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A hybrid particle swarm 
optimization algorithm for solving 
engineering problem
Jinwei Qiao 1,2, Guangyuan Wang 1,2, Zhi Yang 1,2*, Xiaochuan Luo 3, Jun Chen 1,2, Kan Li 4 & 
Pengbo Liu 1,2

To overcome the disadvantages of premature convergence and easy trapping into local optimum 
solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO 
algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method 
is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters 
are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal 
jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies 
the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential 
Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The 
NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants 
and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering 
problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets 
of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO 
obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f

1
− f

13
 ) with 3 kinds 

of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal 
benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical 
practical engineering problems.

Keywords  Particle swarm optimization, Elite opposition-based learning, Iterative mapping, Convergence 
analysis

In the ever-changing society, new optimization problems arise every moment, and they are distributed in various 
fields, such as automation control1, statistical physics2, security prevention and temperature prediction3, arti-
ficial intelligence4, and telecommunication technology5. Faced with a constant stream of practical engineering 
optimization problems, traditional solution methods gradually lose their efficiency and convenience, making 
it more and more expensive to solve the problems. Therefore, researchers have developed many metaheuristic 
algorithms and successfully applied them to the solution of optimization problems. Among them, Particle swarm 
optimization (PSO) algorithm6 is one of the most widely used swarm intelligence algorithms.

However, the basic PSO has a simple operating principle and solves problems with high efficiency and good 
computational performance, but it suffers from the disadvantages of easily trapping in local optima and prema-
ture convergence. To improve the overall performance of the particle swarm algorithm, an improved particle 
swarm optimization algorithm is proposed by the multiple hybrid strategy in this paper. The improved PSO 
incorporates the search ideas of other intelligent algorithms (DE, WOA), so the improved algorithm proposed in 
this paper is named NDWPSO. The main improvement schemes are divided into the following 4 points: Firstly, 
a strategy of elite opposition-based learning is introduced into the particle population position initialization. A 
high-quality initialization matrix of population position can improve the convergence speed of the algorithm. 
Secondly, a dynamic weight methodology is adopted for the acceleration coefficients by combining the iterative 
map and linearly transformed method. This method utilizes the chaotic nature of the mapping function, the 
fast convergence capability of the dynamic weighting scheme, and the time-varying property of the acceleration 
coefficients. Thus, the global search and local search of the algorithm are balanced and the global search speed of 
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the population is improved. Thirdly, a determination mechanism is set up to detect whether the algorithm falls 
into a local optimum. When the algorithm is “premature”, the population resets 40% of the position information 
to overcome the local optimum. Finally, the spiral shrinking mechanism combined with the DE/best/2 position 
mutation is used in the later iteration, which further improves the solution accuracy.

The structure of the paper is given as follows: Sect. “Particle swarm optimization (PSO)” describes the 
principle of the particle swarm algorithm. Section “Improved particle swarm optimization algorithm” shows 
the detailed improvement strategy and a comparison experiment of inertia weight is set up for the proposed 
NDWPSO. Section “Experiment and discussion” includes the experimental and result discussion sections on 
the performance of the improved algorithm. Section “Conclusions and future works” summarizes the main 
findings of this study.

Literature review
This section reviews some metaheuristic algorithms and other improved PSO algorithms. A simple discussion 
about recently proposed research studies is given.

Metaheuristic algorithms
A series of metaheuristic algorithms have been proposed in recent years by using various innovative approaches. 
For instance, Lin et al.7 proposed a novel artificial bee colony algorithm (ABCLGII) in 2018 and compared 
ABCLGII with other outstanding ABC variants on 52 frequently used test functions. Abed-alguni et al.8 pro-
posed an exploratory cuckoo search (ECS) algorithm in 2021 and carried out several experiments to investigate 
the performance of ECS by 14 benchmark functions. Brajević9 presented a novel shuffle-based artificial bee 
colony (SB-ABC) algorithm for solving integer programming and minimax problems in 2021. The experiments 
are tested on 7 integer programming problems and 10 minimax problems. In 2022, Khan et al.10 proposed a 
non-deterministic meta-heuristic algorithm called Non-linear Activated Beetle Antennae Search (NABAS) for 
a non-convex tax-aware portfolio selection problem. Brajević et al.11 proposed a hybridization of the sine cosine 
algorithm (HSCA) in 2022 to solve 15 complex structural and mechanical engineering design optimization 
problems. Abed-Alguni et al.12 proposed an improved Salp Swarm Algorithm (ISSA) in 2022 for single-objective 
continuous optimization problems. A set of 14 standard benchmark functions was used to evaluate the perfor-
mance of ISSA. In 2023, Nadimi et al.13 proposed a binary starling murmuration optimization (BSMO) to select 
the effective features from different important diseases. In the same year, Nadimi et al.14 systematically reviewed 
the last 5 years’ developments of WOA and made a critical analysis of those WOA variants. In 2024, Fatahi et al.15 
proposed an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA) for the Fea-
ture Subset Selection problem in the medical area. Experimental evaluation on 12 medical datasets demonstrates 
that IBQANA outperforms 7 established algorithms. Abed-alguni et al.16 proposed an Improved Binary DJaya 
Algorithm (IBJA) to solve the Feature Selection problem in 2024. The IBJA’s performance was compared against 
4 ML classifiers and 10 efficient optimization algorithms.

Improved PSO algorithms
Many researchers have constantly proposed some improved PSO algorithms to solve engineering problems in 
different fields. For instance, Yeh17 proposed an improved particle swarm algorithm, which combines a new 
self-boundary search and a bivariate update mechanism, to solve the reliability redundancy allocation problem 
(RRAP) problem. Solomon et al.18 designed a collaborative multi-group particle swarm algorithm with high 
parallelism that was used to test the adaptability of Graphics Processing Units (GPUs) in distributed computing 
environments. Mukhopadhyay and Banerjee19 proposed a chaotic multi-group particle swarm optimization 
(CMS-PSO) to estimate the unknown parameters of an autonomous chaotic laser system. Duan et al.20 designed 
an improved particle swarm algorithm with nonlinear adjustment of inertia weights to improve the coupling 
accuracy between laser diodes and single-mode fibers. Sun et al.21 proposed a particle swarm optimization 
algorithm combined with non-Gaussian stochastic distribution for the optimal design of wind turbine blades. 
Based on a multiple swarm scheme, Liu et al.22 proposed an improved particle swarm optimization algorithm 
to predict the temperatures of steel billets for the reheating furnace. In 2022, Gad23 analyzed the existing 2140 
papers on Swarm Intelligence between 2017 and 2019 and pointed out that the PSO algorithm still needs further 
research. In general, the improved methods can be classified into four categories:

(1)	 Adjusting the distribution of algorithm parameters. Feng et al.24 used a nonlinear adaptive method on 
inertia weights to balance local and global search and introduced asynchronously varying acceleration 
coefficients.

(2)	 Changing the updating formula of the particle swarm position. Both papers25 and26 used chaotic mapping 
functions to update the inertia weight parameters and combined them with a dynamic weighting strategy 
to update the particle swarm positions. This improved approach enables the particle swarm algorithm to 
be equipped with fast convergence of performance.

(3)	 The initialization of the swarm. Alsaidy and Abbood proposed27 a hybrid task scheduling algorithm that 
replaced the random initialization of the meta-heuristic algorithm with the heuristic algorithms MCT-PSO 
and LJFP-PSO.

(4)	 Combining with other intelligent algorithms: Liu et al.28 introduced the differential evolution (DE) algo-
rithm into PSO to increase the particle swarm as diversity and reduce the probability of the population 
falling into local optimum.
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Particle swarm optimization (PSO)
The particle swarm optimization algorithm is a population intelligence algorithm for solving continuous and 
discrete optimization problems. It originated from the social behavior of individuals in bird and fish flocks6. 
The core of the PSO algorithm is that an individual particle identifies potential solutions by flight in a defined 
constraint space adjusts its exploration direction to approach the global optimal solution based on the shared 
information among the group, and finally solves the optimization problem. Each particle i includes two attributes: 
velocity vector Vi =

[

vi1, vi2, vi3, ..., vij , ..., viD ,
]

 and position vector Xi = [xi1, xi2, xi3, ..., xij , ..., xiD] . The velocity 
vector is used to modify the motion path of the swarm; the position vector represents a potential solution for the 
optimization problem. Here, j = 1, 2, . . . ,D , D represents the dimension of the constraint space. The equations 
for updating the velocity and position of the particle swarm are shown in Eqs. (1) and (2).

