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Quantifying the impact 
of homophily and influencer 
networks on song popularity 
prediction
Niklas Reisz 1, Vito D. P. Servedio 1 & Stefan Thurner 1,2,3*

Forecasting the popularity of new songs has become a standard practice in the music industry and 
provides a comparative advantage for those that do it well. Considerable efforts were put into 
machine learning prediction models for that purpose. It is known that in these models, relevant 
predictive parameters include intrinsic lyrical and acoustic characteristics, extrinsic factors (e.g., 
publisher influence and support), and the previous popularity of the artists. Much less attention was 
given to the social components of the spreading of song popularity. Recently, evidence for musical 
homophily—the tendency that people who are socially linked also share musical tastes—was reported. 
Here we determine how musical homophily can be used to predict song popularity. The study is based 
on an extensive dataset from the last.fm online music platform from which we can extract social 
links between listeners and their listening patterns. To quantify the importance of networks in the 
spreading of songs that eventually determines their popularity, we use musical homophily to design a 
predictive influence parameter and show that its inclusion in state-of-the-art machine learning models 
enhances predictions of song popularity. The influence parameter improves the prediction precision 
(TP/(TP + FP)) by about 50% from 0.14 to 0.21, indicating that the social component in the spreading 
of music plays at least as significant a role as the artist’s popularity or the impact of the genre.

While you read this paper’s abstract, more than 50 new songs were released worldwide. Global music production 
has long reached such high levels that it is no longer possible to listen to every new song. On the world’s largest 
music streaming platform Spotify, roughly 136 days worth of music are published  daily1,2. This means that more 
music is produced in a year than one could listen to in an entire lifetime. In this ocean of new songs, there is 
a growing need for efficient selection and filtering, and the markets for attention have become increasingly 
competitive. This becomes apparent in increasingly imbalanced distributions of song popularity. While the 
majority of songs receive little to no attention, a small fraction become hits that are listened to billions of  times3. 
Predicting which songs have the potential to become one of these hits has become an increasingly important task 
for music  publishers4. The issue has sparked substantial commercial interest as publishers focus their marketing 
activities on high-potential songs and  artists5. For quantitative predictions, a multitude of different approaches 
has been explored. The vast volume of data made available by streaming platforms in the past decade triggered 
a boost of data-driven approaches.

In the early 2000s, a discussion started on the possibility of quantitatively predicting song popularity. Using 
traditional machine learning classifiers on lyrical and acoustic song attributes, it was attempted to identify 
hits  prospectively6. It was concluded that predictions were significantly better than random, with the lyrical 
features slightly outperforming the acoustic ones.  In7, it was claimed that the science of predicting hits, the 
so-called hit song science, was not yet a science as they demonstrated that the usual machine learning methods 
were not able to forecast the success of songs. This assertion was soon challenged  in8, where the authors argued 
that, given a relevant set of acoustic song features, forecasting song popularity was possible with more specific 
machine learning approaches. In these early works, the emphasis was primarily on intrinsic acoustic and lyrics 
features. Later, other studies improved outcomes with more sophisticated methods and expansive datasets. 
Specific song attributes such as “happiness”, “partyness” and repetitiveness were found to increase the chances 

OPEN

1Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria. 2Section for Science of Complex 
Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria. 3Santa Fe Institute, 1399 
Hyde Park Road, Santa Fe, NM 85701, USA. *email: stefan.thurner@meduniwien.ac.at

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-58969-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8929  | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

of songs becoming  hits9,10. Deep convolutional structures and machine learning regressions were convincingly 
shown to have predictive  power11–13.

While these studies focused exclusively on intrinsic properties of songs, newer studies have included extrinsic 
features such as metadata or artist popularity. It was claimed that extrinsic factors often carry increased predicting 
power, the most predictive feature being the previous popularity of the  artist5. Askin and Mauskapf and Shin 
and Park 14,15 confirmed this result by finding that both, the previous popularity of the artist and the support of 
the publisher, have a significant impact on the success chances of songs. In addition to having increased chances 
of making it into the charts, Im et al.16 found that songs of well-known artists and big publishers also stay there 
longer. Reference 17 demonstrated a significant dominance of superstars in the market share and identified a 
positive correlation between song success and the artist’s prior release count. For extrinsic song attributes, Yu 
et al.18 found that Support Vector Regression (SVR) performs slightly better than neural networks.

