
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports

Quantifying the impact
of homophily and influencer
networks on song popularity
prediction
Niklas Reisz 1, Vito D. P. Servedio 1 & Stefan Thurner 1,2,3*

Forecasting the popularity of new songs has become a standard practice in the music industry and
provides a comparative advantage for those that do it well. Considerable efforts were put into
machine learning prediction models for that purpose. It is known that in these models, relevant
predictive parameters include intrinsic lyrical and acoustic characteristics, extrinsic factors (e.g.,
publisher influence and support), and the previous popularity of the artists. Much less attention was
given to the social components of the spreading of song popularity. Recently, evidence for musical
homophily—the tendency that people who are socially linked also share musical tastes—was reported.
Here we determine how musical homophily can be used to predict song popularity. The study is based
on an extensive dataset from the last.fm online music platform from which we can extract social
links between listeners and their listening patterns. To quantify the importance of networks in the
spreading of songs that eventually determines their popularity, we use musical homophily to design a
predictive influence parameter and show that its inclusion in state-of-the-art machine learning models
enhances predictions of song popularity. The influence parameter improves the prediction precision
(TP/(TP + FP)) by about 50% from 0.14 to 0.21, indicating that the social component in the spreading
of music plays at least as significant a role as the artist’s popularity or the impact of the genre.

While you read this paper’s abstract, more than 50 new songs were released worldwide. Global music production
has long reached such high levels that it is no longer possible to listen to every new song. On the world’s largest
music streaming platform Spotify, roughly 136 days worth of music are published daily1,2. This means that more
music is produced in a year than one could listen to in an entire lifetime. In this ocean of new songs, there is
a growing need for efficient selection and filtering, and the markets for attention have become increasingly
competitive. This becomes apparent in increasingly imbalanced distributions of song popularity. While the
majority of songs receive little to no attention, a small fraction become hits that are listened to billions of times3.
Predicting which songs have the potential to become one of these hits has become an increasingly important task
for music publishers4. The issue has sparked substantial commercial interest as publishers focus their marketing
activities on high-potential songs and artists5. For quantitative predictions, a multitude of different approaches
has been explored. The vast volume of data made available by streaming platforms in the past decade triggered
a boost of data-driven approaches.

In the early 2000s, a discussion started on the possibility of quantitatively predicting song popularity. Using
traditional machine learning classifiers on lyrical and acoustic song attributes, it was attempted to identify
hits prospectively6. It was concluded that predictions were significantly better than random, with the lyrical
features slightly outperforming the acoustic ones. In7, it was claimed that the science of predicting hits, the
so-called hit song science, was not yet a science as they demonstrated that the usual machine learning methods
were not able to forecast the success of songs. This assertion was soon challenged in8, where the authors argued
that, given a relevant set of acoustic song features, forecasting song popularity was possible with more specific
machine learning approaches. In these early works, the emphasis was primarily on intrinsic acoustic and lyrics
features. Later, other studies improved outcomes with more sophisticated methods and expansive datasets.
Specific song attributes such as “happiness”, “partyness” and repetitiveness were found to increase the chances

OPEN

1Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria. 2Section for Science of Complex
Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria. 3Santa Fe Institute, 1399
Hyde Park Road, Santa Fe, NM 85701, USA. *email: stefan.thurner@meduniwien.ac.at

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-58969-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

of songs becoming hits9,10. Deep convolutional structures and machine learning regressions were convincingly
shown to have predictive power11–13.

While these studies focused exclusively on intrinsic properties of songs, newer studies have included extrinsic
features such as metadata or artist popularity. It was claimed that extrinsic factors often carry increased predicting
power, the most predictive feature being the previous popularity of the artist5. Askin and Mauskapf and Shin
and Park 14,15 confirmed this result by finding that both, the previous popularity of the artist and the support of
the publisher, have a significant impact on the success chances of songs. In addition to having increased chances
of making it into the charts, Im et al.16 found that songs of well-known artists and big publishers also stay there
longer. Reference 17 demonstrated a significant dominance of superstars in the market share and identified a
positive correlation between song success and the artist’s prior release count. For extrinsic song attributes, Yu
et al.18 found that Support Vector Regression (SVR) performs slightly better than neural networks.