Here Pbestki  represents the previous optimal position of the particle i  , and Gbest is the optimal position 
discovered by the whole population. i = 1, 2, . . . , n , n denotes the size of the particle swarm. c1 and  c2 are the 
acceleration constants, which are used to adjust the search step of the particle29. r1 and  r2 are two random uniform 
values distributed in the range [0, 1] , which are used to improve the randomness of the particle search. ω  inertia 
weight parameter, which is used to adjust the scale of the search range of the particle swarm30. The basic PSO 
sets the inertia weight parameter as a time-varying parameter to balance global exploration and local seeking. 
The updated equation of the inertia weight parameter is given as follows:

where ωmax and ωmin represent the upper and lower limits of the range of inertia weight parameter. k and Mk are 
the current iteration and maximum iteration.

Improved particle swarm optimization algorithm
According to the no free lunch theory31, it is known that no algorithm can solve every practical problem with 
high quality and efficiency for increasingly complex and diverse optimization problems. In this section, several 
improvement strategies are proposed to improve the search efficiency and overcome this shortcoming of the 
basic PSO algorithm.

Improvement strategies
The optimization strategies of the improved PSO algorithm are shown as follows:

(1)	 The inertia weight parameter is updated by an improved chaotic variables method instead of a linear 
decreasing strategy. Chaotic mapping performs the whole search at a higher speed and is more resistant to 
falling into local optimal than the probability-dependent random search32. However, the population may 
result in that particles can easily fly out of the global optimum boundary. To ensure that the population 
can converge to the global optimum, an improved Iterative mapping is adopted and shown as follows:

Here ωk is the inertia weight parameter in the iteration k , b is the control parameter in the range [0, 1].
(2)	 The acceleration coefficients are updated by the linear transformation.c1 and c2 represent the influential 

coefficients of the particles by their own and population information, respectively. To improve the search 
performance of the population, c1 and c2 are changed from fixed values to time-varying parameter param-
eters, that are updated by linear transformation with the number of iterations:

where cmax and cmin are the maximum and minimum values of acceleration coefficients, respectively.
(3)	 The initialization scheme is determined by elite opposition-based learning. The high-quality initial popula-

tion will accelerate the solution speed of the algorithm and improve the accuracy of the optimal solution. 
Thus, the elite backward learning strategy33 is introduced to generate the position matrix of the initial 
population. Suppose the elite individual of the population is X = [x1, x2, x3, ..., xj , ..., xD] , and the elite 
opposition-based solution of X is Xo = [xo1, xo2, xo3, ..., xoj , ..., xoD] . The formula for the elite opposition-
based solution is as follows:

where kr is the random value in the range (0, 1) . uxoij and lxoij are dynamic boundaries of the elite oppo-
sition-based solution in j dimensional variables. The advantage of dynamic boundary is to reduce the 

(1)vij(k + 1) = ω × vij(k)+ r1 × c1 ×
(

Pbestki − xij(k)
)

+ r2 × c2 ×
(

Gbest − xij(k)
)

(2)xij(k + 1) = xij(k)+ vij(k + 1)

(3)ω = ωmax − k × (ωmax − ωmin)/Mk

(4)ωk+1 = sin(b× π/ωk)× k/Mk

(5)c1 = cmax − (cmax − cmin)× k/Mk

(6)c2 = cmin + (cmax − cmin)× k/Mk

(7)xoij = kr ×
(

uxoij + lxoij
)

− xij

(8)uxoij = max
(

xij
)

, lxoij = min
(

xij
)
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exploration space of particles, which is beneficial to the convergence of the algorithm. When the elite 
opposition-based solution is out of bounds, the out-of-bounds processing is performed. The equation is 
given as follows:

	   After calculating the fitness function values of the elite solution and the elite opposition-based solution, 
respectively, n high quality solutions were selected to form a new initial population position matrix.

(4)	 The position updating Eq. (2) is modified based on the strategy of dynamic weight. To improve the speed of 
the global search of the population, the strategy of dynamic weight from the artificial bee colony algorithm34 
is introduced to enhance the computational performance. The new position updating equation is shown 
as follows:

Here ρ is the random value in the range (0, 1) . ψ represents the acceleration coefficient and ω′ is the dynamic 
weight coefficient. The updated equations of the above parameters are as follows:

where f (i) denotes the fitness function value of individual particle i and u is the average of the population 
fitness function values in the current iteration. The Eqs. (11,12) are introduced into the position updating 
equation. And they can attract the particle towards positions of the best-so-far solution in the search space.

(5)	 New local optimal jump-out strategy is added for escaping from the local optimal. When the value of 
the fitness function for the population optimal particles does not change in M iterations, the algorithm 
determines that the population falls into a local optimal. The scheme in which the population jumps out of 
the local optimum is to reset the position information of the 40% of individuals within the population, in 
other words, to randomly generate the position vector in the search space. M is set to 5% of the maximum 
number of iterations.

(6)	 New spiral update search strategy is added after the local optimal jump-out strategy. Since the whale 
optimization algorithm (WOA) was good at exploring the local search space35, the spiral update search 
strategy in the WOA36 is introduced to update the position of the particles after the swarm jumps out of 
local optimal. The equation for the spiral update is as follows:

	   Here D = |xi(k)− Gbest| denotes the distance between the particle itself and the global optimal solu-
tion so far. B is the constant that defines the shape of the logarithmic spiral. l  is the random value in [−1, 1]
.l  represents the distance between the newly generated particle and the global optimal position, l = −1 
means the closest distance, while l = 1 means the farthest distance, and the meaning of this parameter can 
be directly observed by Fig. 1.

(7)	 The DE/best/2 mutation strategy is introduced to form the mutant particle. 4 individuals in the popula-
tion are randomly selected that differ from the current particle, then the vector difference between them 

(9)xoij = rand
(

lxoij , uxoij
)

(10)xij(k + 1) = ω × xij(k)+ ω′ × vij(k + 1)+ ρ × ψ × Gbest

(11)ψ = exp
(

f (i)/u
)

/
(

1+ exp
(

−f (i)/u
))iter

(12)ω′ = 1− ω

(13)xij(k + 1) = D × eB×l × cos
(

2× pi × l
)

+ Gbest

Figure 1.   Spiral updating position.
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is rescaled, and the difference vector is combined with the global optimal position to form the mutant 
particle. The equation for mutation of particle position is shown as follows:

where x∗ is the mutated particle, F is the scale factor of mutation, r1 , r2 , r3 , r4  are random integer values 
in (0, n] and not equal to i  , respectively. Specific particles are selected for mutation with the screening 
conditions as follows:

where Cr represents the probability of mutation, rand(0, 1) is a random number in (0, 1) , and irand is a 
random integer value in (0, n].

	   The improved PSO incorporates the search ideas of other intelligent algorithms (DE, WOA), so the 
improved algorithm proposed in this paper is named NDWPSO. The pseudo-code for the NDWPSO 
algorithm is given as follows:

(14)x∗ = Gbest + F × (xr1 − xr2)+ F × (xr3 − xr4)

(15)x(k + 1) =
{

x∗, if (rand(0, 1) < Cr or i == irand)
x(k + 1), otherwise
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Algorithm 1.   The main procedure of NDWPSO.

Comparing the distribution of inertia weight parameters
There are several improved PSO algorithms (such as CDWPSO25, and SDWPSO26) that adopt the dynamic 
weighted particle position update strategy as their improvement strategy. The updated equations of the CDWPSO 
and the SDWPSO algorithm for the inertia weight parameters are given as follows:

(16)ωk+1 = A× sin(π × ωk)
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where A is a value in (0, 1] . rmax and rmin are the upper and lower limits of the fluctuation range of the inertia 
weight parameters, k is the current number of algorithm iterations, and Mk denotes the maximum number of 
iterations.

Considering that the update method of inertia weight parameters by our proposed NDWPSO is comparable 
to the CDWPSO, and SDWPSO, a comparison experiment for the distribution of inertia weight parameters is 
set up in this section. The maximum number of iterations in the experiment is Mk = 500 . The distributions of 
CDWPSO, SDWPSO, and NDWPSO inertia weights are shown sequentially in Fig. 2.

