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Proof of biased behavior 
of Normalized Mutual Information
Amin Mahmoudi * & Dariusz Jemielniak 

The Normalized Mutual Information (NMI) metric is widely utilized in the evaluation of clustering 
and community detection algorithms. This study explores the performance of NMI, specifically 
examining its performance in relation to the quantity of communities, and uncovers a significant 
drawback associated with the metric’s behavior as the number of communities increases. Our findings 
reveal a pronounced bias in the NMI as the number of communities escalates. While previous studies 
have noted this biased behavior, they have not provided a formal proof and have not addressed the 
causation of this problem, leaving a gap in the existing literature. In this study, we fill this gap by 
employing a mathematical approach to formally demonstrate why NMI exhibits biased behavior, 
thereby establishing its unsuitability as a metric for evaluating clustering and community detection 
algorithms. Crucially, our study exposes the vulnerability of entropy-based metrics that employ 
logarithmic functions to similar bias.

Background
Community detection (CD) within social networks has emerged as a pivotal area of research, given its potential 
to unravel intricate patterns of interaction and group dynamics. It is used in many disciplines, including biology1, 
criminology2, economics3, and urban planning4, to mention just a few examples. In particular, this topic has also 
emerged as a critical field in the battle against disinformation. Social networks are often the primary conduits 
for the spread of disinformation, with communities within these networks playing a significant role in the dis-
semination and amplification of misleading content. By identifying and understanding these communities, we 
can gain valuable insights into the dynamics of disinformation spread, enabling more effective interventions5,6. 
It is essential, as the rapid spread of medical7,8, political9,10, social11–13, as well as scientific14–16 misinformation 
and disinformation are among the greatest civilization challenges of our times17–19.

Research has shown that disinformation tends to spread rapidly within tight-knit communities and is often 
characterized by homogenous beliefs and high levels of trust among members20. These communities can act as 
echo chambers, reinforcing and amplifying disinformation and using more and more sophisticated strategies 
for masking their agendas21. By employing CD algorithms, we can identify these communities and understand 
their structure and behavior, providing a basis for targeted, community-specific strategies to combat disinforma-
tion. As such, CD in social networks is not only a theoretical exercise but also a practical tool in the fight against 
disinformation. However, even though many new emerging approaches have been tested22–25, we are still far 
from an optimal approach.

A plethora of algorithms have been developed to enhance the accuracy of CD, yet comprehensive and diverse 
sets of metrics for evaluating these algorithms are lacking. Predominantly, metrics such as modularity, conduct-
ance, pairwise F-measure (PWF), NMI, variation of information (VI), purity, and adjusted rand index (ARI) have 
been employed to assess the performance of CD algorithms. These metrics, which were originally designed for 
evaluating clustering techniques, have been adapted for CD due to the conceptual similarities between clustering 
and community detection26.

Certain metrics, such as modularity, operate based on the internal structure of communities identified by a 
specific algorithm, independent of the availability of ground truth27. Conversely, metrics such as the NMI, ARI, 
VI, purity, and F-measure necessitate the availability of ground truth for deployment28. Regardless of the acces-
sibility of ground truth, each metric is subject to a resolution limit29, which is a factor that has been highlighted 
and well established in existing research30–34.

Motivation
Predominantly, external metrics (those reliant on ground truth) construct a contingency matrix (table), where 
each cell represents the intersection of members between actual classes and detected communities. In some 
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instances, the accuracy of CD algorithms is evaluated solely based on the number of true positive members. 
However, an effective CD algorithm should take into account two primary aspects of communities: distribution 
and joint membership. Therefore, the evaluation metric for CD algorithms must be capable of discerning the 
distribution of communities and joint members in relation to the ground truth. This implies that the critical 
factor is not merely identifying joint members but also accurately determining the number of communities 
relative to the ground truth35.

Despite the identification of biased behavior in these measures by several researchers32–34, a mathematical 
explanation for this issue has not been adequately addressed. Most reports suggest that this bias is due to the 
finite size effect. In this study, we aim to formally demonstrate why the NMI metric exhibits bias. To achieve this, 
we first present the results of NMI across 40 scenarios (representing different community numbers assumed to 
be detected by a specific algorithm) and compare them with five other well-established measures. Subsequently, 
we dissected the NMI formula and ultimately proved that this formula inherently leads to biased behavior36.

Contribution
Community detection is a critical concern spanning diverse scientific disciplines, including biology, health, social 
networks, politics, targeted marketing, recommender systems, link prediction, and criminology37. As such, the 
accuracy of community detection algorithms is of paramount importance, and the evaluation metric for these 
algorithms assumes even greater significance. Given the widespread use of the NMI in evaluating community 
detection algorithms, illuminating its biased behavior contributes significantly to fields that employ community 
detection studies. Moreover, substantiating this bias establishes the foundation for analyzing evaluation metrics 
of community detection algorithms that incorporate a logarithmic function38. It also opens the door to crafting 
new metrics while considering issues rooted in logarithmic functions.

The remainder of this paper is structured as follows: The subsequent section reviews the relevant literature 
in this domain. Then  “Preliminaries and notations” are introduced. “Problem statement” delves into a detailed 
description of the NMI drawback. The proof of the NMI problem is presented in “Proof of biased behavior of 
NMI”. In “Case study”, we present a case study based on a real-world dataset and “Conclusion” concludes the 
paper with key findings and implications.

