
with the increase in the meteorological drought durations.

Under CC, Fig. 4 (with the light shade of blue) shows that hydrological drought durations are expected to 
increase for 1-month and 12-month timescales (by 7% and 21%, respectively), while it is projected to decrease at 
intermediate timescales of 3-month and 6-month (by 17% and 21% respectively). However, seven of eight climate 
models suggest that hydrological drought intensities will increase across all timescales between 25 and 35%, 
and severities will increase between 15 and 90%. The highest increments in drought severities will be observed 
at 12-month timescales. CC will also worsen the agricultural droughts as duration is expected to increase by 
29–43%, average intensity by 19–27%, and average severity by 61–93% (Fig. 4, shown by the light shades of 
green). Increases projected for average durations and severities of agricultural droughts are the highest among 
the drought types considered in the study. The findings agree well with the previous study in the Be River basin, 
Vietnam, which estimated that agricultural drought duration could increase by up to 168% and intensity by 45% 
towards the end of the  century49.

Inter-model Uncertainty (IMU) for meteorological drought severity is 35%, ranging from 15% for 1-month 
to 65% for 12-month timescales. The IMU is 11% for drought intensity, with a range from 5 to 15%. The smaller 
IMU for drought intensity indicates a stronger consensus among the climate models. Conversely, a higher IMU 
for severity points to more significant uncertainty in the models’ projections of drought duration, as severity 
combines both duration and intensity. In the case of hydrological droughts, the IMU for severity stands at 
approximately 77%, ranging from 59% for 1-month to 120% for 12-month timescales. This suggests that the 
model disagreement is more pronounced at the 12-month timescale than the average projected change. The 
IMU for intensity is 22% (ranging from 16 to 30%), indicating a relatively better agreement. The additional layer 
of uncertainty introduced by hydrological modeling results in a higher IMU for drought severity in hydrologi-
cal droughts compared to meteorological droughts. The larger spread indicates significant variances in model 
projections.

For agricultural droughts, the IMU for severity ranges from 46% for 1-month to 118% for 12-month time-
scales, while for intensity, it is between 7 and 19% for the respective timescales. These findings suggest a con-
sensus among models that drought intensity will increase in the future. Although most climate models project 

Figure 4.  Expected changes in the drought characteristics (duration, intensity, severity, and the number of 
events) at four timescales and five cases ((i) climate change only (CC_only), (ii) land-use change under BAU 
(LU_BAU_only), (iii) Land-use change under CCU (LU_CCU_only), (iv) climate change + land-use change 
under BAU (CC + LU_BAU), and (v) climate change + land-use change under CCU (CC + LU_CCU) ) for the 
near-future period relative to baseline. All sub-plots are created in Microsoft 365.
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an increase in severity, the uncertainty related to model projections is higher. It is also worth noting that the 
magnitude of uncertainty increases with the time scale. Compared to meteorological droughts, a higher degree 
of uncertainty is found for hydrological and agricultural droughts. This was also presented in the recent  study50, 
which shows uncertainty associated with agricultural droughts due to climate change is up to sevenfold greater 
than that for meteorological droughts.

Landuse change and droughts
LUCs are not expected to have significant impacts on hydrological droughts. Under the BAU scenario, changes in 
the hydrological drought duration are less than ± 3%. In contrast, severities of hydrological droughts are projected 
to decrease slightly at 1- and 3-month timescales while increasing by 12% for the 12-month timescale. LUC under 
the CCU scenario may even have positive impacts on hydrological droughts as the hydrological drought durations 
and severities are projected to reduce between − 10% to − 21% and − 5% to − 20%, respectively, for 1- to 9-month 
timescales and no changes are expected for the 12-month timescale. On the contrary, LUC will have significant 
impacts on agricultural droughts (Fig. 4, shown by the light shades of green). Agricultural drought durations are 
expected to increase by 25–50%; intensity by 19–25%; and severity by 58–100% for various timescales under BAU 
scenarios, while the corresponding agricultural drought characteristics will increase by 30–50%, 28–33% and 
80–118% under CCU scenario. Projected rises in the agricultural drought severities increase with the timescale. 
These results clearly show the impacts of LUC on agricultural droughts are comparable to or even more severe 
than the CC in some instances.