In Fig. 2, the inertia weight value of CDWPSO is a random value in (0,1]. It may make individual particles fly 
out of the range in the late iteration of the algorithm. Similarly, the inertia weight value of SDWPSO is a value that 
tends to zero infinitely, so that the swarm no longer can fly in the search space, making the algorithm extremely 
easy to fall into the local optimal value. On the other hand, the distribution of the inertia weights of the NDWPSO 
forms a gentle slope by two curves. Thus, the swarm can faster lock the global optimum range in the early itera-
tions and locate the global optimal more precisely in the late iterations. The reason is that the inertia weight 
values between two adjacent iterations are inversely proportional to each other. Besides, the time-varying part of 
the inertial weight within NDWPSO is designed to reduce the chaos characteristic of the parameters. The inertia 
weight value of NDWPSO avoids the disadvantages of the above two schemes, so its design is more reasonable.

Experiment and discussion
In this section, three experiments are set up to evaluate the performance of NDWPSO: (1) the experiment of 23 
classical functions37 between NDWPSO and three particle swarm algorithms (PSO6, CDWPSO25, SDWPSO26); 
(2) the experiment of benchmark test functions between NDWPSO and other intelligent algorithms (Whale 
Optimization Algorithm (WOA)36, Harris Hawk Algorithm (HHO)38, Gray Wolf Optimization Algorithm 
(GWO)39, Archimedes Algorithm (AOA)40, Equilibrium Optimizer (EO)41 and Differential Evolution (DE)42); 
(3) the experiment for solving three real engineering problems (welded beam design43, pressure vessel design44, 
and three-bar truss design38). All experiments are run on a computer with Intel i5-11400F GPU, 2.60 GHz, 16 GB 
RAM, and the code is written with MATLAB R2017b.

The benchmark test functions are 23 classical functions, which consist of indefinite unimodal (F1–F7), indefi-
nite dimensional multimodal functions (F8–F13), and fixed-dimensional multimodal functions (F14–F23). The 
unimodal benchmark function is used to evaluate the global search performance of different algorithms, while 
the multimodal benchmark function reflects the ability of the algorithm to escape from the local optimal. The 
mathematical equations of the benchmark functions are shown and found as Supplementary Tables S1–S3 online.

Experiments on benchmark functions between NDWPSO, and other PSO variants
The purpose of the experiment is to show the performance advantages of the NDWPSO algorithm. Here, 
the dimensions and corresponding population sizes of 13 benchmark functions (7 unimodal and 6 multi-
modal) are set to (30, 40), (50, 70), and (100, 130). The population size of 10 fixed multimodal functions is 
set to 40. Each algorithm is repeated 30 times independently, and the maximum number of iterations is 200. 
The performance of the algorithm is measured by the mean and the standard deviation (SD) of the results 
for different benchmark functions. The parameters of the NDWPSO are set as: [ωmin,ωmax] = [0.4, 0.9] , 
[cmax , cmin] = [2.5, 1.5],Vmax = 0.1, b = e−50,M = 0.05×Mk,B = 1, F = 0.7,Cr = 0.9. And, A = ωmax for 
CDWPSO; [rmax , rmin] = [4, 0] for SDWPSO.

Besides, the experimental data are retained to two decimal places, but some experimental data will increase 
the number of retained data to pursue more accuracy in comparison. The best results in each group of experi-
ments will be displayed in bold font. The experimental data is set to 0 if the value is below 10–323. The experimental 
parameter settings in this paper are different from the references (PSO6, CDWPSO25, SDWPSO26, so the final 
experimental data differ from the ones within the reference.

(17)ωk+1 = (rmax − (rmax − rmin))(k/Mk × sin(π × ωk)/4

Figure 2.   The inertial weight distribution of CDWPSO, SDWPSO, and NDWPSO.
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As shown in Tables 1 and 2, the NDWPSO algorithm obtains better results for all 49 sets of data than 
other PSO variants, which include not only 13 indefinite-dimensional benchmark functions and 10 fixed-mul-
timodal benchmark functions. Remarkably, the SDWPSO algorithm obtains the same accuracy of calculation as 
NDWPSO for both unimodal functions f1–f4 and multimodal functions f9–f11. The solution accuracy of NDWPSO 
is higher than that of other PSO variants for fixed-multimodal benchmark functions f14-f23. The conclusion can 
be drawn that the NDWPSO has excellent global search capability, local search capability, and the capability for 
escaping the local optimal.

In addition, the convergence curves of the 23 benchmark functions are shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18 and 19. The NDWPSO algorithm has a faster convergence speed in the early stage 
of the search for processing functions f1-f6, f8-f14, f16, f17, and finds the global optimal solution with a smaller 
number of iterations. In the remaining benchmark function experiments, the NDWPSO algorithm shows no 
outstanding performance for convergence speed in the early iterations. There are two reasons of no outstanding 
performance in the early iterations. On one hand, the fixed-multimodal benchmark function has many distur-
bances and local optimal solutions in the whole search space. on the other hand, the initialization scheme based 
on elite opposition-based learning is still stochastic, which leads to the initial position far from the global optimal 

Table 1.   Optimization results and comparison for functions (f1–f13). Significant values in bold.

Fun Dim

CDWPSO SDWPSO PSO NDWPSO

Ave S.D Ave S.D Ave S.D Ave S.D

f1 30 2.06e−196 0 0 0 0.92 3.08 0 0

50 1.37e−188 0 0 0 5.43e−02 0.13 0 0

100 4.76e−199 0 0 0 5.78e−02 0.12 0 0

f2 30 2.51e−88 1.35e−87 0 0 2.96e−02 3.11e−02 0 0

50 1.18e−95 4.81e−95 0 0 1.49e−02 1.70e−02 0 0

100 1.36e−100 3.04e−100 0 0 8.72e−03 1.19e−02 0 0

f3 30 1.54e−178 0 0 0 4.42 6.36 0 0

50 3.32e−187 0 0 0 2.53 4.79 0 0

100 1.93e−199 0 0 0 1.36 3.61 0 0

f4 30 1.18e−84 4.68e−84 0 0 0.41 0.29 0 0

50 1.83e−90 6.69e−90 0 0 0.3 0.24 0 0

100 6.25e−97 3.12e−96 0 0 0.17 0.17 0 0

f5 30 2.87e + 01 3.08e−02 2.88e + 01 2.00e−02 3.45e + 01 1.20e + 01 2.69e + 01 0.64

50 4.86e + 01 5.29e−02 4.88e + 01 2.58e−02 5.01e + 01 4.63 4.62e + 01 0.65

100 9.85e + 01 9.29e−02 9.87e + 01 2.67e−02 9.85e + 01 0.35 9.58e + 01 0.66

f6 30 5.88 0.29 6.04 0.29 6.57 4.54 0.14 0.22

50 9.93 0.46 1.03e + 01 0.45 6.29 2.73 0.11 8.83e−02

100 2.07e + 01 0.42 2.13e + 01 0.65 1.06e + 01 4.14 0.28 0.18

f7 30 0.49 0.26 0.52 0.30 0.55 0.29 0.39 0.26

50 0.57 0.29 0.45 0.28 0.57 0.28 0.42 0.30

100 0.51 0.30 0.49 0.25 0.58 0.27 0.47 0.29

f8 30 −1335.64 8.64e + 02 −1872.55 1.22e + 03 −392.69 4.66e + 01 −6418.01 1.26e + 03

50 −1813.72 7.83e + 02 −2634.55 1.24e + 03 −431.787 2.47e + 01 −10,740.04 2.50e + 03

100 −2703.68 1.72e + 03 −3859.14 1.40e + 03 −457.21 3.34e + 01 −20,964.07 4.37e + 03

f9 30 0 0 0 0 6.92e−02 0.12 0 0

50 0 0 0 0 4.64e−02 3.11e−02 0 0

100 0 0 0 0 8.04e−03 1.50e−02 0 0

f10 30 8.88e−16 0 8.88e−16 0 4.75e−02 2.73e−02 8.88e−16 0

50 8.88e−16 0 8.88e−16 0 3.01e−02 2.25e−02 8.88e−16 0

100 8.88e−16 0 8.88e−16 0 1.54e−02 1.63e−02 8.88e−16 0

f11 30 0 0 0 0 0.26 0.41 0 0

50 0 0 0 0 0.14 0.32 0 0

100 0 0 0 0 2.86e−02 3.73e−02 0 0

f12 30 1.10 2.63e−02 1.10 6.73e−03 0.68 0.34 4.58e−03 1.93e−02

50 1.12 2.06e−02 1.13 5.91e−03 0.43 0.32 3.36e−03 1.11e−02

100 1.16 2.86e−02 1.15 4.44e−03 0.13 5.59e−02 2.85e−03 5.67e−03

f13 30 2.92 1.59e−02 2.91 6.36e−03 2.90 1.59e−02 5.05e−02 4.14e−02

50 4.92 1.03e−02 4.91 5.94e−03 4.89 9.46e−03 8.39e−02 5.22e−02

100 9.91 7.70e−03 9.91 4.93e−03 9.88 8.31e−03 0.21 0.11
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solution. The inertia weight based on chaotic mapping and the strategy of spiral updating can significantly 
improve the convergence speed and computational accuracy of the algorithm in the late search stage. Finally, the 
NDWPSO algorithm can find better solutions than other algorithms in the middle and late stages of the search.