Predictive indicators were also found in Twitter  data19 where music-related hashtags such as #nowplaying 
were counted. The number of daily tweets about specific songs and artists is highly correlated with the listening 
trend of that song. Counting the same tags, Tsiara et al.20 found a moderate correlation between the number 
of tweets and the chart position of a song, as well as a weak correlation with the sentiment of the tweets. These 
Twitter-based correlations hint at a social component to the success of songs and that this information might 
be encoded in social networks. A similar thought was followed  in21, where the spread of song popularity was 
modeled with a SIR disease spreading model. There, it is argued that social processes that lead to the spread of 
music are similar to those of disease spreading. For some genres, for which social connectivity is higher, songs 
appear to spread faster.

The fact that social networks co-create homophily—the tendency that people that share common treats are 
more likely to form social ties—has been observed in a variety of contexts, ranging from  obesity22 to performance 
in  schools23. Also, in music listening behavior, the concept of homophily has been  studied24. Recently, homophily’s 
importance in relation to music preference was confirmed in a study on 1144 early adolescents, where music 
preference plays a significant role in selecting  friends25. The online music-listening platform and social network 
last.fm https:// www. last. fm/ offers an excellent ground for studying homophily as it simultaneously provides 
access to both social links and music listening records of  users26.  In27, the authors study last.fm data to predict 
friendship links. They find that music preference alone rarely leads to friendships. In most cases, sharing friends 
is the best predictor of future friendships, i.e. triadic closure that has been predicted  in28 and explains basic 
structures of social multilayer  networks29. Reference 30 confirmed that people with similar music preferences 
tend to cluster, indicating that friends tend to listen to similar music. Homophily in music listening was found 
in explorative  behavior31. By estimating how mainstream, novel, or diverse listening records of users are, they 
find that highly explorative people tend to look for friends that are similar.  Reference32 confirmed that result and 
designed a model that explains the finding, stressing that highly explorative users tend to be friends with users 
with similar discovery rates.  While31 use homophily to predict friendship links on last.fm,  in33,34 it is investigated 
how information about new artists spreads through social links and quantified to which extent user behavior is 
copied. It is demonstrated how homophily can be leveraged to improve song recommendations by recommending 
new songs to users shortly after close friends are listening to them.

While extensive research has focused on acoustic and metadata-based factors for predicting song popularity, 
the influence of social interactions has received comparatively less attention, despite its significant impact on 
listening behavior. In this study, we quantify the influence of social interactions, particularly homophily and 
measures derived from homophily, on song popularity. Our work reveals how homophily is self-reinforced 
as users influence their friends to engage with specific songs, leading to the emergence and popularity of new 
songs through cascades of recommendations. We quantify this user influence through state-of-the-art machine-
learning predictions of song popularity, assessing the extent to which our predictions can be enhanced. Our 
approach seeks to harness the intertwined dynamics of user homophily and influence, rather than disentangling 
these closely related factors, with the ultimate goal of optimizing prediction accuracy in the context of music 
recommendation systems.

Homophily
To estimate homophily, we derived a dataset from the online music-listening platform and social network last.fm. 
Our data includes 300 million individual listening events of 10 million songs. It is enriched by the (undirected 
and unweighted) friendship network, where nodes represent users and links represent bidirectional friendships. 
It consists of 2.7 million nodes and 15 million links with an average degree of 11.6. The network is connected 
with a diameter of 6. This dataset allows us to link friendships to music-listening histories. For more details, 
see methods.

We first determine the music preferences of every user. Music preferences can be assessed in last.fm through 
user-defined tags. Users define and add tags such as Rock, 80s, or Acoustic to songs, artists, or albums. Here, we 
focus on artist tags because they are more abundant than song or album tags and offer more reliable statistics. 
Every artist, a, can have multiple tags, t, which are represented as weights, wat , ranging between 1 and 100, based 
on their frequency of appearance (100 corresponds to the most frequent tag for that artist). We then compute a 
music preference matrix, mut , by summing over the weights, wat , for each tag, t, of each artist, a, for each time a 
user, u, is listening to a song by that artist. The music preference matrix, M, with elements mu,t is hence defined as

where lus is the number of times user, u, listened to song, s. isa = 1 if artist, a, interpreted song, s, and is zero 
otherwise. In the music preference matrix M, each row corresponds to a vector of music preference of one 

(1)mut =
∑

a,s

lusisawat ,

https://www.last.fm/
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user, expressed by the weighted artist tags. To compare the music preference vectors of users i and j, we use the 
cosine-similarity, defined as

The idea will be to compare the alignment of music preference vectors for users that are friends to the alignment 
between randomly picked users (that are very likely not friends).