Climate + land‑use changes and droughts
Under both combined cases of CC and LUC scenarios, (CC + LU_BAU) and (CC + LU_CCU), projected changes 
in the hydrological drought’s duration and severity are smaller than in the case considering CC only. The results 
are apparent in the case of CC + LU_CCU, where projected changes in hydrological drought characteristics due 
to CC and LUC are in opposite directions. Except for the 12-month timescale, hydrological drought durations 
will decrease by − 8% to − 31%. Figure 5 presents the spread of projections of hydrological droughts between 
individual climate models and the ensemble average. It clearly shows that when CC and LUC are considered 
concurrently, hydrological drought characteristics at all timescales are dominated by CC. Moreover, Fig. 5 also 
shows the associated uncertainties in hydrological modeling; the spread of projections resulting from individual 
GCMs is larger for hydrological droughts than the meteorological droughts, as shown in Fig. S1), particularly 
for the timescale of 12-month.

For agricultural droughts, the combined effects of CC and LUCs are found to have higher increases in drought 
durations and severities than the cases considering these stressors independently. Figure 4 (darker shades of 
green) shows the increase in agricultural drought durations under the combined scenario of CC and LUC for 
BAU (CCU) will be 45–67% (23–48%), while the agricultural drought intensities and severities will increase 
by 40–45% (48–58%) and 116–167% (100–165%), respectively. The range of projected changes in the agricul-
tural drought characteristics by climate model ensemble is shown in Fig. 6. Seven out of eight models suggest 
increments in the agricultural drought durations, while all models agree on increments in agricultural drought 
severities under both combined cases of CC and LUC. The figure also indicates the marked impacts of both CC 
and LUC on agricultural droughts. Compared to hydrological drought, agricultural droughts will be more severe 
(amplified by several folds in some cases) and compared to shorter timescales (1- and 3-month), the projected 
increases in agricultural drought durations and severities will also be higher for the longer timescales (6-, and 
12-month).

Discussion
When meteorological droughts propagate to agricultural and hydrological droughts, they are accompanied by 
a reduction in the number of events and increases in the durations and severities of the agricultural and hydro-
logical droughts. It is primarily due to the high variability of the rainfall (which is mainly the case at shorter 
timescales), resulting in more meteorological drought events. The variabilities in the rainfall are attenuated during 
the hydrological processes, resulting in less variability in soil moisture and river flows. Thus, agricultural and 
hydrological droughts are lesser in number but longer in duration and higher in severity than meteorological 
droughts. A global study also reported similar findings, which show that the spatial extent and drought charac-
teristics increase from meteorological to hydrological and from hydrological to agricultural  droughts50. Drought 
characteristics will be worse in the future due to climate change. The meteorological droughts, which occur 
on average once every decade, are expected to be 25% longer and 65% more severe under the climate change 
scenario. With the increase in temperature, evapotranspiration demands in the future are estimated to increase 
by 4.4% compared to the baseline. In addition, climate change will also increase the temporal variability of the 
rainfall in the basin by 35%, although the annual average rainfall remains more or less the same (< 1% change). 
As a result, future meteorological droughts are projected to be longer and more intense.

In comparison, the hydrological droughts have incongruent responses to climate change at different time-
scales, with future hydrological drought durations decreasing for the intermediate timescale (3- and 6-month) 
and increasing for the longer timescale (12-month). Results of hydrological modeling of the basin for climate 
change scenario show that the water yield, on average, will increase by 11%41. The river flows are expected to 
rise during May–Oct (rainy season) and reduce during Jan–Mar (dry season). However, the near-future is 
accompanied by an increase in temporal variabilities of river flows as the monthly and annual variabilities will 
increase by 18% and 41%, respectively, contributing to intensifying droughts. Compared to CC, LUC (both 
BAU and CCU scenarios) has less influence on future hydrological droughts as water yields (magnitude and 
temporal variability) are insignificantly influenced by LUC. Moreover, the LUC affects hydrological droughts 
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opposite to CC’s. Variabilities in river flows are expected to decrease by 4.4% (6.8%) for BAU (CCU) scenarios, 
contributing to favorable impacts on hydrological droughts. A recent study also suggests that CC may positively 
affect hydrological droughts due to expected changes in precipitation; however, the extreme droughts will be 
negatively  impacted12,51. Once in decade hydrological droughts are expected to be 34% more severe under CC, 
while they will be 5% and 12% less severe under LUC of BAU and CCU, respectively. Under the combined case, 
they will be 21–25% more severe. These results indicate that CC is a relatively more important driver of change 
in hydrological droughts than LUC in the basin, which is also suggested by previous  studies39,40. The inter-model 
uncertainty for hydrological drought characteristics is higher than for meteorological droughts. As rainfall-runoff 