Related works
CD algorithms aim to identify groups of nodes characterized by dense interconnections compared to the rest 
of the network39,40. Girvan and Newman39 introduced the modularity metric to evaluate the accuracy of com-
munities detected by their algorithm, sparking the development of numerous algorithms based on this metric. 
However, Fortunato26 highlighted a resolution limit in the modularity metric, indicating its inability to detect 
small-sized communities. Cai et al.31 further demonstrated that maximizing modularity is an NP-hard problem 
and that a random network without any communities can achieve a high Q value. Chen, Nguyen, and Szymanski41 
underscored the inconsistencies of the modularity metric, noting its tendency to favor either small or large com-
munities in different scenarios. They proposed a new measure, modularity density, which combines modularity 
with split penalty and community density to circumvent the dual problems inherent in modularity.

The NMI was first considered a precise metric by Danon et al.36, who reported its sensitivity to errors in the 
community detection procedure. They consider Zout as the average number of links a node has to members of 
any other community, by increasing Zout NMI tends to be zero. Subsequent research has addressed the limita-
tions of the NMI measure, with Romano et al.42 emphasizing the role of the number of clusters in the evaluation 
metrics. Amelio and Pizzuti30 argued that the NMI is not fair, as solutions with a high number of clusters receive 
disproportionately high NMI. Zhang34 demonstrated that the NMI is significantly affected by systematic errors 
due to finite network sizes and proposed the relative normalized mutual information (rNMI). Lai and Nardini32 
introduced the corrected normalized mutual information (cNMI) to address the reverse finite size problem of 
the rNMI. Liu, Cheng, and Zhang33 highlighted the drawbacks of NMI and its improved versions, such as rNMI 
and cNMI, noting that these measures often overlook the importance of small communities. Rossetti, Pappalardo, 
and Rinzivillo43 introduced community precision and community recall to evaluate CD algorithms, addressing 
the high computational complexity of the NMI. Arab and Hasheminezhad44 also reported scalability problems 
with the NMI in large-scale data.

Other researchers have proposed alternative measures for evaluating community detection and clustering 
algorithms. Meilă45 introduced the variation of information (VI) metric, an entropy-based measure that operates 
based on mutual information. Wagner and Wagner46 categorized measures based on counting pairs, set overlaps, 
and mutual information and concluded that information theoretical measures outperform counting pairs and set 
overlaps measures. Santos and Embrechts47 utilized the ARI for cluster validation and feature selection. Yang and 
Leskovec48compared 13 measures for evaluating community detection algorithms, categorizing them into four 
groups and concluding that conductance and triad-participation-ratio have the best performance in identifying 
communities. Saltz, Prat-Pérez, and Dominguez-Sal49 introduced a new metric for the CD problem, weighted 
community clustering (WCC), which operates based on the distribution of triangles in the graph.

Preliminaries and notations
Normalized Mutual Information (NMI)
The NMI serves as a metric for assessing the performance of community detection algorithms. The NMI facili-
tates comparisons between two clusters or communities, yielding a value that ranges from 0 to 1. A higher value 
indicates a greater degree of similarity between two partitions or communities. As an external metric, the NMI 
necessitates the availability of class labels for computations, implying that the ground truth is required when 
employing this metric. The calculation of NMI is executed according to Eq. (1).
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where I(A,B) is mutual information and H is the entropy as shown in Eqs. (2) and (3).

The expansion of Eq. (1) with respect to (2) and (3) is Eq. (4)

Suppose there are two networks denoted as Net1 and Net2 each consisting of sets of vertices (V) and edges (E). 
Net1 consists of R communities denoted as A = {A1,A2, . . . .,AR} , while Net2 consists of S communities denoted 
as B = {B1,B2, . . . .,BS} . Cij denotes the number of nodes that clusters (communities) Ai and Bj share. If A = B , 
then NMI(A,B) = 1 ; if A and B are completely different, then NMI(A,B) = 0.

In addition to the NMI, some other measures can be used to evaluate the accuracy of CD and clustering 
algorithms. Table 1 lists well-known measures in this domain. We listed these measures here to highlight the 
differences between the NMI and other measures in practice.

Essentially, to compute the measures listed in Table 1, a contingency table (CT) is employed. This table is 
created based on the joint members between communities detected by a certain algorithm and the ground truth. 
The contingency table used for computing the NMI is presented in Table 2.

Table 3 presents important notations.

Problem statement
In this section, we present the main drawback of the NMI. We illustrate this problem through an example. Exam-
ple 1. Suppose we have 40 members and eight gold standard communities (ground truth) as follows:

∅S
1 = {a1, ..., a5}  ,  ∅S

2 = {a6, ..., a10}  ,  ∅S
3 = {a11, ..., a15}  ,  ∅S

4 = {a16, ..., a20}  ,  ∅S
5 = {a21, ..., a25}  , 

∅S
6 = {a26, ..., a30} , ∅S

7 = {a31, ..., a35} , ∅S
8 = {a36, ..., a40}

We analyze all possible states based on the number of communities. Table 4 and Fig. 1 present the results 
of NMI values for different states compared to those of the ARI, PWF, Fowlkes Mallows, Hubert statistics, and 
Jaccard. 