To evaluate the performance of different PSO algorithms, a statistical test is conducted. Due to the stochastic 
nature of the meta-heuristics, it is not enough to compare algorithms based on only the mean and standard 
deviation values. The optimization results cannot be assumed to obey the normal distribution; thus, it is neces-
sary to judge whether the results of the algorithms differ from each other in a statistically significant way. Here, 
the Wilcoxon non-parametric statistical test45 is used to obtain a parameter called p-value to verify whether two 
sets of solutions are different to a statistically significant extent or not. Generally, it is considered that p ≤ 0.5 can 
be considered as a statistically significant superiority of the results. The p-values calculated in Wilcoxon’s rank-
sum test comparing NDWPSO and other PSO algorithms are listed in Table 3 for all benchmark functions. The 
p-values in Table 3 additionally present the superiority of the NDWPSO because all of the p-values are much 
smaller than 0.5.

In general, the NDWPSO has the fastest convergence rate when finding the global optimum from Figs. 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19, and thus we can conclude that the NDWPSO is superior to 
the other PSO variants during the process of optimization.

Comparison experiments between NDWPSO and other intelligent algorithms
Experiments are conducted to compare NDWPSO with several other intelligent algorithms (WOA, HHO, GWO, 
AOA, EO and DE). The experimental object is 23 benchmark functions, and the experimental parameters of the 
NDWPSO algorithm are set the same as in Experiment 4.1. The maximum number of iterations of the experiment 
is increased to 2000 to fully demonstrate the performance of each algorithm. Each algorithm is repeated 30 times 
individually. The parameters of the relevant intelligent algorithms in the experiments are set as shown in Table 4. 
To ensure the fairness of the algorithm comparison, all parameters are concerning the original parameters in the 
relevant algorithm literature. The experimental results are shown in Tables 5, 6, 7 and 8 and Figs. 20, 21, 22, 23, 
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and 36.

The experimental data of NDWPSO and other intelligent algorithms for handling 30, 50, and 100-dimensional 
benchmark functions ( f1 − f13 ) are recorded in Tables 8, 9 and 10, respectively. The comparison data of fixed-
multimodal benchmark tests ( f14 − f23 ) are recorded in Table 11. According to the data in Tables 5, 6 and 7, the 
NDWPSO algorithm obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f1 − f13 ) 
in the search space of three dimensions (Dim = 30, 50, 100), respectively. In Table 8, the NDWPSO algorithm 
obtains 80% of the optimal solutions in 10 fixed-multimodal benchmark functions.

The convergence curves of each algorithm are shown in Figs. 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 35 and 36. The NDWPSO algorithm demonstrates two convergence behaviors when calculating the 
benchmark functions in 30, 50, and 100-dimensional search spaces. The first behavior is the fast convergence 
of NDWPSO with a small number of iterations at the beginning of the search. The reason is that the Iterative-
mapping strategy and the position update scheme of dynamic weighting are used in the NDWPSO algorithm. 
This scheme can quickly target the region in the search space where the global optimum is located, and then 
precisely lock the optimal solution. When NDWPSO processes the functions f1 − f4 , and f9 − f11 , the behavior 
can be reflected in the convergence trend of their corresponding curves. The second behavior is that NDWPSO 
gradually improves the convergence accuracy and rapidly approaches the global optimal in the middle and late 
stages of the iteration. The NDWPSO algorithm fails to converge quickly in the early iterations, which is possible 
to prevent the swarm from falling into a local optimal. The behavior can be demonstrated by the convergence 
trend of the curves when NDWPSO handles the functions f6 , f12 , and f13 , and it also shows that the NDWPSO 
algorithm has an excellent ability of local search.

Combining the experimental data with the convergence curves, it is concluded that the NDWPSO algorithm 
has a faster convergence speed, so the effectiveness and global convergence of the NDWPSO algorithm are more 
outstanding than other intelligent algorithms.
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Experiments on classical engineering problems
Three constrained classical engineering design problems (welded beam design, pressure vessel design43, and 
three-bar truss design38) are used to evaluate the NDWPSO algorithm. The experiments are the NDWPSO 
algorithm and 5 other intelligent algorithms (WOA36, HHO, GWO, AOA, EO41). Each algorithm is provided 
with the maximum number of iterations and population size ( Mk = 500, n = 40 ), and then repeats 30 times, 
independently. The parameters of the algorithms are set the same as in Table 4. The experimental results of three 
engineering design problems are recorded in Tables 9, 10 and 11 in turn. The result data is the average value of 
the solved data.

Table 2.   Optimization results and comparison for functions (f14–f23). Significant values in bold.

Fun Dim

CDWPSO SDWPSO PSO NDWPSO

Ave S.D Ave S.D Ave S.D Ave S.D

f14 2 1.08e + 01 0.12 1.08e + 01 1.01e−05 1.08e + 01 1.36e−02 1.72 2.43

f15 4 8.65e−03 5.87e−03 1.10e−02 8.58e−03 3.11e−04 2.10e−05 3.07e−04 1.17e−17

f16 2 −0.0402 1.97e−06 −0.0401 1.54e−04 −1.0316 4.71e−16 −1.0316 6.08e−16

f17 2 5.0437 4.07e−02 5.0255 3.57e−02 1.7906 2.13 0.397 0

f18 2 7.94e + 01 2.13e + 01 9.84e + 01 1.69e + 01 7.86e + 01 1.62e + 01 3 1.68e−15

f19 3 −2.4156 0.68 −2.8410 0.76 −1.0008 1.94e−16 −3.86 2.53e−15

f20 6 −1.09 0.22 −1.26 0.11 −3.25 0.23 −3.27 5.89e−02

f21 4 −1.08 1.39 −0.39 0.08 −3.04 2.15 −7.13 2.75

f22 4 −0.79 0.86 −0.39 1.73e−02 −2.81 2.14 −8.01 2.75

f23 4 −0.88 0.92 −0.43 2.31e−02 −3.01 2.12 −7.83 3.20

Figure 3.   Evolution curve of NDWPSO and other PSO algorithms for f1 (Dim = 30,50,100).

Figure 4.   Evolution curve of NDWPSO and other PSO algorithms for f2 (Dim = 30,50,100).
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Welded beam design
The target of the welded beam design problem is to find the optimal manufacturing cost for the welded beam 
with the constraints, as shown in Fig. 37. The constraints are the thickness of the weld seam ( h ), the length of 
the clamped bar ( l ), the height of the bar ( t ) and the thickness of the bar ( b ). The mathematical formulation of 
the optimization problem is given as follows:

Figure 5.   Evolution curve of NDWPSO and other PSO algorithms for f3 (Dim = 30,50,100).

Figure 6.   Evolution curve of NDWPSO and other PSO algorithms for f4 (Dim = 30,50,100).

Figure 7.   Evolution curve of NDWPSO and other PSO algorithms for f5 (Dim = 30,50,100).
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Figure 8.   Evolution curve of NDWPSO and other PSO algorithms for f6 (Dim = 30,50,100).

Figure 9.   Evolution curve of NDWPSO and other PSO algorithms for f7 (Dim = 30,50,100).