Predictive indicators were also found in Twitter data19 where music-related hashtags such as #nowplaying
were counted. The number of daily tweets about specific songs and artists is highly correlated with the listening
trend of that song. Counting the same tags, Tsiara et al.20 found a moderate correlation between the number
of tweets and the chart position of a song, as well as a weak correlation with the sentiment of the tweets. These
Twitter-based correlations hint at a social component to the success of songs and that this information might
be encoded in social networks. A similar thought was followed in21, where the spread of song popularity was
modeled with a SIR disease spreading model. There, it is argued that social processes that lead to the spread of
music are similar to those of disease spreading. For some genres, for which social connectivity is higher, songs
appear to spread faster.

The fact that social networks co-create homophily—the tendency that people that share common treats are
more likely to form social ties—has been observed in a variety of contexts, ranging from obesity22 to performance
in schools23. Also, in music listening behavior, the concept of homophily has been studied24. Recently, homophily’s
importance in relation to music preference was confirmed in a study on 1144 early adolescents, where music
preference plays a significant role in selecting friends25. The online music-listening platform and social network
last.fm https:// www. last. fm/ offers an excellent ground for studying homophily as it simultaneously provides
access to both social links and music listening records of users26. In27, the authors study last.fm data to predict
friendship links. They find that music preference alone rarely leads to friendships. In most cases, sharing friends
is the best predictor of future friendships, i.e. triadic closure that has been predicted in28 and explains basic
structures of social multilayer networks29. Reference 30 confirmed that people with similar music preferences
tend to cluster, indicating that friends tend to listen to similar music. Homophily in music listening was found
in explorative behavior31. By estimating how mainstream, novel, or diverse listening records of users are, they
find that highly explorative people tend to look for friends that are similar. Reference32 confirmed that result and
designed a model that explains the finding, stressing that highly explorative users tend to be friends with users
with similar discovery rates. While31 use homophily to predict friendship links on last.fm, in33,34 it is investigated
how information about new artists spreads through social links and quantified to which extent user behavior is
copied. It is demonstrated how homophily can be leveraged to improve song recommendations by recommending
new songs to users shortly after close friends are listening to them.

While extensive research has focused on acoustic and metadata-based factors for predicting song popularity,
the influence of social interactions has received comparatively less attention, despite its significant impact on
listening behavior. In this study, we quantify the influence of social interactions, particularly homophily and
measures derived from homophily, on song popularity. Our work reveals how homophily is self-reinforced
as users influence their friends to engage with specific songs, leading to the emergence and popularity of new
songs through cascades of recommendations. We quantify this user influence through state-of-the-art machine-
learning predictions of song popularity, assessing the extent to which our predictions can be enhanced. Our
approach seeks to harness the intertwined dynamics of user homophily and influence, rather than disentangling
these closely related factors, with the ultimate goal of optimizing prediction accuracy in the context of music
recommendation systems.

Homophily
To estimate homophily, we derived a dataset from the online music-listening platform and social network last.fm.
Our data includes 300 million individual listening events of 10 million songs. It is enriched by the (undirected
and unweighted) friendship network, where nodes represent users and links represent bidirectional friendships.
It consists of 2.7 million nodes and 15 million links with an average degree of 11.6. The network is connected
with a diameter of 6. This dataset allows us to link friendships to music-listening histories. For more details,
see methods.

We first determine the music preferences of every user. Music preferences can be assessed in last.fm through
user-defined tags. Users define and add tags such as Rock, 80s, or Acoustic to songs, artists, or albums. Here, we
focus on artist tags because they are more abundant than song or album tags and offer more reliable statistics.
Every artist, a, can have multiple tags, t, which are represented as weights, wat , ranging between 1 and 100, based
on their frequency of appearance (100 corresponds to the most frequent tag for that artist). We then compute a
music preference matrix, mut , by summing over the weights, wat , for each tag, t, of each artist, a, for each time a
user, u, is listening to a song by that artist. The music preference matrix, M, with elements mu,t is hence defined as

where lus is the number of times user, u, listened to song, s. isa = 1 if artist, a, interpreted song, s, and is zero
otherwise. In the music preference matrix M, each row corresponds to a vector of music preference of one

(1)mut =
∑

a,s

lusisawat ,

https://www.last.fm/

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

user, expressed by the weighted artist tags. To compare the music preference vectors of users i and j, we use the
cosine-similarity, defined as

The idea will be to compare the alignment of music preference vectors for users that are friends to the alignment
between randomly picked users (that are very likely not friends).