The number of communities in the ground truth is 8, and it should remain constant across all the experi-
ments. The second column shows the number of communities detected by a specific algorithm, while columns 
3–8 display the values for each measure. The last column represents the number of ground truth communities 
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Table 1.   Well-known metrics for evaluating community detection algorithms.
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that share common members with the detected communities. For example, if a certain algorithm detects two 
communities as follows:

The ω value is 8 since all members of the 8 ground truth communities share common members with the 
detected communities.

In this study, we assume the best-case scenario in which the detected communities of a certain algorithm 
lead to the highest NMI value. Thus, we propose:

Axiom 1: The highest NMI value is obtained if and only if the detected communities have the highest possible 
number of common members with the ground truth and if the highest value of ω is maintained.

Now, as shown in Table 4 and Fig. 1, everything appears to be fine when the number of R is less than S. How-
ever, the situation changes when the number of R increases and surpasses S. At first glance, it may not seem that 
there is a strong argument to support the claim that the value of metrics declines as the number of members 
decreases. However, upon closer examination, it becomes evident that the decrease in the NMI value is less steep 
compared to the other metrics. This raises the question of what is amiss when comparing all algorithms to a 
specific metric such as the NMI.

The problem arises when N is equal to the number of communities, indicating that each community includes 
only one member, which is the worst-case scenario. Surprisingly, even in this unfavorable situation, the NMI 
value still indicated a high level of efficiency. On the other hand, when R equals one or two, the NMI value 
returned is very low. For instance, Table 4 demonstrates that when R is 2, the NMI is 0.5, whereas in the worst-
case scenario with R being 40, the NMI is 0.72. This finding implies that if Alg1 and Alg2 return 2 and 40 
communities respectively, the NMI suggests that the accuracies of Alg1 and Alg2 are 0.5 and 0.72 respectively. 
Similarly, when R is 4, the NMI is 0.8, whereas when R is 27 the NMI is also 0.8. In both examples, the NMI sug-
gests that a certain algorithm that detects more communities is better. However, in reality, a certain algorithm 
that detects 4 communities may be better than another algorithm that detects 27 communities with respect to 
the number of ground truth communities.

Proof of biased behavior of NMI
As discussed in the previous section, when the number of communities (R) increases and exceeds the number 
of communities in the ground truth (S), the NMI exhibits a biased behavior. Therefore, in this section, we aim 
to analyze the effect of quantity of communities on this measure. Firstly, we decompose the NMI formula, 
allowing us to examine how NMI values change from the minimum to the maximum. Subsequently, we present 
an explanation as to why NMI changes are more pronounced when R < S rather than R > S . Before we begin 
our discussion, it should be noted that for all Lammas and the relevant proof, Axiom 1 should be maintained.

Decomposition
For simplicity, we have Formula 4 (NMI) here.

∅R
1 = {a1, ..., a5},∅

R
1 = {a6, ..., a40}

Table 2.   Contingency table.

S

R

r1 r2 … rr Sum

s1 c11 c12 … c1r c1.

s2 c21 c22 … c2r c2.

… … … … …

ss cs1 cs2 … csr cs.

Sum c.1 c.2 … c.r

Table 3.   Key notations.

Notion Description

Ci. Refers to summation of cells in row i of Contingency table

C.j Refers to summation of cells in column j of Contingency table

Cij Refers to joint members in communities i and j

R Refers to No. community which detected by certain algorithm

S Refers to No. community in gold standard (ground truth)

ω No. Ground truth with full same common members

∅
S Community in S
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We decompose the above equation to examine the behavior and performance of each component. The NMI 
consists of three main components: the common members ( Cij ), the sum of common members for each com-
munity detected by a particular algorithm ( C.j ), and the sum of common members for each community in the 
ground truth ( Ci. ). Here, S represents the number of communities in the ground truth, and R represents the 
number of communities detected by a specific algorithm. We denote the set of common members as Z. S rep-
resents the set of the sum of common members in each ground truth community, while R represents the set of 
common members in each community detected by a specific algorithm.

NMI(A,B) =
−2

∑S
i=1

∑R
j=1 Cijlog

CijN

Ci.C.j

∑S
i=1 Ci.log

Ci.
N +

∑R
j=1 C.jlog

C.j

N

Z = {C11,C12, . . . ,C21,C22, . . .CRS}

Table 4.   The results of evaluation metrics based on all possible numbers of communities for a sample network 
with 40 nodes.