Influencer network
As a next step, we define the influencer network. Influence is the number of times a user’s friends copied the 
listening behavior of that user within a specified time window. We define it algorithmically. Whenever a friend, 
uj , of a user, ui , listens to a song for the first time at time tj shortly after user, ui , listened to that song at time ti , the 
influence, Iij , of user, i, on user, j, increases by one if tj − ti < � is smaller than some threshold � . A sketch of the 
concept and the derived influencer network are shown in Fig. 1. The influencer network (orange) is a directed 
network where users are nodes, and a weighted link represents the strength of a user’s influence over another. 
In our case, it consists of 9200 nodes and 190,000 links, with an average degree of 21. The influencer network is 
connected and has a diameter of 11. Since friendship is a requirement for influence, the influencer network is 
a sub-network of the friendship network (blue), all nodes and links present in the influencer network also exist 
in the friendship network. Influence on last.fm is possible because users can see which songs their friends are 
listening to and can give specific song recommendations to them.

(2)cos(θij) =

∑

t mu=i,tmu=j,t
√

∑

t m
2
u=i,t

√

∑

t m
2
u=j,t

.

Figure 1.  (a) Schematic depiction of user influence. If a user listens to a song at time t1 and a friend of that user 
listens to the same song for the first time at time t2 with t2 − t1 < � smaller than some threshold � , the second 
user is said to have been influenced by the first with respect to that song. The influencer network is shown in 
orange, the friendship network in blue. The influencer network is a sub-network of the friendship network. (b) 
A fraction of the influencer network of last.fm from a 24 h time window. Several strong influencers are visible 
(influencers and influencing links in orange) within the friendship network (blue). (c) Example of a timeline of a 
single song. Dots along the x-axis represent different users that listen to a song for the first time (location of dot). 
Dots are ordered in time, from left to right. Blue dots are users that found the song on their own, while orange 
dots represent users that were influenced by their friends. Arrows mark influencing events, where one user 
influences another into listening to a song. Panel (b) of this figure was created using the open source tool Gephy 
v0.10 https:// gephi. org/.

https://gephi.org/
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Prediction strategy
To simplify the prediction task of the future success of a song, we only classify songs into average songs and 
future hit songs. We define hit songs as songs with at least 1000 listenings in any one month, which corresponds 
to the top 1% of songs. We do this classification based on an initial sample of features or parameters derived from 
the first 200 times a new song has been listened to. That is, when calculating a parameter associated with user 
attributes for a song, we first compute this value for all users contributing to the first 200 listenings of the song, 
and subsequently, we obtain the song’s predictive parameter by averaging these values.

We define three classes of predictive parameters: preferential-attachment-based, time-based, and homophily-
based. The preferential-attachment-based parameters are (i) the previous popularity of the artist and (ii) the 
genre’s popularity. The time-based parameters are (iii) the time needed to reach 200 listenings, (iv) the tendency 
of users to re-listen to a song, (v) the number of users that listen to the song at least twice within a week, and 
(vi) the temporal trend quantified by the area under the curve of the cumulative listening count as a function of 
time. We also include two variations of these parameters, (vii) a normalized variation of (vi), where we take the 
average y-value instead of the area, and (viii) a variation of (vi) where we subtract the y-value from the diagonal 
and then compute the area. These constitute the basic eight parameters of the model. In addition to these 
parameters, we define homophily-based parameters and compute them for every song. For these, we identify the 
users that contributed to the first 200 times a song has been listened to. We use (ix–xi) the influence scores for 
three different time windows, as defined above, as well as (xii) the average cosine similarity between users and 
their friends as homophily-based parameters. Finally, we compute (xiii) the degree, (xiv) the PageRank, (xv) the 
nearest neighbor degree, and (xvi) the clustering coefficient both on the friendship network and the influencer 
network (xvii–xx). All parameters are described in detail in the methods section. We use these parameters as 
input for a machine learning ensemble to predict hit songs.

To determine whether the prediction of hit songs is best approached as a classification or regression task, we 
also explore this problem as a regression task, aiming to predict the exact number of listenings each song will 
receive. To establish comparability, we mapped the predicted listenings back to a binary classification of hit songs 
or average songs, using the 1000-listening threshold for hit songs. More details on this comparative approach 
can be found in the SI text C.