Influencer network
As a next step, we define the influencer network. Influence is the number of times a user’s friends copied the
listening behavior of that user within a specified time window. We define it algorithmically. Whenever a friend,
uj , of a user, ui , listens to a song for the first time at time tj shortly after user, ui , listened to that song at time ti , the
influence, Iij , of user, i, on user, j, increases by one if tj − ti < � is smaller than some threshold � . A sketch of the
concept and the derived influencer network are shown in Fig. 1. The influencer network (orange) is a directed
network where users are nodes, and a weighted link represents the strength of a user’s influence over another.
In our case, it consists of 9200 nodes and 190,000 links, with an average degree of 21. The influencer network is
connected and has a diameter of 11. Since friendship is a requirement for influence, the influencer network is
a sub-network of the friendship network (blue), all nodes and links present in the influencer network also exist
in the friendship network. Influence on last.fm is possible because users can see which songs their friends are
listening to and can give specific song recommendations to them.

(2)cos(θij) =

∑

t mu=i,tmu=j,t
√

∑

t m
2
u=i,t

√

∑

t m
2
u=j,t

.

Figure 1. (a) Schematic depiction of user influence. If a user listens to a song at time t1 and a friend of that user
listens to the same song for the first time at time t2 with t2 − t1 < � smaller than some threshold � , the second
user is said to have been influenced by the first with respect to that song. The influencer network is shown in
orange, the friendship network in blue. The influencer network is a sub-network of the friendship network. (b)
A fraction of the influencer network of last.fm from a 24 h time window. Several strong influencers are visible
(influencers and influencing links in orange) within the friendship network (blue). (c) Example of a timeline of a
single song. Dots along the x-axis represent different users that listen to a song for the first time (location of dot).
Dots are ordered in time, from left to right. Blue dots are users that found the song on their own, while orange
dots represent users that were influenced by their friends. Arrows mark influencing events, where one user
influences another into listening to a song. Panel (b) of this figure was created using the open source tool Gephy
v0.10 https:// gephi. org/.

https://gephi.org/

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

Prediction strategy
To simplify the prediction task of the future success of a song, we only classify songs into average songs and
future hit songs. We define hit songs as songs with at least 1000 listenings in any one month, which corresponds
to the top 1% of songs. We do this classification based on an initial sample of features or parameters derived from
the first 200 times a new song has been listened to. That is, when calculating a parameter associated with user
attributes for a song, we first compute this value for all users contributing to the first 200 listenings of the song,
and subsequently, we obtain the song’s predictive parameter by averaging these values.

We define three classes of predictive parameters: preferential-attachment-based, time-based, and homophily-
based. The preferential-attachment-based parameters are (i) the previous popularity of the artist and (ii) the
genre’s popularity. The time-based parameters are (iii) the time needed to reach 200 listenings, (iv) the tendency
of users to re-listen to a song, (v) the number of users that listen to the song at least twice within a week, and
(vi) the temporal trend quantified by the area under the curve of the cumulative listening count as a function of
time. We also include two variations of these parameters, (vii) a normalized variation of (vi), where we take the
average y-value instead of the area, and (viii) a variation of (vi) where we subtract the y-value from the diagonal
and then compute the area. These constitute the basic eight parameters of the model. In addition to these
parameters, we define homophily-based parameters and compute them for every song. For these, we identify the
users that contributed to the first 200 times a song has been listened to. We use (ix–xi) the influence scores for
three different time windows, as defined above, as well as (xii) the average cosine similarity between users and
their friends as homophily-based parameters. Finally, we compute (xiii) the degree, (xiv) the PageRank, (xv) the
nearest neighbor degree, and (xvi) the clustering coefficient both on the friendship network and the influencer
network (xvii–xx). All parameters are described in detail in the methods section. We use these parameters as
input for a machine learning ensemble to predict hit songs.

To determine whether the prediction of hit songs is best approached as a classification or regression task, we
also explore this problem as a regression task, aiming to predict the exact number of listenings each song will
receive. To establish comparability, we mapped the predicted listenings back to a binary classification of hit songs
or average songs, using the 1000-listening threshold for hit songs. More details on this comparative approach
can be found in the SI text C.