Figure 5.  Boxplot shows the projected hydrological drought characteristics for the near future for a combined 
case of CC and LUC under BAU (top) and a combined case of CC and LUC under CCU (bottom). The grey 
boxes show IQR; the horizontal line within the box corresponds to the median value, and the whiskers show 
either the maximum/minimum values or 1.5 times the IQR. The red crosses are the values for the ensemble 
average, the green plus sign is the value considering land-use only, and the blue stars are the values during 
the baseline period. Severities are shown as absolute values. All sub-plots are created using ggplot2 library in 
RStudio 2022.07.2 + 576 version.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9746  | https://doi.org/10.1038/s41598-024-59113-4

www.nature.com/scientificreports/

transformation involves complex non-linear processes that the hydrological model does not entirely simulate, it 
may have added another layer of uncertainty to the results and climate model-related uncertainties.

Most interestingly, the study finds that both CC and LUC are significant drivers of agricultural droughts in 
the basin. Under individual cases of CC and LUC, agricultural drought occurring once every decade will be 40% 
and 31–35% longer and 88% and 67–87% more severe than the baseline, respectively. With combined stressors, 
agricultural droughts are projected to be 50% longer and 150% more severe. A study in  China21 also found that 
CC can increase agricultural drought duration by several folds. CC and LUC will affect different hydrological 

Figure 6.  Boxplot shows the projected agricultural drought characteristics for the near future for a combined 
case of CC and LUC under BAU (top) and a combined case of CC and LUC under CCU (bottom). The grey 
boxes show IQR; the horizontal line within the box corresponds to the median value, and the whiskers show 
either the maximum/minimum values or 1.5 times the IQR. The red crosses are the values for the ensemble 
average, the green plus sign is the value considering land-use only, and the blue stars are the values during 
the baseline period. Severities are shown as absolute values. All sub-plots are created using ggplot2 library in 
RStudio 2022.07.2 + 576 version.
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processes in the basin, and their combined impacts are not linearly cumulative of the individual impacts. CC 
predominantly alters the timing and volume of surface water converting into soil moisture, while the LUC affects 
the timing and amount of evapotranspiration in the basin. In the study basin, CC will increase rainfall extremes 
while decreasing the number of rainfall days in the near-future42. These will contribute to an increase in surface 
runoff and provide fewer opportunities for infiltration to maintain soil moisture. This reduction in future soil 
moisture will contribute to significant increases in agricultural droughts. A recent study in Central Asia also 
reported similar findings that the anthropogenic forcing was responsible for the decline in soil moisture resulting 
in the severity of the agricultural  droughts49. Figure 7 shows the projected reductions in soil moisture under five 
future cases analyzed. Under the CC scenario, the average annual soil moisture will decrease by about 5%, while 
for the combined CC and LUC cases, decreases are expected to be about 8% and 9%, respectively, for BAU and 
CCU. On the temporal scale, soil moisture decreases are highest (close to 20%) during the summer (Mar–May) 
under the combined cases, while least during Sep–Nov (about 2–5%).

Further, both drivers also affect the runoff generated in the basin. In this case, even though the annual rainfall 
in the basin remains almost the same (< 1% change), the annual water yields will increase by about 11%. Thus, 
an increase in the other water balance components (evapotranspiration and runoff) will drastically affect soil 
moisture, resulting in higher sensitivity of the agricultural droughts to both CC and LUC.

The findings have implications in the study basin, especially as the land-use is dominated by agriculture, 
which is directly linked with the livelihood of most of the population. Droughts in the basin have been found to 
correlate well with the yields of major crops (Rice and Maize)52. The impacts of CC and LUC can further propa-
gate to socioeconomic and ecological droughts. Our study has estimated CC and LUC’s separate and combined 
impacts on future drought characteristics. It highlights the need to formulate suitable policies, strategies, and 
plans for developing resilience against future droughts.