Results
Influencer network
Analyzing the triad statistics of the influencer networks, we find high levels of reciprocity in the influencer 
network, see Fig. 2. This is seen by the fact that triangles that include reciprocal links are strongly over-represented 
(blue bars) with respect to a random graph with the same number of nodes and (directed) links (shuffled network, 
configuration model). Triangles with no reciprocity are under-represented (red). This finding indicates that, 
generally, influence goes in both directions. Users who discover a new song from a friend (getting influenced) 
often influence other friends into listening to the song, leading to cascades, such as shown in Fig. 1c. In the SI 
text A, we identify the “influencers” and “followers” by comparing the number of times users got influenced 
with how often they influenced others. Overall, we find that 32.5% of new song listens on last.fm qualify as being 
influenced by friends.

Homophily results
We confirm the presence of strong homophily among users that are friends on last.fm by comparing the musical 
preferences of 1000 randomly picked users to those of their friends. We find an average cosine-similarity of 
musical-preference vectors �mu of cos(θ) = 0.58 . In contrast, when comparing the musical preference vectors to 
an equal number of randomly picked users, the average cosine-similarity drops to cos(θ) = 0.25 . A histogram 
of the respective cosine-similarities is shown in Fig. 3. The t-test for independent samples has a test statistic of 
32 and a p-value of p ≤ 10−200 . If the entries of the music preference vectors of the randomly picked users are 
shuffled in a random fashion, similarity decreases to levels below 10−4 and essentially disappears.

We find that both the user’s influence and the tendency to get influenced correlate with the average similarity 
in musical preferences. When comparing users to their friends, this correlation is highly significant with a 
p ≤ 10−4 . In contrast, when comparing random users, we do not find any correlation. For more details, see SI 
text B.

Figure 2.  Triadic census of the influencer network. Comparison to a shuffled network (configuration model), 
averaged over 100 random shufflings. Triad names follow the convention  of35.
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Improving predictions
Both the homophily score and the influence score correlate with song popularity. Parameters that correlate with 
popularity can be tested if they also predict it. The Pearson correlation coefficients, r, between all parameters and 
the song popularity are found in Table 1. The strongest (anti) correlation for song popularity we find for the area 
under the temporal listening trend with r = −0.22 . Other time-based parameters have comparable correlations. 
The influence score correlates better ( r = 0.17 ) with song popularity than the previous popularity of the artist 
( r = 0.14 ). Also, influencer network based parameters correlate similarly as artist popularity.

Table 2 shows the prediction results for three different models quantified by accuracy, precision, and recall. 
We predict if a song becomes a hit-song or an average song based on information from the 200 first listenings 
and the structure of the influencer and friendship networks. A hit song is defined as a song that is listened to 
at least 1000 times in its best month, putting it approximately in the top 1% of all songs. For the classification 
task, we use a machine learning ensemble including classifiers based on Support Vector Classification, Random 
Forest, Ada Boost, Gradient Boost, K-Neighbors, and a multilayer perceptron neural network, see Methods. 
Based on the input parameters, the machine learning models try to classify each song into one of two classes: 
hit songs or regular songs. In the first model, which we refer to as the combined model (a), we use the combined 
parameter sets with preferential-attachment-, time-, and homophily-based parameters (i–xx). In the second, 
the social networks-only scenario (b), we use the homophily-based parameters (ix–xx) only. In the third, we 
combine the preferential-attachment and time-based parameters (i–viii) without using the homophily-based 
parameters and refer to it as the baseline model (c). The baseline model is based on commonly used parameters 
from the literature and excludes any social-network-based parameters. It forms the baseline against which we 
want to compare the results of models (a) and (b).

Figure 3.  Cosine similarity distribution for users and their friends (blue), and between random users (red) 
that are typically not befriended. From the distribution, it becomes apparent that very similar people are almost 
certainly friends on last.fm..

Table 1.  Pearson correlation coefficients between prediction parameters and song popularity. Bold numbers 
show the strongest correlations for homophily-based and baseline parameters. The prediction parameters were 
computed on the first 200 listenings for each song. Song popularity was defined as the maximum number of 
times a song was listened to last.fm in its best month. All p-values are below 10−200 . Only the best-performing 
variations of parameters are listed here. All other variations can be found in the “Methods” section.