Figure 10.   Evolution curve of NDWPSO and other PSO algorithms for f8 (Dim = 30,50,100).
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Figure 11.   Evolution curve of NDWPSO and other PSO algorithms for f9 (Dim = 30,50,100).

Figure 12.   Evolution curve of NDWPSO and other PSO algorithms for f10 (Dim = 30,50,100).

Figure 13.   Evolution curve of NDWPSO and other PSO algorithms for f11(Dim = 30,50,100).
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Figure 14.   Evolution curve of NDWPSO and other PSO algorithms for f12 (Dim = 30,50,100).

Figure 15.   Evolution curve of NDWPSO and other PSO algorithms for f13 (Dim = 30,50,100).

Figure 16.   Evolution curve of NDWPSO and other PSO algorithms for f14, f15, f16.
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Figure 17.   Evolution curve of NDWPSO and other PSO algorithms for f17, f18, f19.

Figure 18.   Evolution curve of NDWPSO and other PSO algorithms for f20, f21, f22.

Figure 19.   Evolution curve of NDWPSO and other PSO algorithms for f23.
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Table 3.   Results of the p-value for the Wilcoxon rank-sum test on benchmark functions.

F1 F2 F3 F4 F5 F6 F7 F8

CDWPSO 4.25E−07 6.18E−07 5.17E−08 6.20E−08 7.09E−07 1.30E−07 0.029 3.94E−07

SDWPSO 8.40E−02 2.50E−01 3.41E−01 2.61E−01 7.09E−07 5.72E−07 2.79E−01 3.75E−07

PSO 8.49E−07 4.09E−07 3.68E−08 8.39E−08 6.26E−07 4.50E−07 3.58E−04 7.16E−07

F9 F10 F11 F12 F13 F14 F15 F16

CDWPSO 0.041 0.195 0.030 3.61E−07 2.53E−07 8.53E−07 5.15E−04 2.94E−07

SDWPSO 6.66E−02 4.16E−01 2.00E−01 5.70E−07 3.74E−07 1.45E−07 2.74E−04 8.25E−07

PSO 1.50E−07 6.97E−07 4.57E−07 5.45E−07 1.34E−08 4.41E−08 1.15E−01 4.60E−01

F17 F18 F19 F20 F21 F22 F23

CDWPSO 4.57E−08 3.67E−07 3.62E−07 6.08E−07 6.05E−07 1.11E−07 2.83E−08

SDWPSO 6.40E−07 4.75E−07 8.53E−07 5.78E−07 6.40E−07 9.60E−07 4.87E−07

PSO 1.35E−01 5.94E−07 6.51E−09 6.58E−05 9.15E−08 6.10E−07 1.28E−06

Table 4.   Parameter settings for algorithms.

Algorithms Parameter

WOA
r1 and r2 are random numbers in the range [0,1]
a variable decreases linearly from 2 to 0
a2 linearly decreases from -1 to -2

HHO E0 variable changes from -1 to 1 (Default)

GWO r1 and r2 are random numbers in the range [0,1]
a variable decreases linearly from 2 to 0

AOA
C1 = 2,C2 = 6,

C3 = 1,C4 = 2,(CEC and engineering problems)
u = 0.9, l = 0.1,

TF = 0.5, p = 0.5

EO α1 = 2,α2 = 1,GP = 0.5;

DE F = 0.9, CR = 0.4
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Table 5.   Optimization results and comparison for functions(f1-f13) with Dim = 30. Significant values in bold.

Fun Criteria WOA HHO GWO AOA EO DE NDWPSO

f1 Ave 1.5e−323 0 1.1e−134 5.3e−166 5.2e−194 7.5E−09 0

S.D 0 0 2.0e−134 0 0 8.0E−09 0

f2 Ave 6.2e−216 1.1e−196 1.32e−77 2.92e−94 7.9e−109 1.6E−05 0

S.D 0 0 2.27e−77 1.53e−93 1.7e−108 8.8E−06 0

f3 Ave 3.80e + 03 3.05e−312 3.01e−38 2.4e−146 1.38e−51 3.9E−01 0

S.D 3.28e + 03 0 9.36e−38 1.0e−145 4.30e−51 3.7E−01 0

f4 Ave 1.60e + 01 6.09e−184 3.33e−33 1.75e−75 1.85e−47 9.9E−03 0

S.D 1.76e + 01 0 5.45e−33 9.21e−75 5.74e−47 7.3E−03 0

f5 Ave 2.59e + 01 4.85e−04 2.62e + 01 2.89e + 01 2.31e + 01 1.5E + 01 1.45e + 01

S.D 0.25 6.71e−04 0.76 5.13e−02 0.17 8.1E + 00 1.72

f6 Ave 6.62e−04 5.97e−06 0.44 4.94 2.26e−23 6.3E−09 1.33e−17

S.D 3.63e−04 9.46e−06 0.27 0.54 5.21e−23 5.8E−09 4.37e−17

f7 Ave 0.49 0.60 0.43 0.49 0.53 5.1E−02 0.42

S.D 0.27 0.24 0.28 0.28 0.25 5.9E−02 0.26

f8 Ave −1.21E + 04 −1.26E + 04 −5.90E + 03 −3.82E + 03 −9.01E + 03 −1.3E + 04 −7.02E + 03

S.D 7.82e + 02 2.96e−02 9.05e + 02 4.69e + 02 7.13e + 02 6.3E−10 1.69e + 03

f9 Ave 0 0 0.30 4.12e + 01 0 3.2E−10 0

S.D 0 0 1.64 4.09e + 01 0 2.7E−10 0

f10 Ave 3.61e−15 8.88e−16 8.82e−15 4.79e−15 4.44e−15 2.4E−05 8.88e−16

S.D 2.54e−15 0 1.99e−15 1.07e−15 0 1.6E−05 0

f11 Ave 6.94e−04 0 0 3.97e−02 0 2.1E−07 0

S.D 3.74e−03 0 0 0.13 0 5.7E−07 0

f12 Ave 1.04e−03 2.38e−07 2.74e−02 0.70 4.22e−24 1.2E−10 1.42e−17

S.D 3.49e−03 2.72e−07 1.29e−02 0.18 1.25e−23 1.7E−10 3.75e−17

f13 Ave 1.48e−02 3.42e−06 0.33 2.72 9.79e−03 2.4E−09 7.50e−15

S.D 2.63e−02 3.77e−06 0.19 0.34 2.73e−02 2.5E−09 2.33e−14
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In Table 9, the NDWPSO, GWO, and EO algorithms obtain the best optimal cost. Besides, the standard 
deviation (SD) of t NDWPSO is the lowest, which means it has very good results in solving the welded beam 
design problem.

Pressure vessel design
Kannan and Kramer43 proposed the pressure vessel design problem as shown in Fig. 38 to minimize the total 
cost, including the cost of material, forming, and welding. There are four design optimized objects: the thick-
ness of the shell Ts ; the thickness of the head Th ; the inner radius R ; the length of the cylindrical section without 
considering the head L . The problem includes the objective function and constraints as follows:

The results in Table 10 show that the NDWPSO algorithm obtains the lowest optimal cost with the same 
constraints and has the lowest standard deviation compared with other algorithms, which again proves the good 
performance of NDWPSO in terms of solution accuracy.

Consider X = [x1, x2, x3, x4]=[h, l, t, b];

Objective function f(x) = 1.10471x21x2 + 0.04811x3x4(14+ x2);
Subject to g1(x) = τ(x)− τmax ≤ 0;

g2(x) = σ(x)− σmax ≤ 0;
g3(x) = δ(x)− δmax ≤ 0;
g4(x) = x1 − x4 ≤ 0;
g5(x) = P − Pc(x) ≤ 0;
g6(x) = 0.125− x1 ≤ 0;

g7(x) = 1.10471x21 + 0.004811x3x4(14+ x2)− 5 ≤ 0;

where τ(x) =
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Variable range : 0.1 ≤ x1 ≤ 2

0.1 ≤ x2 ≤ 10

0.1 ≤ x3 ≤ 10

0.1 ≤ x4 ≤ 2

P = 6000lb, L = 14in,E = 30× 106psi,G = 12× 106psi

Consider X = [x1, x2, x3, x4]=[Ts ,Th, R, L];

Objective function f (x) = 0.6224x1x3x4 + 1.7781x2x
3
2 + 3.1661x21x4 + 19.84x21x3

Subject to g1(x) = −x1 + 0.0193x3 ≤ 0;
g2(x) = −x3 + 0.00954x3 ≤ 0;

g3(x) = −
∏

x23x4 −
4

3

∏

x33 + 1296000 ≤ 0;

g4(x) = x4 − 240 ≤ 0;
Variable range: 0 ≤ x1, x2 ≤ 99; 0 ≤ x3, x4 ≤ 200;
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Three‑bar truss design
This structural design problem44 is one of the most widely-used case studies as shown in Fig. 39. There are two 
main design parameters: the area of the bar1 and 3 ( A1 = A3 ) and area of bar 2 ( A2 ). The objective is to minimize 
the weight of the truss. This problem is subject to several constraints as well: stress, deflection, and buckling 
constraints. The problem is formulated as follows:

From Table 11, NDWPSO obtains the best design solution in this engineering problem and has the smallest 
standard deviation of the result data. In summary, the NDWPSO can reveal very competitive results compared 
to other intelligent algorithms.