S R ARI NMI PWF FM Hubert Jaccard ω

8 1 0 0 0.222 0.32 0 0.103 8

8 2 0.215 0.5 0.4 0.459 0.347 0.211 8

8 3 0.381 0.665 0.542 0.56 0.485 0.314 8

8 4 0.552 0.8 0.667 0.667 0.617 0.444 8

8 5 0.631 0.857 0.75 0.718 0.679 0.516 8

8 6 0.727 0.909 0.833 0.784 0.756 0.615 8

8 7 0.847 0.957 0.917 0.873 0.857 0.762 8

8 8 1 1 1 1 1 1 8

8 9 0.957 0.98 0.925 0.962 0.958 0.925 7

8 10 0.942 0.969 0.848 0.949 0.943 0.9 7

8 11 0.934 0.962 0.779 0.942 0.936 0.888 7

8 12 0.926 0.954 0.722 0.935 0.929 0.875 7

8 13 0.894 0.94 0.684 0.908 0.899 0.825 6

8 14 0.869 0.929 0.649 0.887 0.877 0.788 6

8 15 0.852 0.919 0.616 0.873 0.862 0.762 6

8 16 0.843 0.912 0.583 0.866 0.854 0.75 6

8 17 0.807 0.899 0.562 0.837 0.823 0.7 5

8 18 0.779 0.889 0.542 0.814 0.799 0.662 5

8 19 0.759 0.88 0.521 0.798 0.782 0.638 5

8 20 0.749 0.873 0.5 0.791 0.774 0.625 5

8 21 0.708 0.862 0.487 0.758 0.741 0.575 4

8 22 0.676 0.852 0.473 0.733 0.715 0.538 4

8 23 0.654 0.844 0.46 0.716 0.697 0.512 4

8 24 0.642 0.838 0.444 0.707 0.688 0.5 4

8 25 0.595 0.827 0.436 0.671 0.651 0.45 3

8 26 0.558 0.818 0.426 0.642 0.622 0.412 3

8 27 0.532 0.811 0.416 0.622 0.602 0.388 3

8 28 0.519 0.805 0.405 0.612 0.592 0.375 3

8 29 0.464 0.796 0.398 0.57 0.549 0.325 2

8 30 0.42 0.787 0.392 0.536 0.516 0.288 2

8 31 0.39 0.78 0.384 0.512 0.492 0.262 2

8 32 0.374 0.775 0.375 0.5 0.48 0.25 2

8 33 0.31 0.766 0.37 0.447 0.428 0.2 1

8 34 0.258 0.758 0.365 0.403 0.385 0.162 1

8 35 0.222 0.752 0.359 0.371 0.354 0.138 1

8 36 0.204 0.747 0.352 0.354 0.337 0.125 1

8 37 0.127 0.739 0.348 0.274 0.26 0.075 0

8 38 0.065 0.731 0.344 0.194 0.184 0.038 0

8 39 0.022 0.725 0.339 0.112 0.106 0.012 0

8 40 0 0.721 0.333 0 0 0 0
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S = {s1, s2, . . . , ss} is a set representing the number of members in each community of the ground truth, where 
si denotes the number of members in community i. It is important to note that there exists an inverse relationship 
between each pair of elements in S.

R = {r1, r2, . . . , rr} is a set representing the number of members in each community detected by a certain 
algorithm, where rj represents the number of members in community j. Again, there exists an inverse relation-
ship between each pair of elements in R.

Suppose that:

The L and M values are always negative, ∵ 0 < Ci. < N ∴ logCi.
N  < 0 ⇒ Ci.log

Ci.
N  < 0

In addition, K is positive, therefore, the − 2 multiplied K is also negative and the NMI value is positive.
and:

(5)K =

S
∑

i=1

R
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j=1

Cijlog
CijN

Ci.C.j
, L =

S
∑

i=1

Ci.log
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N
,M =

R
∑

j=1

C.jlog
C.j

N

(6)∴ NMI =
−2K

L+M

(7)si =

S
∑

k=1

Cik = Ci .And rj =

R
∑

k=1

Ckj = C.j

Figure 1.   The response of different metrics based on varying numbers of communities.
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Lemma 1  N =
∑R

j=1rj =
∑S

i=1si

Proof  In simple terms, a certain algorithm detects communities with N members, where these N members are 
distributed among R communities. Similarly, this term holds true for the ground truth, which consists of S com-
munities. Below, we provide a formal proof:

From minimum to maximum

Lemma 2   The minimum value of NMI is obtained if R = 1andS > 1ORS = 1andR > 1
Proof  If R = 1 , then a certain algorithm considers all members in one community, on the other hand S > 1 
demonstrates that there is more than one community in ground truth. The conclusion is that Cij = Ci. and 
N = C.j therefore K = 0 . In a similar vein when S = 1 and R > 1 NMI is zero. Formally this can be shown as:

In both cases K is zero, ∵ CijN= Ci.C.j ⇒ log1 = 0 , ∴ NMI = 0.

R = S

Lemma 3  The maximum value of NMI is 1, if R = S&∀i, j, i = j ⇒ Cij �= 0&s.ti �= j ⇒ Cij = 0 and the CT is a 
square and diagonal matrix.
Proof  When R = S only diagonal elements of CT is non zero, to have a maximum NMI value of 1, the mem-
bers of each community in the ground truth first should be the same in terms of quantity and second in terms 
of member similarity with the communities detected by a certain algorithm. It should be noted that this does 
not imply that the number of members in all communities should be the same. Therefore, when R equals S, a 
square matrix is formed, ensuring that there are similar members in each pair. This results in members not being 
distributed across two communities, thus resulting in a diagonal matrix for the contingency table. Having only 
one non-zero cell leads to:

Since the CT is diagonal, only one cell in each row or column is considered to be non-zero ∴

In addition:

∴

Furthermore, this can be demonstrated through contradiction by considering the case when L and M are not 
equal, therefore R  = S . If R > S , it implies that some members are distributed across different communities. 
This distribution decreases the number of common members, consequently increasing the absolute value of the 
denominator in the fraction. Consequently, the NMI decreases, as shown in Eqs. (10) and (11):
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Now, if S > R , the absolute value of the numerator decreases. This occurs because the logarithmic reduction 
has a smaller slope compared to the effect of the coefficient.