Parameter/feature r

Degree (friendship network) 0.090

Degree (influencer network) 0.132

PageRank (influencer network) 0.110

Influence 0.174

Homophily 0.081

Time to reach 200 listenings −0.201

Genre average 0.069

Time between repeated listenings −0.193

Area under the trend curve −0.223

Previous popularity of artist 0.135
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The strongest result is the improvement of hit-precision by 50% in the combined model (a) when compared to 
the baseline model (c). In addition, non-hit recall and accuracy improved by one percentage point at an already 
high level. On the downside, hit-recall decreased by around 14%. Adding the homophily-based influence score 
as a predictive parameter significantly improves accuracy and precision, as well as non-hit recall, at the cost of 
hit-recall. This suggests that the combined model (a) is able to highly reduce the number of false positives at the 
cost of missing a small number of true positives. The homophily-based model (b) on its own manages to already 
identify 40% of all hit songs correctly and reaches an accuracy of 95%. We see that while conventional models like 
our baseline model (c) are superior to the homophily-based model (b), the homophily-based model performs 
already on a high level, and a combination of both leads to the best results. In our evaluation, t-tests comparing 
the results of the three different models yielded p-values below 10−4 , indicating statistically significant differences 
in performance, while all variances were in the range between 10−4 and 10−5.

When comparing the classification and regression approaches, we do not observe statistically significant 
differences in the averages of accuracy, precision, or recall. This suggests that both methods are equally viable, 
and the choice between depends on the task at hand. For more details; see SI text C.

Discussion
We demonstrated how social interactions can be used to enhance song popularity predictions using a large dataset 
collected from the online platform last.fm. From an influencer network we derive an influence score for every user 
that captures their tendency to influence others to imitate their listening behavior. Based on a small sample of 
first listenings, we compute several metrics on the influencer network and use these as the predictive parameters 
in a machine learning classifier ensemble to categorize songs into potential hits and average songs. Our model 
exhibits up to 50% improved precision over a baseline model that uses common preferential attachment and 
time-based parameters.

The integration of social network-based parameters empowers our model to prioritize songs with a heightened 
likelihood of achieving rapid popularity in the current music landscape. This emphasis on the potential for 
swift growth enhances the model’s precision by making its predictions more selective and precise. However, 
the model’s slightly decreased recall may be attributed to its reduced sensitivity to songs that eventually become 
hits but do not exhibit strong social network signals during the prediction window. Some songs may take time 
to gain traction or might follow unconventional paths to success. The model’s emphasis on current trends and 
interactions might lead it to overlook these less conventional hit trajectories, causing a decrease in recall. This 
trade-off between precision and recall has significant implications for the music industry and those seeking to 
invest in potential hit songs. The heightened precision of the new model provides more confidence in the songs 
it does predict as hits, thereby enhancing the decision-making process for investors looking to allocate resources 
to promising music ventures, ultimately leading to more informed and potentially more lucrative investment 
decisions in the dynamic and competitive music market.

Our analysis indicates that influence plays a significant role in shaping music listening behavior on last.
fm, as approximately one-third of new song listens can be attributed to influence. Results  from33 suggest that 
the spread of music listening behavior occurs on relatively short time scales, with influence having a stronger 
effect in the first day, but decreasing over subsequent days and weeks. The used concept of influencing is closely 
related to homophily. Using the music preference vectors we estimate the similarity of tastes and find that 
people that are related through friendship links tend to have aligned tastes – i.e. strong homophily is confirmed, 

Table 2.  Classification results for three different cases: (a) the combined model (preferential attachment, time, 
and homophily), (b) the model with only homophily-based social network parameters, and (c) the baseline 
model without explicit social network information. We see that a combined model (a) performs best, with the 
highest accuracy, hit precision, and non-hit recall. The homophily-based model (b) performs well on its own 
but is outclassed by the baseline model.