Conclusions
The research examines the future drought characteristics under climate change and land-use change scenarios 
using three standardized drought indices. Meteorological, hydrological, and agricultural drought characteris-
tics are projected for 2021–2050 and compared with the baseline (1981–2010). A pivotal finding of the study 
is the equal significance of land use change and climate change in driving the future severity of agricultural 
droughts. The finding is important for understanding the multi-faceted drivers of droughts. Our study suggests 
that future hydrological droughts will be dictated mainly by climate change. Under climate change, once in a 
decade hydrological drought will be 34% more severe, whereas the impact of land-use changes could reduce their 
severity by up to 12%. Furthermore, agricultural droughts, for the same return period, are forecasted to worsen 
significantly, with an increase in severity by 88% under climate change and 67–87% due to land-use change. It 
is also worth noting that agricultural droughts are more sensitive to both climate change and land-use change 
than meteorological and hydrological droughts. The combined impacts of climate and land-use change will likely 
have dire repercussions on future agricultural droughts as the severities can be more than two-fold, highlighting 
the urgency for adaptation and mitigation strategies.

Future research can investigate the inter-linkages between land-use change, climate change, and droughts, 
such as how land-use changes are driven by climate change and droughts and how land-use change can influ-
ence local/ regional climate, which will further affect meteorological droughts and consequently agricultural 
and hydrological droughts. Land and climate have complex interactions, and the impacts of land-use on cli-
mate change have regional heterogeneity as well as origins beyond the boundary of the  basin53. The study has 

Figure 7.  Monthly average soil moisture (SM) during baseline (left axis) and the projected change in the 
monthly average soil moisture under five future cases considering climate change and land-use change 
compared to the baseline period (right axis). The figure is created in Microsoft 365.
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considered climate-model-related uncertainties using multiple climate model outputs. However, climate scenario-
related uncertainties are not considered as the future projections of climate models in HighResMIP of CMIP6 
are available only for the high-emission scenario. We recommend using alternative MIPs, such as ScenarioMIP, 
where future projections are available for multiple SSPs to capture related uncertainties better.

Materials and methods
Study domain
The Mun River basin in northeast Thailand (geographically between 14.1 to 16.0°N latitudes and 101.2 to 104.9°E 
longitudes) is a major tributary of the Mekong River and is also significant from an agricultural perspective in 
the country (Fig. 1). The basin is spread over Nakhon Ratchasima, Buriram, Surin, and Si Sa Ket provinces, while 
partially included in Maha Sarakham, Khon Khen, Roi Et, and Ubon Ratchathani provinces. The basin has a 
tropical climate with three seasons. November to February is the winter season when the cool and dry winds 
blow westward from the South China Sea, bringing little/no rainfall (northeast monsoon). March to May is the 
dry season (or pre-rainy), a transition period from the northeast monsoon to the southwest  monsoon52. June 
to October constitute the rainy season (associated with the southwest monsoon), when more than 80% of the 
annual rainfall occurs.

Observational hydro‑climatic dataset
Gridded rainfall data interpolated using the inverse distance weighing (IDW) method at 0.25-degree resolution 
from daily rainfall measured at 43 stations are utilized in the  study42. The rainfall dataset was found to be consist-
ent with several global datasets (APHRODITE, CPC, GPCC, CHIRPS). Temperature records were available only 
at a few stations in the basin, so Climate Prediction Center Global Land Surface Air Temperature  Analysis54 was 
used. Among several global temperature products, CPC data compared better with observations, with a correla-
tion coefficient above 0.95 and an RMSE of about 0.8 °C42. Observed temperature data are also interpolated to a 
common spatial resolution of a 0.25-degree grid using bilinear interpolation. The spatial patterns of the average 
of Tmax, Tmin, and rainfall during the 1981–2010 (baseline) period are presented in Supplementary Fig. S2. 
Limited spatial variations in Tmax and Tmin within the basin range between 32.3–33.2 °C and 22.0–22.9 °C 
respectively. In contrast, annual rainfall shows a significant disparity, as the western part receives an annual 
rainfall of about 900 mm and the eastern part about 1600 mm.