Results
Influencer network
Analyzing the triad statistics of the influencer networks, we find high levels of reciprocity in the influencer
network, see Fig. 2. This is seen by the fact that triangles that include reciprocal links are strongly over-represented
(blue bars) with respect to a random graph with the same number of nodes and (directed) links (shuffled network,
configuration model). Triangles with no reciprocity are under-represented (red). This finding indicates that,
generally, influence goes in both directions. Users who discover a new song from a friend (getting influenced)
often influence other friends into listening to the song, leading to cascades, such as shown in Fig. 1c. In the SI
text A, we identify the “influencers” and “followers” by comparing the number of times users got influenced
with how often they influenced others. Overall, we find that 32.5% of new song listens on last.fm qualify as being
influenced by friends.

Homophily results
We confirm the presence of strong homophily among users that are friends on last.fm by comparing the musical
preferences of 1000 randomly picked users to those of their friends. We find an average cosine-similarity of
musical-preference vectors �mu of cos(θ) = 0.58 . In contrast, when comparing the musical preference vectors to
an equal number of randomly picked users, the average cosine-similarity drops to cos(θ) = 0.25 . A histogram
of the respective cosine-similarities is shown in Fig. 3. The t-test for independent samples has a test statistic of
32 and a p-value of p ≤ 10−200 . If the entries of the music preference vectors of the randomly picked users are
shuffled in a random fashion, similarity decreases to levels below 10−4 and essentially disappears.

We find that both the user’s influence and the tendency to get influenced correlate with the average similarity
in musical preferences. When comparing users to their friends, this correlation is highly significant with a
p ≤ 10−4 . In contrast, when comparing random users, we do not find any correlation. For more details, see SI
text B.

Figure 2. Triadic census of the influencer network. Comparison to a shuffled network (configuration model),
averaged over 100 random shufflings. Triad names follow the convention of35.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

Improving predictions
Both the homophily score and the influence score correlate with song popularity. Parameters that correlate with
popularity can be tested if they also predict it. The Pearson correlation coefficients, r, between all parameters and
the song popularity are found in Table 1. The strongest (anti) correlation for song popularity we find for the area
under the temporal listening trend with r = −0.22 . Other time-based parameters have comparable correlations.
The influence score correlates better (r = 0.17) with song popularity than the previous popularity of the artist
(r = 0.14). Also, influencer network based parameters correlate similarly as artist popularity.

Table 2 shows the prediction results for three different models quantified by accuracy, precision, and recall.
We predict if a song becomes a hit-song or an average song based on information from the 200 first listenings
and the structure of the influencer and friendship networks. A hit song is defined as a song that is listened to
at least 1000 times in its best month, putting it approximately in the top 1% of all songs. For the classification
task, we use a machine learning ensemble including classifiers based on Support Vector Classification, Random
Forest, Ada Boost, Gradient Boost, K-Neighbors, and a multilayer perceptron neural network, see Methods.
Based on the input parameters, the machine learning models try to classify each song into one of two classes:
hit songs or regular songs. In the first model, which we refer to as the combined model (a), we use the combined
parameter sets with preferential-attachment-, time-, and homophily-based parameters (i–xx). In the second,
the social networks-only scenario (b), we use the homophily-based parameters (ix–xx) only. In the third, we
combine the preferential-attachment and time-based parameters (i–viii) without using the homophily-based
parameters and refer to it as the baseline model (c). The baseline model is based on commonly used parameters
from the literature and excludes any social-network-based parameters. It forms the baseline against which we
want to compare the results of models (a) and (b).

Figure 3. Cosine similarity distribution for users and their friends (blue), and between random users (red)
that are typically not befriended. From the distribution, it becomes apparent that very similar people are almost
certainly friends on last.fm..

Table 1. Pearson correlation coefficients between prediction parameters and song popularity. Bold numbers
show the strongest correlations for homophily-based and baseline parameters. The prediction parameters were
computed on the first 200 listenings for each song. Song popularity was defined as the maximum number of
times a song was listened to last.fm in its best month. All p-values are below 10−200 . Only the best-performing
variations of parameters are listed here. All other variations can be found in the “Methods” section.