Conclusions and future works
An improved algorithm named NDWPSO is proposed to enhance the solving speed and improve the compu-
tational accuracy at the same time. The improved NDWPSO algorithm incorporates the search ideas of other 
intelligent algorithms (DE, WOA). Besides, we also proposed some new hybrid strategies to adjust the distribu-
tion of algorithm parameters (such as the inertia weight parameter, the acceleration coefficients, the initialization 
scheme, the position updating equation, and so on).

Consider X = [x1, x2] = [A1,A2]

Objective function f (x) =
(

2
√
2x1 + x2

)

× l

Subject to g1(x) =
√
2x1 + x2√

2x21 + 2x1x2
P − σ ≤ 0;

g2(x) =
x2√

2x21 + 2x1x2
P − σ ≤ 0;

g3(x) =
1

√
2x2 + x1

P − σ ≤ 0;

Variable range: 0 ≤ x1, x2 ≤ 1;

l = 100cm,P = 2KN/cm2σ = 2KN/cm2

Table 6.   Optimization results and comparison for functions for(f1-f13) Dim = 50. Significant values in bold.

Fun Criteria WOA HHO GWO AOA EO DE NDWPSO

f1 Ave 0 0 3.4e−117 6.9e−159 1.2e−192 5.8E−05 0

S.D 0 0 9.4e−117 2.5e−158 0 2.8E−05 0

f2 Ave 8.0e−223 2.35e−202 2.55e−68 2.02e−86 6.4e−109 1.7E−03 0

S.D 0 0 2.64e−68 1.06e−85 9.9e−109 7.4E−04 0

f3 Ave 2.46e + 04 5.36e−299 3.15e−26 3.3e−143 1.56e−40 1.8E + 01 0

S.D 1.46e + 04 0 1.61e−25 1.7e−142 8.08e−40 1.6E + 01 0

f4 Ave 3.43e + 01 1.34e−192 2.81e−26 1.13e−68 2.49e−39 2.1E−01 0

S.D 3.26e + 01 0 5.35e−26 6.06e−68 1.23e−38 1.0E−01 0

f5 Ave 4.56e + 01 3.09e−04 4.65e + 01 4.88e + 01 4.25e + 01 4.2E + 01 3.07e + 01

S.D 0.21 3.78e−04 0.77 7.85e−01 0.26 8.0E + 00 2.03

f6 Ave 1.26e−03 2.95e−06 1.29 9.09 3.74e−15 4.0E−05 6.77e−16

S.D 5.48e−04 3.72e−06 0.43 0.57 1.17e−15 2.3E−05 1.61e−15

f7 Ave 0.64 0.49 0.45 0.51 0.62 5.1E−02 0.43

S.D 0.26 0.29 0.28 0.26 0.26 5.9E−02 0.28

f8 Ave −2.07E + 04 −2.09E + 04 −9.42E + 03 −5.02E + 03 −1.51E + 04 −2.10E + 04 −1.03E + 04

S.D 3.20e + 02 6.40e−03 1.23e + 03 4.52e + 02 9.73e + 02 1.1E−05 2.57e + 03

f9 Ave 3.79e−15 0 0 2.27e + 01 0 8.3E−05 0

S.D 2.04e−14 0 0 4.72e + 01 0 2.0E−04 0

f10 Ave 3.85e−15 8.88e−16 1.36e−14 5.74e−15 4.44e−15 1.5E−03 8.88e−16

S.D 2.26e−15 0 2.54e−15 1.71e−15 0 4.0E−04 0

f11 Ave 6.15e−04 0 1.09e−03 1.83e−02 0 4.6E−05 0

S.D 3.31e−03 0 5.86e−03 9.83e−02 0 2.1E−05 0

f12 Ave 6.93e−05 5.68e−08 4.83e−02 0.80 2.07e−03 6.4E−07 5.72e−15

S.D 1.75e−05 6.98e−08 1.93e−02 0.12 1.12e−02 6.1E−07 1.91e−14

f13 Ave 1.30e−02 1.40e−06 0.97 4.96 3.06e−02 1.5E−05 6.03e−14

S.D 1.88e−02 2.01e−06 0.26 0.30 5.85e−02 2.0E−05 5.80e−14
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Table 7.   Optimization results and comparison for functions for(f1-f13) Dim = 100. Significant values in bold.

Fun Criteria WOA HHO GWO AOA EO DE NDWPSO

f1 Ave 0 0 4.99e−91 1.0e−153 2.9e−185 6.5E−02 0

S.D 0 0 8.04e−91 5.7e−153 0 3.9E−02 0

f2 Ave 1.7e−227 1.6e−205 1.83e−53 2.93e−77 1.2e−105 4.1E−02 0

S.D 0 0 1.57e−53 1.10e−76 1.2e−105 2.2E−02 0

f3 Ave 2.27e + 05 0 5.58e−14 2.2e−140 1.96e−24 1.4E + 02 0

S.D 5.33e + 04 0 2.07e−13 1.1e−139 8.93e−24 1.2E + 02 0

f4 Ave 5.75e + 01 2.4e−199 4.19e−16 3.27e−65 2.12e−31 1.2E + 00 0

S.D 2.90e + 01 0 1.16e−15 1.06e−64 4.41e−31 6.2E−01 0

f5 Ave 9.52e + 01 1.89e−04 9.66e + 01 9.88e + 01 9.15e + 01 9.8E + 01 7.83e + 01

S.D 0.28 2.93e−04 0.95 4.81e−02 0.26 6.8E−01 2.08

f6 Ave 5.46e−03 1.03e−06 5.58 2.02e + 01 4.05e−09 5.1E−02 7.35e−11

S.D 7.21e−04 7.84e−07 0.87 0.78 2.25e−09 5.9E−02 7.15e−11

f7 Ave 0.55 0.46 0.45 0.51 0.53 5.1E−02 0.42

S.D 0.29 0.28 0.28 0.31 0.25 5.9E−02 0.30

f8 Ave −4.13E + 04 −4.19E + 04 −1.68E + 04 −7.52E + 03 −2.98E + 04 −4.20E + 04 −2.27E + 04

S.D 1.05e + 03 4.49e−03 2.067e + 03 9.45e + 03 1.96e + 03 3.3E−03 6.40e + 03

f9 Ave 0 0 0.29 3.79e−15 0 3.4E−03 0

S.D 0 0 1.59 2.04e−14 0 7.5E−03 0

f10 Ave 4.67e−15 8.88e−16 2.42e−14 6.21e−15 5.38e−15 2.8E−02 8.88e−16

S.D 2.42e−15 0 3.75e−15 1.78e−15 1.57e−15 1.1E−02 0

f11 Ave 1.46e−03 0 0 4.72e−03 0 3.5E−02 0

S.D 7.88e−03 0 0 2.54e−02 0 2.0E−02 0

f12 Ave 7.26e−05 1.69–08 0.11 0.89 1.04e−03 4.5E−04 1.12e−10

S.D 1.43e−05 4.60e−08 2.17e−02 9.00e−02 5.58e−03 3.5E−04 3.21e−10

f13 Ave 1.13e−02 4.07e−07 4.09 1.02e + 01 8.89e−02 4.6E−02 1.74e−08

S.D 1.32e−02 5.58e−07 0.44 0.43 8.73e−02 7.6E−02 2.94e−08

Table 8.   Optimization results and comparison for function (f14–f23). Significant values in bold.