Model Prediction category

(a) Combined model

Accuracy 0.98

Hit precision 0.21

Non-hit precision 1.0

Hit recall 0.60

Non-hit recall 0.99

(b) Social network only

Accuracy 0.95

Hit precision 0.05

Non-hit precision 1.0

Hit recall 0.40

Non-hit recall 0.96

(c) Without social network

Accuracy 0.97

Hit precision 0.14

Non-hit precision 1.0

Hit recall 0.70

Non-hit recall 0.98
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consistent with earlier findings  of30,33,36,37. Influence represents the degree to which users can make their friends 
listening to the same music. This increases the similarity in the music preference vectors and drives homophily 
through adaptation. Research  by27,31 suggests that the main driver of homophily in music listening behavior is 
this adaptation of users’ music listening profiles to be more similar to those of their friends, rather than changes 
in their friendship network. In that regard, last.fm differs from other systems such as for instance academic 
performance, where changes in network connections are more  prevalent23. Additionally, we show that while 
some people tend to pioneer new music tastes and others tend to follow these pioneers, in most cases, influencer 
interactions go in both directions. This means that users that get influenced by their friends can in turn influence 
multiple other friends, leading to network structures that enable cascading spreading of new songs, fueling the 
new song’s popularity.

Influence between users contributes to preferential attachment. The more people listen to a song, the more 
likely it gets recommended to friends, thus the probability of it being listened to increases. Parameters that 
relate to either preferential attachment, such as the previous popularity of the artist, or to forgetting, such as the 
listening trend, have been widely used in previous works to predict the popularity of  songs5,14–16. In this study, 
we focus on these extrinsic properties and contribute new parameters that have the potential to improve the 
performance of existing models.

There are several severe limitations. Obviously, last.fm only provides a partial view of what is going on in 
music listening and recommendations. There are many other channels where people listen to music and exchange 
information about new songs which leads to a “cold-start” problem: a song that is new on the last.fm platform 
doesn’t need to be new to its users. Hence, song popularity predictions might be offset by events that are beyond 
the scope of the available data. This is in part related also to the issue of comparability. A multitude of different 
datasets is used across the literature, each of them limited in some aspect, for instance, to a specific platform or a 
geographic  region5,9,11,12. This is coupled with an apparent lack of a consistent definition of hit songs. In addition 
to that, in models with many parameters and hyperparameters, performance might be optimized with regard to 
different metrics. Altogether, specific results are difficult to compare across different studies. For this reason, we 
chose to use our own baseline model as a benchmark and aim for precise and intuitive definitions of popularity 
and hit songs, such that different machine learning models might be compared in a consistent way. In order to 
provide a realistic point of comparison, we aimed to optimize the performance of the aforementioned baseline 
model. Ultimately, the best-performing model we identified was an ensemble model. Our objective was to 
demonstrate that even the most effective models can be improved by incorporating social network information. 
Alternatively, if interpretability is the primary focus, one may choose to conduct the analysis using a single 
model, such as a random forest model.

In addition to these limitations, to some degree, popularity predictions might be self-fulfilling prophecies. 
It has been observed that people tend to reproduce perceived song popularity that is presented to them, even 
if these have been heavily  modified38–40. Finally, there is also an ongoing discussion on whether artists should 
focus on improving popularity over other goals. Most popular doesn’t necessarily imply most enjoyable or 
most  relevant41. Rather, it indicates high commercial relevance, which might not necessarily be the top priority. 
However, even given these shortcomings, in this work, we were able to compare the predictions within a closed 
framework. Our main result is that we are able to find a substantial relative increase in predictability by including 
social information. The concept presented here can straightforwardly be transferred to other domains such as 
movies, books, posts, or even physical goods. Given the growing availability of social network data, comparable 
approaches might further uncover the social underpinnings of consumer behavior in our society.

Methods
Data
Our analysis is based on data collected from last.fm. Table 3 shows the number of songs, listenings, albums, 
artists, and users in the dataset that we collected for this study. Users are further broken down into users for which 
the full friendship data i.e. the account names of all their friends are known and users for which we collected the 
full listen history. Figure 4 shows the timeline of last.fm and marks the time periods for which data was fetched. 
The bootstrap phase was used to bootstrap the popularity of artists.

Table 3.  Available data that was collected on the last.fm for the purpose of this study. Numbers are rounded 
down.

Songs 10,000,000

Listenings 300,000,000

Albums 200,000

Artists 1,000,000

Tags 95,000

Users 2,500,000

With friendship data 100,000

With listen history 17,500
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Data collection
For data acquisition, we employed the Python interface pylast42 and initiated crawling by selecting seed users from 
online communities. The crawl commenced by querying for the friends of these selected users and expanded to 
their friends’ friends and so forth, using a breadth-first search strategy. This approach aimed to establish a core set 
of users with complete friend lists as well as second-order friends, providing a comprehensive understanding of 
their links in the friendship network. While we captured a significant portion of the friendship network, including 
all friendship links of 100,000 users, we selectively collected listening histories due to the high number of required 
API requests (averaging approximately 20,000 listenings per user). This focused data collection involved a core set 
of 17,500 users, striking a balance between computational efficiency and maintaining a thorough representation 
of the listening history and friendship network.