Parameter/feature r

Degree (friendship network) 0.090

Degree (influencer network) 0.132

PageRank (influencer network) 0.110

Influence 0.174

Homophily 0.081

Time to reach 200 listenings −0.201

Genre average 0.069

Time between repeated listenings −0.193

Area under the trend curve −0.223

Previous popularity of artist 0.135

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

The strongest result is the improvement of hit-precision by 50% in the combined model (a) when compared to
the baseline model (c). In addition, non-hit recall and accuracy improved by one percentage point at an already
high level. On the downside, hit-recall decreased by around 14%. Adding the homophily-based influence score
as a predictive parameter significantly improves accuracy and precision, as well as non-hit recall, at the cost of
hit-recall. This suggests that the combined model (a) is able to highly reduce the number of false positives at the
cost of missing a small number of true positives. The homophily-based model (b) on its own manages to already
identify 40% of all hit songs correctly and reaches an accuracy of 95%. We see that while conventional models like
our baseline model (c) are superior to the homophily-based model (b), the homophily-based model performs
already on a high level, and a combination of both leads to the best results. In our evaluation, t-tests comparing
the results of the three different models yielded p-values below 10−4 , indicating statistically significant differences
in performance, while all variances were in the range between 10−4 and 10−5.

When comparing the classification and regression approaches, we do not observe statistically significant
differences in the averages of accuracy, precision, or recall. This suggests that both methods are equally viable,
and the choice between depends on the task at hand. For more details; see SI text C.

Discussion
We demonstrated how social interactions can be used to enhance song popularity predictions using a large dataset
collected from the online platform last.fm. From an influencer network we derive an influence score for every user
that captures their tendency to influence others to imitate their listening behavior. Based on a small sample of
first listenings, we compute several metrics on the influencer network and use these as the predictive parameters
in a machine learning classifier ensemble to categorize songs into potential hits and average songs. Our model
exhibits up to 50% improved precision over a baseline model that uses common preferential attachment and
time-based parameters.

The integration of social network-based parameters empowers our model to prioritize songs with a heightened
likelihood of achieving rapid popularity in the current music landscape. This emphasis on the potential for
swift growth enhances the model’s precision by making its predictions more selective and precise. However,
the model’s slightly decreased recall may be attributed to its reduced sensitivity to songs that eventually become
hits but do not exhibit strong social network signals during the prediction window. Some songs may take time
to gain traction or might follow unconventional paths to success. The model’s emphasis on current trends and
interactions might lead it to overlook these less conventional hit trajectories, causing a decrease in recall. This
trade-off between precision and recall has significant implications for the music industry and those seeking to
invest in potential hit songs. The heightened precision of the new model provides more confidence in the songs
it does predict as hits, thereby enhancing the decision-making process for investors looking to allocate resources
to promising music ventures, ultimately leading to more informed and potentially more lucrative investment
decisions in the dynamic and competitive music market.

Our analysis indicates that influence plays a significant role in shaping music listening behavior on last.
fm, as approximately one-third of new song listens can be attributed to influence. Results from33 suggest that
the spread of music listening behavior occurs on relatively short time scales, with influence having a stronger
effect in the first day, but decreasing over subsequent days and weeks. The used concept of influencing is closely
related to homophily. Using the music preference vectors we estimate the similarity of tastes and find that
people that are related through friendship links tend to have aligned tastes – i.e. strong homophily is confirmed,

Table 2. Classification results for three different cases: (a) the combined model (preferential attachment, time,
and homophily), (b) the model with only homophily-based social network parameters, and (c) the baseline
model without explicit social network information. We see that a combined model (a) performs best, with the
highest accuracy, hit precision, and non-hit recall. The homophily-based model (b) performs well on its own
but is outclassed by the baseline model.