Fun Criteria WOA HHO GWO AOA EO DE NDWPSO

f14 Ave 1.654 0.998 5.044 1.162 0.998 0.998 0.998

S.D 1.84 5.91e−11 4.27 0.44 0 0 1.25e−11

f15 Ave 5.69e−04 3.14e−04 1.67e−03 5.07e−04 2.37e−03 3.07E−04 3.07e−04

S.D 3.32e−04 9.36e−06 4.50e−03 1.46e−04 6.01e−03 9.73E−20 1.90e−19

f16 Ave −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

S.D 3.35e−13 2.86e−14 5.63e−10 1.35e−05 6.47e−16 0 6.66e−16

f17 Ave 0.39789 0.39789 0.3979 0.39793 0.39789 0.39789 0.39789

S.D 0 8.78e−09 8.78e−09 4.98e−05 1.82e−04 0 0

f18 Ave 3 3 5.70 3.01 3 3 3

S.D 1.31e−06 2.60e−10 1.45e + 01 1.66e−01 2.20e−15 9.82E−16 1.07e−15

f19 Ave −3.8614 −3.8626 −3.8619 −3.8605 −3.8628 −3.8628 −3.8628

S.D 2.56e−03 3.79e−04 2.38e−03 3.32e−03 2.64e−15 9.36E−16 2.67e−15

f20 Ave −3.2345 −3.2273 −3.2623 −3.118 −3.2623 −3.3219 −3.2784

S.D 7.67e−02 6.19e−02 6.66e−02 0.14 6.86e−02 5.92E−16 5.73e−02

f21 Ave −9.13 −7.08 −9.12 −7.39 −8.11 −10.15 −9.14

S.D 1.28 2.48 2.04 2.24 2.50 0 2.02

f22 Ave −10.0028 −5.4408 −10.0499 −8.6794 −10.0031 −10.40 −9.3399

S.D 1.51 1.32 1.32 1.98 1.51 1.87E−15 2.13

f23 Ave −9.9949 −5.3082 −10.5363 −9.1959 −9.8153 −10.53 −9.4548

S.D 1.62 0.97 1.93e−05 1.62 1.83 1.87E−15 2.16
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Figure 20.   Evolution curve of NDWPSO and other algorithms for f1 (Dim = 30,50,100).

Figure 21.   Evolution curve of NDWPSO and other algorithms for f2 (Dim = 30,50,100).

Figure 22.   Evolution curve of NDWPSO and other algorithms for f3(Dim = 30,50,100).
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Figure 23.   Evolution curve of NDWPSO and other algorithms for f4 (Dim = 30,50,100).

Figure 24.   Evolution curve of NDWPSO and other algorithms for f5 (Dim = 30,50,100).

Figure 25.   Evolution curve of NDWPSO and other algorithms for f6 (Dim = 30,50,100).
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Figure 26.   Evolution curve of NDWPSO and other algorithms for f7 (Dim = 30,50,100).

Figure 27.   Evolution curve of NDWPSO and other algorithms for f8 (Dim = 30,50,100).

Figure 28.   Evolution curve of NDWPSO and other algorithms for f9(Dim = 30,50,100).
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Figure 29.   Evolution curve of NDWPSO and other algorithms for f10 (Dim = 30,50,100).

Figure 30.   Evolution curve of NDWPSO and other algorithms for f11 (Dim = 30,50,100).

Figure 31.   Evolution curve of NDWPSO and other algorithms for f12 (Dim = 30,50,100).
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23 classical benchmark functions: indefinite unimodal (f1-f7), indefinite multimodal (f8-f13), and fixed-
dimensional multimodal(f14-f23) are applied to evaluate the effective line and feasibility of the NDWPSO algo-
rithm. Firstly, NDWPSO is compared with PSO, CDWPSO, and SDWPSO. The simulation results can prove 
the exploitative, exploratory, and local optima avoidance of NDWPSO. Secondly, the NDWPSO algorithm is 
compared with 5 other intelligent algorithms (WOA, HHO, GWO, AOA, EO). The NDWPSO algorithm also 
has better performance than other intelligent algorithms. Finally, 3 classical engineering problems are applied 
to prove that the NDWPSO algorithm shows superior results compared to other algorithms for the constrained 
engineering optimization problems.

Although the proposed NDWPSO is superior in many computation aspects, there are still some limitations 
and further improvements are needed. The NDWPSO performs a limit initialize on each particle by the strategy 
of “elite opposition-based learning”, it takes more computation time before speed update. Besides, the” local 
optimal jump-out” strategy also brings some random process. How to reduce the random process and how 
to improve the limit initialize efficiency are the issues that need to be further discussed. In addition, in future 
work, researchers will try to apply the NDWPSO algorithm to wider fields to solve more complex and diverse 
optimization problems.

Figure 32.   Evolution curve of NDWPSO and other algorithms for f13 (Dim = 30,50,100).

Figure 33.   Evolution curve of NDWPSO and other algorithms for f14, f15, f16.
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Figure 34.   Evolution curve of NDWPSO and other algorithms for f17, f18, f19.

Figure 35.   Evolution curve of NDWPSO and other algorithms for f20, f21, f22.
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Figure 36.   Evolution curve of NDWPSO and other algorithms for f23.

Table 10.   Comparison of results for pressure vessel design problem. Significant values in bold.

Algorithm

Optimal value for variables

Optimal cost S.DTs Th R L

NDWPSO 7.78E−01 3.85E−01 4.03E + 01 2.00E + 02 5.89E + 03 4.9732e−05

WOA 1.20E + 00 6.64E−01 5.75E + 01 4.80E + 01 1.12E + 04 7.3624e + 03

HHO 1.15E + 00 5.44E−01 5.67E + 01 5.24E + 01 6.95E + 03 648.2539

GWO 7.79E−01 3.86E−01 4.03E + 01 2.00E + 02 6.08E + 03 352.7299

AOA 9.93E−01 5.07E−01 5.09E + 01 9.15E + 01 2.84E + 04 3.9074e + 04

EO 1.24E + 00 6.14E−01 6.44E + 01 1.37E + 01 6.65E + 03 5.0160e + 02

Table 11.   Comparison of results for the three-bar truss design problem. Significant values in bold.

Algorithm

Optimal value for 
variables

Optimal cost S.Dx1 x2

NDWPSO 7.86E−01 4.07E−01 2.63E + 02 1.36E−05

WOA 8.10E−01 3.43E−01 2.64E + 02 1.46E + 00

HHO 7.92E−01 3.92E−01 2.64E + 02 3.61E−02

GWO 7.87E−01 4.12E−01 2.64E + 02 4.77E−03

AOA 7.92E−01 3.89E−01 2.64E + 02 4.32E−01

EO 7.88E−01 4.11E−01 2.64E + 02 1.25E−03

Table 9.   Comparison of results for welded beam design problem. Significant values in bold.

Algorithm

Optimal value for variables

Optimal cost S.Dh l t b

NDWPSO 2.06E−01 3.25E + 00 9.04E + 00 2.06E−01 1.70E + 00 2.76E−09

WOA 1.69E−01 5.23E + 00 8.48E + 00 2.34E−01 2.46E + 00 6.77E−01

HHO 1.87E−01 3.67E + 00 9.06E + 00 2.06E−01 2.01E + 00 2.15E−01

GWO 2.04E−01 3.30E + 00 9.04E + 00 2.06E−01 1.70E + 00 1.96E−03

AOA 3.07E−01 2.42E + 00 7.43E + 00 3.07E−01 3.14E + 00 4.70E−01

EO 2.06E−01 3.25E + 00 9.04E + 00 2.06E−01 1.70E + 00 4.80E−04
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able request.

Received: 11 January 2024; Accepted: 5 April 2024

References
	 1.	 Sami, F. Optimize electric automation control using artificial intelligence (AI). Optik 271, 170085 (2022).
	 2.	 Li, X. et al. Prediction of electricity consumption during epidemic period based on improved particle swarm optimization algo-

rithm. Energy Rep. 8, 437–446 (2022).
	 3.	 Sun, B. Adaptive modified ant colony optimization algorithm for global temperature perception of the underground tunnel fire. 