Daily river flow data for 1981–2016 were collected and measured at nine gauging stations from the Royal 
Irrigation Department (RID) of Thailand, as shown in Fig. 1. January to May is the low flow period in the basin, 
and the flow begins to increase from June and peaks during October. The annual average flows for stations 
M104, M5, and M182, representing the upper, middle, and lower Mun river basin, are 97, 216, and 265  m3/s, 
respectively (Supplementary Fig. S2).

Land‑use and soil dataset
Land-use maps from Thailand’s Land Development Department (LDD) for the years 2000 and 2008 are utilized 
in this study. Agriculture is a major livelihood activity of the people, with about 75% of the total basin area under 
cultivation. Rice is the primary crop grown in the basin (about 55% of the entire area) (Supplementary Fig. S4), 
of which 90% are  rainfed55. The next major crops grown are the Field crops, which consist of Cassava, Sugarcane, 
and Maize. Rice is cultivated in the middle and lower regions of the basin; field crops are mainly grown in the 
upper region, and the forested area is located primarily in the south. Compared to land use in 2000, the area 
under rice has reduced from 60.2% to 55.5%, while Perennials and orchards have increased from 1.7 to 4.9% in 
2008. Soil data acquired from LDD (Supplementary Fig. S5) shows that most of the basin has sandy loamy soil 
with low fertility grade and a limited ability to hold water and  nutrients56.

Future climate projections
Future projections of Tmax, Tmin, and rainfall from prior  study42 using eight climate models from the High-
ResMIPs of CMIP6 are considered. Descriptions of the models are provided in Supplementary Table S1. Future 
climate data are available until 2050 under the Shared Socioeconomic Pathway 5 (SSP5-8.5) scenario. In radiative 
forcing, the scenario is similar to RCP8.557. Changes in the near-future period of 2021–2050 have been assessed 
relative to the baseline period of 1981–2010. Projected rainfall data for the climate model are resampled to 
0.25-degree resolution using the nearest neighbor (NN) method, while bilinear interpolation is employed for 
temperature data. Future climate data has been corrected for biases using quantile mapping. Rainfall data is 
bias-corrected using empirical distribution, which avoids assumptions about distribution fitting and corrects 
rainfall intensity and frequency. For temperature, theoretical distribution is a better choice as it involves frequent 
extrapolation; hence, normal distribution is used. Details on bias corrections can be referred to Khadka et al.42.

The study employs equal weight methods for computing the multi-model ensemble, the justification being 
that climate models are considered equiprobable and the model ensemble performs better than individual 
 models5,58,59. Weighting models based on their performance on specific metrics can be misleading as different 
metrics could potentially lead to different rankings and weights. Supplementary Table S2 shows the projected 
monthly changes in the considered climatic variables in the near future. The highest increase in the Tmax will 
occur during the Mar–May period, while for Tmin during the Nov–Dec period. Overall, increments of 1.29 °C 
and 1.37 °C in annual Tmax and Tmin are projected. In the case of annual rainfall, no significant changes are 
projected (0.5%). However, changes in temporal rainfall pattern will be observed, with increases during the rainy 
season by 2–8% and decreases during the dry season by 6–11%. The spatial pattern of the projected temperature 
changes does not show much variation within the basin (Supplementary Fig. S6), although the highest increase 
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in Tmax is expected to be in the central parts of Nakhon. A mixed pattern will be observed for the rainfall, with 
projected increases in the central part and decreases in the northwest and southeast parts of the basin.

Future land‑use projections
The study has utilized two land-use change scenarios developed for the Mun River basin using the Future Land 
Use Simulation (FLUS)  model43. Two LUC scenarios considered in this study are (i) Business as usual (BAU) and 
the Combination of forest conservation and urban growth (CCU). BAU scenario is based on the observed past 
land-use changes in the basin, while CCU is a multi-objective scenario combining the objectives of increased 
 Conservation60 and Urban  growth61.

Supplementary Fig. S7 shows the projected land-use in the basin for 2050 under BAU and CCU scenarios. 
Rice fields are projected to be reduced under both scenarios to 44.3% (in BAU) and 36.2% (in CCU). Similarly, 
the area under field crops, perennials & orchards, and urban areas will increase compared to 2008 LU. Field 
crops will increase to 21.8% and 15.6%, Perennials and Orchards will increase to 9.1% and 6.7%, and Urban 
will increase to 7.3% and 10.0% under BAU and CCU scenarios respectively. Forest area will decrease to 11.0% 
under BAU while increasing to 25% under CCU scenarios. LUC scenarios utilized in the study encapsulate the 
possible range of projected changes under various scenarios  developed43.