Model Prediction category

(a) Combined model

Accuracy 0.98

Hit precision 0.21

Non-hit precision 1.0

Hit recall 0.60

Non-hit recall 0.99

(b) Social network only

Accuracy 0.95

Hit precision 0.05

Non-hit precision 1.0

Hit recall 0.40

Non-hit recall 0.96

(c) Without social network

Accuracy 0.97

Hit precision 0.14

Non-hit precision 1.0

Hit recall 0.70

Non-hit recall 0.98

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

consistent with earlier findings of30,33,36,37. Influence represents the degree to which users can make their friends
listening to the same music. This increases the similarity in the music preference vectors and drives homophily
through adaptation. Research by27,31 suggests that the main driver of homophily in music listening behavior is
this adaptation of users’ music listening profiles to be more similar to those of their friends, rather than changes
in their friendship network. In that regard, last.fm differs from other systems such as for instance academic
performance, where changes in network connections are more prevalent23. Additionally, we show that while
some people tend to pioneer new music tastes and others tend to follow these pioneers, in most cases, influencer
interactions go in both directions. This means that users that get influenced by their friends can in turn influence
multiple other friends, leading to network structures that enable cascading spreading of new songs, fueling the
new song’s popularity.

Influence between users contributes to preferential attachment. The more people listen to a song, the more
likely it gets recommended to friends, thus the probability of it being listened to increases. Parameters that
relate to either preferential attachment, such as the previous popularity of the artist, or to forgetting, such as the
listening trend, have been widely used in previous works to predict the popularity of songs5,14–16. In this study,
we focus on these extrinsic properties and contribute new parameters that have the potential to improve the
performance of existing models.

There are several severe limitations. Obviously, last.fm only provides a partial view of what is going on in
music listening and recommendations. There are many other channels where people listen to music and exchange
information about new songs which leads to a “cold-start” problem: a song that is new on the last.fm platform
doesn’t need to be new to its users. Hence, song popularity predictions might be offset by events that are beyond
the scope of the available data. This is in part related also to the issue of comparability. A multitude of different
datasets is used across the literature, each of them limited in some aspect, for instance, to a specific platform or a
geographic region5,9,11,12. This is coupled with an apparent lack of a consistent definition of hit songs. In addition
to that, in models with many parameters and hyperparameters, performance might be optimized with regard to
different metrics. Altogether, specific results are difficult to compare across different studies. For this reason, we
chose to use our own baseline model as a benchmark and aim for precise and intuitive definitions of popularity
and hit songs, such that different machine learning models might be compared in a consistent way. In order to
provide a realistic point of comparison, we aimed to optimize the performance of the aforementioned baseline
model. Ultimately, the best-performing model we identified was an ensemble model. Our objective was to
demonstrate that even the most effective models can be improved by incorporating social network information.
Alternatively, if interpretability is the primary focus, one may choose to conduct the analysis using a single
model, such as a random forest model.

In addition to these limitations, to some degree, popularity predictions might be self-fulfilling prophecies.
It has been observed that people tend to reproduce perceived song popularity that is presented to them, even
if these have been heavily modified38–40. Finally, there is also an ongoing discussion on whether artists should
focus on improving popularity over other goals. Most popular doesn’t necessarily imply most enjoyable or
most relevant41. Rather, it indicates high commercial relevance, which might not necessarily be the top priority.
However, even given these shortcomings, in this work, we were able to compare the predictions within a closed
framework. Our main result is that we are able to find a substantial relative increase in predictability by including
social information. The concept presented here can straightforwardly be transferred to other domains such as
movies, books, posts, or even physical goods. Given the growing availability of social network data, comparable
approaches might further uncover the social underpinnings of consumer behavior in our society.

Methods
Data
Our analysis is based on data collected from last.fm. Table 3 shows the number of songs, listenings, albums,
artists, and users in the dataset that we collected for this study. Users are further broken down into users for which
the full friendship data i.e. the account names of all their friends are known and users for which we collected the
full listen history. Figure 4 shows the timeline of last.fm and marks the time periods for which data was fetched.
The bootstrap phase was used to bootstrap the popularity of artists.

Table 3. Available data that was collected on the last.fm for the purpose of this study. Numbers are rounded
down.

Songs 10,000,000

Listenings 300,000,000

Albums 200,000

Artists 1,000,000

Tags 95,000

Users 2,500,000

With friendship data 100,000

With listen history 17,500

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

Data collection
For data acquisition, we employed the Python interface pylast42 and initiated crawling by selecting seed users from
online communities. The crawl commenced by querying for the friends of these selected users and expanded to
their friends’ friends and so forth, using a breadth-first search strategy. This approach aimed to establish a core set
of users with complete friend lists as well as second-order friends, providing a comprehensive understanding of
their links in the friendship network. While we captured a significant portion of the friendship network, including
all friendship links of 100,000 users, we selectively collected listening histories due to the high number of required
API requests (averaging approximately 20,000 listenings per user). This focused data collection involved a core set
of 17,500 users, striking a balance between computational efficiency and maintaining a thorough representation
of the listening history and friendship network.