Case Stud. Therm. Eng. 40, 102500 (2022).
	 4.	 Bartsch, G. et al. Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent 

nonmuscle invasive urothelial carcinoma of the bladder. J. Urol. 195(2), 493–498 (2016).
	 5.	 Bao, Z. Secure clustering strategy based on improved particle swarm optimization algorithm in internet of things. Comput. Intell. 

Neurosci. 2022, 1–9 (2022).
	 6.	 Kennedy, J. & Eberhart, R. Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks. 

IEEE, 1942–1948 (1995).

Figure 37.   Welded beam design.

Figure 38.   Pressure vessel design.

Figure 39.   Three-bar truss design.



29

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8357  | https://doi.org/10.1038/s41598-024-59034-2

www.nature.com/scientificreports/

	 7.	 Lin, Q. et al. A novel artificial bee colony algorithm with local and global information interaction. Appl. Soft Comput. 62, 702–735 
(2018).

	 8.	 Abed-alguni, B. H. et al. Exploratory cuckoo search for solving single-objective optimization problems. Soft Comput. 25(15), 
10167–10180 (2021).

	 9.	 Brajević, I. A shuffle-based artificial bee colony algorithm for solving integer programming and minimax problems. Mathematics 
9(11), 1211 (2021).

	10.	 Khan, A. T. et al. Non-linear activated beetle antennae search: A novel technique for non-convex tax-aware portfolio optimization 
problem. Expert Syst. Appl. 197, 116631 (2022).

	11.	 Brajević, I. et al. Hybrid sine cosine algorithm for solving engineering optimization problems. Mathematics 10(23), 4555 (2022).
	12.	 Abed-Alguni, B. H., Paul, D. & Hammad, R. Improved Salp swarm algorithm for solving single-objective continuous optimization 

problems. Appl. Intell. 52(15), 17217–17236 (2022).
	13.	 Nadimi-Shahraki, M. H. et al. Binary starling murmuration optimizer algorithm to select effective features from medical data. 

Appl. Sci. 13(1), 564 (2022).
	14.	 Nadimi-Shahraki, M. H. et al. A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, 

and hybridizations. Archiv. Comput. Methods Eng. 30(7), 4113–4159 (2023).
	15.	 Fatahi, A., Nadimi-Shahraki, M. H. & Zamani, H. An improved binary quantum-based avian navigation optimizer algorithm to 

select effective feature subset from medical data: A COVID-19 case study. J. Bionic Eng. 21(1), 426–446 (2024).
	16.	 Abed-alguni, B. H. & AL-Jarah, S. H. IBJA: An improved binary DJaya algorithm for feature selection. J. Comput. Sci. 75, 102201 

(2024).
	17.	 Yeh, W.-C. A novel boundary swarm optimization method for reliability redundancy allocation problems. Reliab. Eng. Syst. Saf. 

192, 106060 (2019).
	18.	 Solomon, S., Thulasiraman, P. & Thulasiram, R. Collaborative multi-swarm PSO for task matching using graphics processing units. 

In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation 1563–1570 (2011).
	19.	 Mukhopadhyay, S. & Banerjee, S. Global optimization of an optical chaotic system by chaotic multi swarm particle swarm opti-

mization. Expert Syst. Appl. 39(1), 917–924 (2012).
	20.	 Duan, L. et al. Improved particle swarm optimization algorithm for enhanced coupling of coaxial optical communication laser. 

Opt. Fiber Technol. 64, 102559 (2021).
	21.	 Sun, F., Xu, Z. & Zhang, D. Optimization design of wind turbine blade based on an improved particle swarm optimization algorithm 

combined with non-gaussian distribution. Adv. Civ. Eng. 2021, 1–9 (2021).
	22.	 Liu, M. et al. An improved particle-swarm-optimization algorithm for a prediction model of steel slab temperature. Appl. Sci. 

12(22), 11550 (2022).
	23.	 Gad, A. G. Particle swarm optimization algorithm and its applications: A systematic review. Archiv. Comput. Methods Eng. 29(5), 

2531–2561 (2022).
	24.	 Feng, H. et al. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom. Constr. 

127, 103722 (2021).
	25.	 Chen, Ke., Zhou, F. & Liu, A. Chaotic dynamic weight particle swarm optimization for numerical function optimization. Knowl. 

Based Syst. 139, 23–40 (2018).
	26.	 Bai, B. et al. Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural 

network in engineering systems. Expert Syst. Appl. 177, 114952 (2021).
	27.	 Alsaidy, S. A., Abbood, A. D. & Sahib, M. A. Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King 

Saud Univ. –Comput. Inf. Sci. 34(6), 2370–2382 (2022).
	28.	 Liu, H., Cai, Z. & Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and 

engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010).
	29.	 Deng, W. et al. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. 23, 

2445–2462 (2019).
	30.	 Huang, M. & Zhen, L. Research on mechanical fault prediction method based on multifeature fusion of vibration sensing data. 

Sensors 20(1), 6 (2019).
	31.	 Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997).
	32.	 Gandomi, A. H. et al. Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013).
	33.	 Zhou, Y., Wang, R. & Luo, Q. Elite opposition-based flower pollination algorithm. Neurocomputing 188, 294–310 (2016).
	34.	 Li, G., Niu, P. & Xiao, X. Development and investigation of efficient artificial bee colony algorithm for numerical function opti-

mization. Appl. Soft Comput. 12(1), 320–332 (2012).
	35.	 Xiong, G. et al. Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimiza-

tion algorithm. Solar Energy 176, 742–761 (2018).
	36.	 Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016).
	37.	 Yao, X., Liu, Y. & Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
	38.	 Heidari, A. A. et al. Harris hawks optimization: Algorithm and applications. Fut. Gener. Comput. Syst. 97, 849–872 (2019).
	39.	 Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014).
	40.	 Hashim, F. A. et al. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. 

Intell. 51, 1531–1551 (2021).
	41.	 Faramarzi, A. et al. Equilibrium optimizer: A novel optimization algorithm. Knowl. -Based Syst. 191, 105190 (2020).
	42.	 Pant, M. et al. Differential evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 90, 103479 (2020).
	43.	 Coello, C. A. C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 

(2000).
	44.	 Kannan, B. K. & Kramer, S. N. An augmented lagrange multiplier based method for mixed integer discrete continuous optimiza-

tion and its applications to mechanical design. J. Mech. Des. 116, 405–411 (1994).
	45.	 Derrac, J. et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and 

swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011).

Acknowledgements
This work was supported by Key R&D plan of Shandong Province, China (2021CXGC010207, 2023CXGC01020); 
First batch of talent research projects of Qilu University of Technology in 2023 (2023RCKY116); Introduction of 
urgently needed talent projects in Key Supported Regions of Shandong Province; Key Projects of Natural Science 
Foundation of Shandong Province (ZR2020ME116); the Innovation Ability Improvement Project for Tech-
nology-based Small- and Medium-sized Enterprises of Shandong Province (2022TSGC2051, 2023TSGC0024, 
2023TSGC0931); National Key R&D Program of China (2019YFB1705002), LiaoNing Revitalization Talents 
Program (XLYC2002041) and Young Innovative Talents Introduction & Cultivation Program for Colleges and 
Universities of Shandong Province (Granted by Department of Education of Shandong Province, Sub-Title: 
Innovative Research Team of High Performance Integrated Device).



30

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8357  | https://doi.org/10.1038/s41598-024-59034-2

www.nature.com/scientificreports/

Author contributions
Z.Y., J.Q., and G.W. wrote the main manuscript text and prepared all figures and tables. J.C., P.L., K.L., and X.L. 
were responsible for the data curation and software. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​59034-2.

Correspondence and requests for materials should be addressed to Z.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-59034-2
https://doi.org/10.1038/s41598-024-59034-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A hybrid particle swarm optimization algorithm for solving engineering problem
	Literature review
	Metaheuristic algorithms
	Improved PSO algorithms

	Particle swarm optimization (PSO)
	Improved particle swarm optimization algorithm
	Improvement strategies
	Comparing the distribution of inertia weight parameters

	Experiment and discussion
	Experiments on benchmark functions between NDWPSO, and other PSO variants
	Comparison experiments between NDWPSO and other intelligent algorithms
	Experiments on classical engineering problems
	Welded beam design
	Pressure vessel design
	Three-bar truss design


	Conclusions and future works
	References
	Acknowledgements