Data pre-processing
In preprocessing Last.fm tags, we strategically addressed the inherent noise and potential inaccuracies associated 
with user-generated tags. Instead of relying solely on song tags, which can be prone to errors, we opted for a more 
robust approach by utilizing artist tags. This decision leveraged the much larger number of user votes for artists, 
enhancing the reliability of the tags used in our analysis. Last.fm utilizes a weighted tagging system, where the 
influence of tags is determined by the number of votes received, enabling us to mitigate the impact of potentially 
incorrect or less popular tags. To enhance the quality of our dataset, we introduced a manual blacklist for tags 
deemed misleading, harmful, or derogatory. This step ensured the exclusion of specific tags, irrespective of 
their popularity, contributing to a more accurate representation of user preferences. Additionally, our database 
incorporates merging rules to address instances where identical items might appear separately due to variations 
in spelling or the addition of extraneous information. The Python scripts for downloading, cleaning, and merging 
the data are accessible on the GitHub repository at https:// github. com/ Nikla sRz/ lastfm- data- downl oader.

Prediction parameters
We use the data to train a prediction model that is based on several social- and metadata-based parameters. For 
the social parameters, we use two networks: the friendship network and the influencer network. The friendship 
network of last.fm consists of nodes that represent users and links that represent bidirectional friendships. The 
influencer network is a directed network where users are nodes, and a weighted link represents the strength of 
a user’s influence over another. On these two networks, we define the following user metrics: 

 (ix–xi) user influence with time windows of 6h, 12h and 24h. The influence score of each user is divided by the 
number of songs where a user influenced another user thus giving us the number of influencing events 
per song. This is equivalent to the out-degree of the user in the influencer network divided by the number 
of songs.

 (xii) homophily as defined here by the average cosine similarity of the music preference vectors between a 
user and their friends

 (xiii) the degree of each user, computed on the friendship network
 (xiv) the PageRank of each user (node), computed on the friendship network
 (xv) the nearest neighbor degree of each user, computed on the friendship network
 (xvi) the clustering coefficient of each user, computed on the friendship network
 (xvii) the degree of each user, computed on the influencer network
 (xviii) the PageRank of each user, computed on the influencer network
 (xix) the nearest neighbor degree of each user, computed on the influencer network
 (xx) the clustering coefficient of each user, computed on the influencer network

Each of these user metrics is computed for the users that contribute the first 200 listenings to a song and averaged 
per song. The average is then the value of the predictive parameter for that song.

Figure 4.  last.fm timeline and data availability. The company was founded in 2002 in the UK. User data is 
available on the API starting from February 2005. In 2014 there was a major change to the system—users were 
not able anymore to listen to music directly on last.fm but rather could connect their last.fm account to other 
streaming services such as Spotify.

https://github.com/NiklasRz/lastfm-data-downloader
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The performance of these parameters is compared to the performance of commonly used parameters that 
form our baseline. Specifically, we test the following parameters: 

 (i) previous popularity of the artist. For this, we take a snapshot in time when the new song is released and 
calculate the average number of listenings that songs of the same artist have received in the past.

 (ii) the average number of listenings, that songs of the same genre receive in our dataset. We define the genre 
of a song, as the value of the the user-defined artist-tag with the largest weight (100).

 (iii) the time, �tj , it takes a song, j, to reach the first 200 listenings in last.fm, given by 

 where tj,i is the timestamp in seconds when song, j, was listened to for the ith time.
 (iv) the average time that passes between two listenings of the same user, measured in seconds. Again, we 

only look at the first 200 listenings here. Whenever the same user listens more than once to the song 
withing those first 200 listenings, we compute the time that has passed in between. We then average these 
timespans per song.

 (v) the number of users among the first 200 listenings that listen to the song again within a timespan of at 
most one week. This is similar to (iv), but instead of looking at the time that passes in between, we simply 
count how many users listen to the song more than once.

 (vi) the area, Aj , under the curve if the cumulative listenings of a song, j, up to a number of 200 are plotted 
vs time. This is given by 

 where tj,i is the timestamp in seconds when song, j, was listened to for the ith time and lj(t) is the total 
number of times song, j, has been listened to at time, t.