In the given example, the roles of K and M are crucial in the NMI formula, where L is constant. Let us consider 
the two algorithms, Alg 1 and Alg 2, along with their respective communities.

Example 2  Suppose the ground truth consists of 4 communities: {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}

Algorithm Alg 1 consists of two communities: {a1, a2, a3, a4}, {a5, a6, a7, a8} . In this case, the values for K, L, 
M, and NMI for Alg 1 are as follows:

Now, consider Algorithm Alg 2, which consists of six communities:{a1, a2}, {a3, a4}, {a5}, {a6}, {a7}, {a8} . In 
this case, the values for K, L, M, and NMI for Alg 2 are as follows:

These values demonstrate the roles of K and M in the NMI formula, and how they contribute to the calcula-
tion of the NMI value for Alg 1 and Alg 2, respectively.

R  = S

Now, let us discuss the scenarios where the number of communities is greater or less than the number of com-
munities in the ground truth.

R > S

It is clear that |Z| = R × S

For this state:

Lemma 4   If  R > S , then the maximum value of NMI is obtained if and only if the cardinality of the set of common 
members (Z) is equal to R × (R − 1) , and if the number of pairwise common members ( CRS ) that are not equal to 
zero is equal to or greater than the cardinality of R.

First it is important to note that values smaller than |R|, indicating non-zero values in the cells of the contin-
gency table, are not possible. This is because having a community without any common members violates the 
pigeonhole principle in mathematics. According to this principle, if n items are placed into m containers, where 
n > m , then at least one container must contain more than one item.

In this scenario, at least one detected community should have at least one common member, resulting in at 
least |R| being the non-zero member in Z. This can be illustrated with an example.

Example 3  Let us suppose that the ground truth has 2 communities, and a certain algorithm detects 3 com-
munities as follows:

Table 5 displays the number of common members (Z). The number of nonzero elements in Z is 3, which is 
equal to or greater than |R|.

Proof (lemma 4)  The greater the difference between R and S, the greater the number of communities detected. 
This results in fewer common members between the communities in R and S, subsequently leading to a decrease 

(10)Where a = b+ c then|log
a

N
| < |log

b

N
| + |log

c

N
|

(11)a|log
a

N
| < b|log

b

N
| + c|log

c

N
|Where a > N

K = 2.76, L = −11, 09,M = −5, 54 and NMI = 0.66

K = 11, 09, L = −11, 09,M = −13, 86 and NMI = 0.88

∅S
1 = {a1, a2, a3, a4},∅

S
2 = {a5, a6,a7, a8}

∅R
1 = {a1, a2, a3, a4},∅

R
2 = {a5, a6},∅

R
3 = {a7, a8}

Table 5.   Contingency table of the sample community detection algorithm.

r1 r2 r3

s1 4 0 0

s2 0 2 2
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in NMI. Additionally, if the number of non-zero members in Z is greater than R, it indicates that the number of 
common members between S and R is less, further contributing to the reduction in NMI.

R < S

For this state:

Lemma 5   If R < S , then the maximum value of NMI is obtained if and only if the cardinality of the set of common 
members (Z) is equal to S × (S − 1) , and if the number of pairwise common members ( CRS ) that are not equal to 
zero is equal to the cardinality of S.

Like Lemma 4, Lemma 5 can be proven.
Slope of change in the NMI

Lemma 6   When the difference between R and S increases, in cases where R < S , the slope of changes 
of the NMI values are greater than when R > S.
Proof  By applying Lemma 4 and Lemma 5, we can demonstrate that if there is a difference between R and S, 
the optimal NMI value is obtained when the difference between R and S is 1. In other words, as the difference 
between R and S increases, the NMI decreases.

Equation (6) is equal to function 12 where we consider NMI as f (x, y, z) , K = g(x, y, z),M = h(z):
s.t. x = Cij , y = Ci., z = C.j

where O = (C1.log(C1.)+ C2.log(C2.)+ · · · + CS.log(CS.))

For all cases, N logN is a constant, therefore h(z) is completely dependent on P, s.t P < N logN
When S > R , increasing R results in a decrease in P, causing |h(z)| to increase. This might suggest that NMI 

decreases. However, g(x, y, z) increases, leading to an increase in NMI. Let us examine g(x, y, z) to further 
understand this.

(12)f
(

x, y, z
)

= NMI =
−2g(x, y, z)

L+ h(z)

L =

S
∑

i=1

Ci.log(
Ci.

N
) =

S
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S
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i=1

Ci.logN =

S
∑

i=1

Ci.log(Ci.)− N logN

=
(

C1.log(C1.)+ C2.log(C2.)+ · · · + CS.log(CS.)
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− N logN

(13)L = O − N logN
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− N logN
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C.1log(C.1)+ C.2log(C.2)+ · · · + C.Rlog(C.R)
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− N logN

(14)where P = (C.1log(C.1)+ C.2log(C.2)+ ...+ C.Rlog(C.R))

(15)h(z) = P − N logN
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suppose 
∑S

i=1

∑R
j=1 CijlogCij = T then

O and N logN are constant for all scenarios. Let us suppose O = C1 and 2N logN = C2:

Now, let us consider Eq. (21) for two possible scenarios:

1.	 R < S (the number of detected communities is lower than that of the ground truth):

In this scenario, let us suppose that Algorithm 1 returns N1 communities in one run and N2 communities in 
another run, where N1 < N2. . According to Axiom 1, as the number of communities increases, the possibility of 
member distribution also increases, which leads to a reduction in the P value according to (22) (14) and (13). A 
decrease in P results in a larger numerator in Eq. (21). This is because it increases the difference with C2 , where 
C2 , is a constant value for all the scenarios.