Soil and water assessment tool (SWAT) modeling
The hydrological modeling of the basin under baseline and near-future scenarios is conducted using the Soil and 
Water Assessment Tool (SWAT). It is suitable for continuous simulations in agricultural  watersheds62. Evapotran-
spiration is an important hydrological process to consider for drought assessment, and SWAT is suitable as it also 
has a crop growth module. The watershed is divided into 57 sub-watersheds based on topography and further 
into 1855 Hydrologic Response Units (HRUs) comprising homogenous land-use, slope, and soil characteristics.

The model has been calibrated and validated with observed flows at nine locations, evapotranspiration (ET) 
(using The Global Land Evaporation Amsterdam Model, GLEAM  ET63), and soil moisture (SM) (using the Global 
Land Data Assimilation System,  GLDAS64). Calibration is carried out using the SWAT-CUP software with the 
Sequential Uncertainty Fitting (SUFI) algorithm, allowing sensitivity and uncertainty  analyses65. The calibration 
is conducted considering the land-use map of 2008 and simulations from 2006 to 2017, and it is validated using 
the land use of 2000 and simulations from 1996 to 2005. P-value and sensitivity analysis are used to identify 
critical parameters for calibration/validation. Model performance is assessed using performance statistics such 
as P-factor and R-factor65, Nash–Sutcliffe (NS), Coefficient of determination  (R2), and volume  bias66. The model 
can reasonably simulate the hydrological process, especially the low  flows41.

The calibrated model is applied to simulated flows and soil moisture for five future cases considering CC and 
LUC scenarios. They are (a) climate change only (CC_only), (b) land-use change under BAU (LU_BAU_only), 
(c) Land-use change under CCU (LU_CCU_only), (d) climate change + land-use change under BAU (CC + LU_
BAU), and (e) climate change + land-use change under CCU (CC + LU_CCU).

Standardized drought indices
The study has used Standardized Precipitation Evapotranspiration (SPEI)44 for meteorological, Standardized 
Runoff Index (SRI) for hydrological, and Standardized Soil Moisture Index (SSMI)21 for agricultural drought 
analyses. SPEI is a multivariate drought index that considers latent variables ( Precipitation – Potential evapotran-
spiration) and has been applied in several recent climate change  studies67–69. the data is fitted to the Generalized 
Extreme Value (GEV)  distribution52,70.

SRI is similar to SPEI, where flow time series data are used instead of P-PET time series, and the data is fitted 
into a two-parameter log-normal  distribution71,72. SSMI is computed using the soil moisture by fitting into gamma 
 distribution73. Unlike rainfall and runoff, soil moisture data may not be readily available. Following the previous 
 research21,30,74, simulated soil moisture by the SWAT model is used for computing the SSMI. Drought indices 
are calculated at four timescales (1-, 3-, 6-, and 12-month) to assess short-term and long-term droughts. Future 
meteorological droughts are assessed under the case of CC only, while hydrological and agricultural droughts 
are assessed under five cases of CC and LUC, as discussed above.

Characterization of droughts
A new  approach52, has been used to identify drought events from standardized indices. Two criteria are used to 
define droughts: (i) drought index value less than zero for consecutive time steps, and (ii) the maximum intensity 
for that period is less than/or equal to – 0.5. This approach helps to omit minor drought events during analysis 
and prevent a single event from splitting into multiple smaller duration events, which can have consequences 
in drought characterization.

The univariate approach is used for drought durations and severities analyses for 10-year and 20-year return 
values using empirical distribution function (EDF), a non-parametric  approach75. Future projected drought 
characteristics are compared with the observed period to assess changes.

Uncertainty analysis
Inter-model uncertainty (IMU)42,76 related to drought intensity and severity is estimated as the standard devia-
tion (SD) of the projected changes from the climate model ensemble given by
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where ‘ M  ’ is the ensemble mean projected change, and n is the number of climate models. IMU is expressed as 
a deviation from the ensemble average.

Data availability
Data can be accessed from the NERC EDS Environmental Information Data Centre. https:// doi. org/ 10. 5285/ 
b11c0 40d- c3c0- 43c5- a7c0- 442b0 67dc5 26.
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