 (vii) the same area as in (vi), but divided by the length of the x-axis (total time passed between the first and 
the 200th listening). This is given by 

 where tj,i is the timestamp in seconds when song, j, was listened to for the ith time and lj(t) is the total 
number of times song, j, has been listened to at time, t.

 (viii) the same area as in (vi), but subtracted from the area under the diagonal. This is given by 

where tj,i is the timestamp in seconds when song, j, was listened to for the ith time and lj(t) is the total number 
of times song, j, has been listened to at time, t.

Table 4 shows the correlation coefficients for the parameters listed above and the popularity of songs.

Prediction model
These parameters are used in our machine-learning ensemble for song popularity predictions. The ensemble 
includes classifiers based on Support Vector Classification, Random Forest, Ada Boost, Gradient Boost, 
K-Neighbors, and a neural network. The different classifiers hold a majority vote on the classification of each 
song. Each song is classified as either a future hit-song or an average song, where hit-songs are defined as songs 
in the top 1% of songs, which coincidentally equates to being listened to approximately at least 1000 times in 
the best month in our dataset. Given the challenge of defining a precise “hit song” and comparing absolute 
popularity metrics across different systems, we chose this classification approach over regression. By basing our 
classification on songs included in the last.fm chart of top-performing songs that we defined, we emphasize the 
intuitive and comparative nature of the model results. In the following, we give a brief overview of the machine 
learning models used, the specific implementation, and their hyperparameter settings.

Support vector classification is a supervised learning model that tries to map training data into a higher 
dimensional space with the aim of maximizing the gap between points of different classes in that  space43. In 
this study, we use the Python sklearn  implementation44 with balanced class weights and a value of C = 1 for the 
regularization hyperparameter.

Random Forest classification is a supervised learning model that builds multiple randomized decision trees 
based on the training  set45. The classification outcome is then the majority vote of the individual trees. In this 
study, we use the Python sklearn  implementation46 with 100 estimators and balanced class weights.

Ada Boost, short for adaptive boosting, is a classifier that iteratively learns from the mistakes of weak 
classifiers, turning them into strong  classifiers47. In this study, we use the Python sklearn  implementation48 with 
100 estimators and a decision tree classifier.

Gradient Boost classifier is a classifier that works as an ensemble of weak classifiers, typically decision trees. 
These weak classifiers are gradually added during the learning process while aiming for maximum correlation 
with the negative gradient of the loss  function49. In this study, we use the Python sklearn  implementation50 
with 100 estimators, a learning rate of 1, and a maximum depth of 1. In addition to this, we added a histogram 

(3)�tj = tj,200 − tj,1

(4)Aj =

∫ tj,200

t=tj,1

lj(t)dt

(5)A′′
j =

∫ tj,200
t=tj,1 lj(t)dt

tj,200 − tj,1

(6)A′
j =

(tj,200 − tj,1)(lj(t = tj,200)− lj(t = tj,1))

2
−

∫ tj,200

t=tj,1

lj(t)dt
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gradient boost classifier, which uses binned input variables. We use the Python sklearn  implementation51 with 
a maximum of 100 iterations, a learning rate of 0.1 and a maximum depth of 3.

K-nearest neighbor classification is based on a multidimensional feature space that is populated by the feature 
vectors of the training set and their  labels52. During classification, one looks at the nearest k neighbors of an 
element and attaches the label to it that is most common among its neighbors. In this study, we use the Python 
sklearn  implementation53 with the number of nearest neighbors k equal to 5.

A multilayer perceptron is a fully connected, feed-forward artificial neural network that consists of at least 
three layers: an input, a hidden layer, and an output  layer54. All nodes in each layer are connected to all other 
nodes of the following layer. It uses non-linear activation functions and learns through back-propagation. In this 
study, we use the Python sklearn  implementation55 with 2 layers, 100 neurons per hidden layer, RELU activation 
function, ADAM solver, and a maximum number of iterations of 1000.

These machine learning models are each trained on (the same) 60% of the data and then used to classify the 
other 40%. The data is classified according to the majority vote of the different models.

Data availability
The data that support the findings of this study are available from last.fm but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of last.fm. Last.fm offers limited 
public access to their data via their public API https:// www. last. fm/ api. The authors have created an open-source 
software tool to download the data used in this study through the public API, which is available at https:// github. 
com/ Nikla sRz/ lastfm- data- downl oader.
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