∵

For Alg 1 R1 = {r1.1 , r1.2 , ..., r1.N1 }
For Alg 2, R2 = {r2.1 , r2.2 , ..., r2.N2 }
N2 > N1 :

N
N2

< N
N1

 ∴ ∀ir2.i ≤ r1.i&∄jr2.j > r1.j&∃kr2.k < r1.k
∴ According to (14) and (22) P1 > P2
To further illustrate this, let us consider the following  example:

Example 4  Suppose the ground truth consists of 4 communities, Algorithm 1 returns 2 communities, Algorithm 2 
returns 3 communities (in both cases, R < S ), and N = 8.

(17)
S

∑

i=1

R
∑

j=1

Cijlog(Ci.) =

S
∑

i=1

Ci.log(Ci.) = O

(18)
S

∑

i=1

R
∑

j=1

Cijlog
(

C.j

)

=

R
∑
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C.jlog(C.j) = P

(19)(16), (17), and (18) ⇒ g
(

x, y, z
)

=

S
∑
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R
∑

j=1

CijlogCij + N logN − P − O

(12), (13), (15) and (19) ⇒ NMI =
−2(

∑S
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∑R
j=1 CijlogCij + N logN − P − O)

O + P − 2(N logN)

=
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∑R
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(20)=
2(O + P)− 2N logN − 2T

O + P − 2N logN

(21)(20) ⇒ NMI =
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C1 + P − C2
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log
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loga−
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loga−

N

2
log2

(22)N loga > N loga− N log2

∅S
1 = {a1, a2},∅

S
2 = {a3, a4},∅

S
3 = {a5, a6},∅

S
4 = {a7, a8}

∅
Alg1
1 = {a1, a2, a3, a4},∅

Alg1
2 = {a5, a6, a7, a8}
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Table 6 displays the contingency table of Alg1. 

Table 7 presents the contingency table of Alg 2. 

Therefore, the NMIs of different algorithms depend on P and T. Let us consider Alg1 and Alg2 with P1 , T1 , 
P2 , and T2 respectively . Suppose Alg1 has a lower number of communities than Alg2. In this case, it can be 
proven that Eq. (23) holds.

 

1.	 R > S (the number of detected communities is greater than that of the ground truth)

To analyze the scenario where R > S , we start by incrementing R by one unit. This implies that, after the case 
where R = S , in the next state, a certain algorithm returns R + 1 communities. As a reminder, S is constant. In 

∅
Alg2
1 = {a1, a2},∅

Alg2
2 = {a3, a4},∅

Alg2
3 = {a5, a6, a7, a8}

PAlg1 = 4log(4)+ 4log(4) ≈ 11.09

OAlg1 = 2log(2)+ 2log(2)+ 2log(2)+ 2log(2) ≈ 5.54

TAlg1 = 2log(2)+ 2log(2)+ 2log(2)+ 2log(2) ≈ 5.54

NMIAlg1 ≈
33.26− 2(5.54)− C2

16.63− C2
≈

22.18− C2

16.63− C2
≈

22.18− 33.27

16.63− 33.27
≈

−11.09

−16.64
≈ 0.66

PAlg2 = 2log(2)+ 2log(2)+ 4log(4) ≈ 8.31

OAlg2 = 2log(2)+ 2log(2)+ 2log(2)+ 2log(2) ≈ 5.54

TAlg2 = 2log(2)+ 2log(2)+ 2log(2)+ 2log(2) ≈ 5.54

NMIAlg2 ≈
27.7− 2(5.54)− C2

13.86− C2
≈

16.61− 33.27

13.86− 33.27
≈

16.66

19.41
≈ 0.85

(23)
2(C1 + P)− C2 − 2T

C1 + P − C2
<

2(C1 + P)− C2 − 2T

C1 + P − C2

Table 6.   Contingency table of Alg1.

S

R

r1 r2 Ci.

s1 2 0 2

s2 2 0 2

s3 0 2 2

s4 0 2 2

C.j 4 4

Table 7.   Contingency table of Alg 2.

S

R

r1 r2 r3 Ci.

s1 2 0 0 2

s2 0 2 0 2

s3 0 0 2 2

s4 0 0 2 2

C.j 2 2 4
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this case, one of the community members is distributed across two communities to maintain Axiom 1. This can 
be expressed as:

By further increasing R, this process is repeated until the new community consists of only one member. The 
distribution of shared members from one community to new communities results in a lower value of P compared 
to previous states according to (22) and (14). Additionally, P = T in this case ( R > S ), the numerator remains 
constant for all scenarios.

The key issue here is that increasing R results in a non-linear (approximately logarithmic) decrease in P. The 
maximum value of P with respect to R is achieved if:

….

…..

First, according to (22)

and

According to Eq. (28), we can conclude that when R < S , the slope of the change curve is greater than when 
R > S . This results in a larger P value when R < S compared to states where R > S . Additionally, it can be proven 
that the T value when R < S is constant. Therefore, NMI when R < S changes with respect to P, and a greater 
change in P when R < S leads to a greater change in NMI.

Figure 2 illustrates a nonlinear (approximately logarithmic) decrease in the P value as the number of com-
munities (R) increases.

Lemma 7   When R < S and Axiom 1 holds, T is a constant.

Proof 

CSR−new = [
CSR−old

2
],CS,R+1 = CSR−old − [

CSR−old

2
]

(24)R = 1 ⇒ P1 ≈ N logN

(25)R = 2 ⇒ P2 ≈
N

2
log

N

2
+

N

2
log

N

2

(26)R = S ⇒ PR ≈

R
∑

j=1

N

S
log

N

S

(27)R = N ⇒ PN ≈

R
∑

j=1

N

N
log

N

N
= 0

P1 > P2 > .... > Pn

(28)∀i ≥ 1, i < S∃j ≥ S ⇒ (Pi − Pi+1) > (Pj − Pj+1)

Figure 2.   Nonlinear (approximately logarithmic) decreases in the P value.
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As the number of communities (R) becomes larger than the number of communities in the ground truth 
(S), the changes in P decrease. In this case, the value of T is equal to P, resulting in a constant numerator for the 
scenario when R > S . However, due to a small change in the denominator, the magnitude of change in NMI is 
smaller when R > S than when R < S.

Lemma 8   When R > S and Axiom 1 holds, then T equals P.

Proof  When R = S , the contingency table becomes a scalar matrix.

By increasing each unit in R when R > S then:

Regarding the values of (24) to (27), for the case when R > S , the T value is equal to P, resulting in a constant 
numerator for this scenario.

Overall, when we summarize the NMI formula in Eq. (21), the logarithm function remains the key factor. 
One of the main characteristics of the logarithm function is its low slope change with respect to its variable. This 
characteristic is reflected in the descending derivative of the logarithm function. This observation forms the main 
intuition behind Eq. (28), which explains the biased behavior of NMI. Furthermore, this phenomenon can be 
generalized to other entropy-based metrics that utilize the logarithm function in their formulas.

Case study
In this section, we provide a case study to demonstrate why and how NMI returns biased results in practice. 
To do this, we utilized the email-Eu-core network dataset50, which was generated using email data from a large 
European research institution. This dataset is provided by Jure Leskovec from Stanford university51, and according 
to50-p.12 " we have anonymized information about all incoming and outgoing email of the research institution”. It 
consists of 1005 nodes (N = 1005) and 25,571 edges. To compare the NMI value and reveal its biased behavior 
in different scenarios according to R value, seven well-known community detection algorithms were deployed, 
including multi-level, Louvain, leading eigenvector, infomap, walktrap, edge betweenness (GN), and Leiden. 
These algorithms are implemented through specific functions developed to detect communities within the 
’igraph’ package of the R programming language. The functions corresponding to the aforementioned algorithms 
are as follows: multilevel.community, cluster_louvain, cluster_leading_eigen, cluster_infomap, cluster_walktrap, 
cluster_edge_betweenness, and cluster_leiden. These functions take as input a network comprising nodes and 
edges and return the node name along with its corresponding community number. Interestingly, a diverse range 
of R values obtained by the above-mentioned algorithms helps us clearly show the limitations of NMI. Addition-
ally, a plot of the cumulative distribution function (CDF) of the percentage of common members according to 
CT is illustrated for each community detection algorithm (see Fig. 3). Each point in this plot is labeled with a 
number representing the number of common members. For instance, if a point is labeled 1 and the correspond-
ing value on the y-axis is 97, it means that 97% of the cells in CT have 1 or fewer common members. The labels 
’0’ and corresponding CDF values on the y-axis represent the percentages of cells in the CT with a zero value. 
This indicates a lack of common members between the communities detected by a certain algorithm and the 
communities in the ground truth. The x-axis illustrates the common members observed in the cells of the CT. 
For example, in Fig. 3’s top plot, the CDF of common members in the contingency table for the GN algorithm 
reveals the occurrence of values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 19, and 53. These findings suggest that 
these values represent the number of common members between the communities detected by the GN algorithm 
and the ground truth. The CDF essentially shows the frequency of these values in the CT. It is evident that lower 
values are more commonly observed in the cells of the CT, with the exception of the Leiden algorithm. As we 
will discuss later, the Leiden algorithm returns a CT in which all cells are filled with the value ’1’."

Table 8 shows the NMI values obtained by applying the above-mentioned algorithms to the email-Eu-core 
network. The abnormal NMI value, which alone can highlight the drawback of the NMI measure, is obtained 
by the Leiden algorithm, with a value of 0.65. Leiden returns 1005 communities, meaning that each community 
consists of only one node. In practice, this is a worst-case scenario, as considering each node as a separate com-
munity in relation to the ground truth (42 communities) is a noticeable fault.

Furthermore, as shown in Fig. 3, 100% of the cells in CT for the Leiden algorithm have a value of 1, indicating 
that the communities detected by Leiden have only one common member with the ground truth communities. 
It is evident that the NMI value of 0.65 is a significantly biased value, whereas the ARI is zero for this algorithm, 
providing a more realistic measure of common members with the ground truth. The problem arises when an 
analyst deploys only the NMI without considering information about R, S, or common members, which is a 
common approach in scientific experiments in community detection studies. In such cases, the analyst may 
interpret Leiden or infomap as the best algorithm, while Leiden is actually the worst.

∀i, ∃j = kCij �= 0& ∀k �= jCik = 0 ⇒ Cij = Ci.

∴ T = O ⇒ T is constant

∀i∃j, s.t where i = j then Cij �= 0,where i �= jCij = 0

∃i∃j∃ks.tCi. ∩ C.j �= ∅,Ci. ∩ C.k �= ∅and∀ms.tm �= k, jCi. ∩ C.m = ∅

∴ Cij = C.i ⇒ T = P
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Now, let us consider the second-highest value of R in Table 8, which is the result of the edge betweenness 
(GN) algorithm. Its R value is 731, which is significantly greater than S, leading to the distribution of members 
in numerous communities. Consequently, it is less likely that the communities detected by GN align with the 

Figure 3.   Cumulative Distribution Function (CDF) of common members based on CT.
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ground truth. However, the NMI for this algorithm is 0.6, which is a high value compared to that of the other 
algorithms in this case study and an inaccurate result. According to Fig. 3, approximately 97.5% of the CT cells 
are zero, more than 99% are 1 or 0, and only 0.5% of the cells are greater than 1.

Comparing Leiden and GN to Louvain highlights the incompetence of NMI. There are 27 communities 
returned by Louvain, suggesting a greater likelihood of having more common members with the ground truth. 
However, this is not guaranteed, as meeting Axiom 1 in a real-world scenario is not assured. Investigating com-
mon members based on the CDF plot of the number of cells depicted in Fig. 3 demonstrates that the Louvain 
algorithm leads to more similar communities with ground truth communities. Despite this fact, NMI returned 
higher values for GN and Leiden than for Louvain. It can be concluded that when R > S, NMI exhibits biased 
behavior. A comparison with other algorithms also highlights this problem.

Another interesting issue we find from this case study is how Eq. (28) behaves when R > S and R < S. As 
expressed in the explanation of Eq. (28), the changes in each pair of P when R < S are greater than when R > S. 
For instance, when R is 27, P is 4847, when R is 41, P is 4718, and the difference in P is 129. On the other hand, 
the difference in P when R is 43 and 145 is 183. Therefore, the changes in the case of R < S per unit are 129/
(41–27) = 9.21, which is greater than when R > S, where the difference per unit is 183/(145–43) = 1.79. Therefore, 
it leads to a sharper change per unit in the NMI value when R < S, which is (0.58–0.52)/(41–27) × 100 = 0.43, 
compared to R > S, which is (0.65–0.58)/102 ×  100 = 0.07. This computation can be extended to other pairs of 
R values (e.g., 145, 731, and 1005) with respect to their P value. However, a meaningful comparison will be 
achieved if we have all possible R values, but in the real world, it is not an easy task to achieve this due to the 
limited number of community detection algorithms and the large number of nodes. Therefore, by considering 
a percentage and simulating it per unit, we provide an estimation of this problem.

Ethical approval
The authors declare that there is no any human or live human cells involved in the study.

Conclusion
In this study, we conducted an in-depth analysis of one of the most recognized measures employed in the evalu-
ation of clustering and community detection algorithms. Utilizing a mathematical approach, we demonstrated 
the inherent bias of this measure (NMI), a bias that becomes particularly pronounced when the number of 
communities detected by a given algorithm surpasses the number of communities present in the ground truth. 
Our findings underscore the significant impact that the number of detected communities can have on each 
evaluation metric, an effect that is especially notable in logarithmic entropy-based metrics such as NMI. This 
observation is critical because it highlights the potential for skewed results and misinterpretations when using 
this metric in different applications.

The findings of this study can be generalized and applied in various contexts that utilize community detec-
tion evaluation metrics, ranging from friendship networks to critical applications such as identifying certain 
cancer diseases in protein–protein interaction (PPI) networks. Our study has highlighted and formally proven 
that the NMI is a biased metric for evaluating the results of community detection algorithms in any application. 
For instance, an algorithm that fails to detect the protein structure in PPI networks may be considered success-
ful based on the NMI, potentially leading to the misdiagnosis of cancer. Therefore, our findings underscore the 
need for careful consideration of the characteristics and limitations of NMI, particularly in scenarios where the 
number of detected communities is high.Therefore, this study formally indicates that in the future, any field of 
study intending to base decisions on community detection algorithms should exercise caution in selecting the 
appropriate metric for evaluating these algorithms. This applies across various domains, such as marketing, 
where accurately targeting communities is crucial, or in information diffusion methods, where identifying dense 
communities is vital for activating more nodes.

However, the primary contribution of this study lies in revealing the root cause of this biased behavior, origi-
nating from the logarithmic function and its corresponding derivative. This insight holds significant value for 
future studies focused on designing new and equitable metrics within this domain. Understanding the mathemat-
ical behavior of this logarithmic metric can substantially aid in the creation of more precise evaluation metrics.

Table 8.   NMI values based on seven well-known community detection algorithms applied to the email-Eu-
core network dataset.

Algorithm R S P O NMI ARI

Louvain 27 42 4840 3613 0.59 0.34

multi-level 27 42 4847 3613 0.58 0.32

Leading eigenvector 41 42 4718 3613 0.52 0.26

infomap 43 42 4500 3613 0.65 0.30

WalkTrap 145 42 4317 3613 0.58 0.20

Edge betweenness 731 42 1305 3613 0.60 0.06

Leiden 1005 42 0 3613 0.65 0
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