Data pre-processing
In preprocessing Last.fm tags, we strategically addressed the inherent noise and potential inaccuracies associated
with user-generated tags. Instead of relying solely on song tags, which can be prone to errors, we opted for a more
robust approach by utilizing artist tags. This decision leveraged the much larger number of user votes for artists,
enhancing the reliability of the tags used in our analysis. Last.fm utilizes a weighted tagging system, where the
influence of tags is determined by the number of votes received, enabling us to mitigate the impact of potentially
incorrect or less popular tags. To enhance the quality of our dataset, we introduced a manual blacklist for tags
deemed misleading, harmful, or derogatory. This step ensured the exclusion of specific tags, irrespective of
their popularity, contributing to a more accurate representation of user preferences. Additionally, our database
incorporates merging rules to address instances where identical items might appear separately due to variations
in spelling or the addition of extraneous information. The Python scripts for downloading, cleaning, and merging
the data are accessible on the GitHub repository at https:// github. com/ Nikla sRz/ lastfm- data- downl oader.

Prediction parameters
We use the data to train a prediction model that is based on several social- and metadata-based parameters. For
the social parameters, we use two networks: the friendship network and the influencer network. The friendship
network of last.fm consists of nodes that represent users and links that represent bidirectional friendships. The
influencer network is a directed network where users are nodes, and a weighted link represents the strength of
a user’s influence over another. On these two networks, we define the following user metrics:

 (ix–xi) user influence with time windows of 6h, 12h and 24h. The influence score of each user is divided by the
number of songs where a user influenced another user thus giving us the number of influencing events
per song. This is equivalent to the out-degree of the user in the influencer network divided by the number
of songs.

 (xii) homophily as defined here by the average cosine similarity of the music preference vectors between a
user and their friends

 (xiii) the degree of each user, computed on the friendship network
 (xiv) the PageRank of each user (node), computed on the friendship network
 (xv) the nearest neighbor degree of each user, computed on the friendship network
 (xvi) the clustering coefficient of each user, computed on the friendship network
 (xvii) the degree of each user, computed on the influencer network
 (xviii) the PageRank of each user, computed on the influencer network
 (xix) the nearest neighbor degree of each user, computed on the influencer network
 (xx) the clustering coefficient of each user, computed on the influencer network

Each of these user metrics is computed for the users that contribute the first 200 listenings to a song and averaged
per song. The average is then the value of the predictive parameter for that song.

Figure 4. last.fm timeline and data availability. The company was founded in 2002 in the UK. User data is
available on the API starting from February 2005. In 2014 there was a major change to the system—users were
not able anymore to listen to music directly on last.fm but rather could connect their last.fm account to other
streaming services such as Spotify.

https://github.com/NiklasRz/lastfm-data-downloader

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

The performance of these parameters is compared to the performance of commonly used parameters that
form our baseline. Specifically, we test the following parameters:

 (i) previous popularity of the artist. For this, we take a snapshot in time when the new song is released and
calculate the average number of listenings that songs of the same artist have received in the past.

 (ii) the average number of listenings, that songs of the same genre receive in our dataset. We define the genre
of a song, as the value of the the user-defined artist-tag with the largest weight (100).

 (iii) the time, �tj , it takes a song, j, to reach the first 200 listenings in last.fm, given by

 where tj,i is the timestamp in seconds when song, j, was listened to for the ith time.
 (iv) the average time that passes between two listenings of the same user, measured in seconds. Again, we

only look at the first 200 listenings here. Whenever the same user listens more than once to the song
withing those first 200 listenings, we compute the time that has passed in between. We then average these
timespans per song.

 (v) the number of users among the first 200 listenings that listen to the song again within a timespan of at
most one week. This is similar to (iv), but instead of looking at the time that passes in between, we simply
count how many users listen to the song more than once.

 (vi) the area, Aj , under the curve if the cumulative listenings of a song, j, up to a number of 200 are plotted
vs time. This is given by

 where tj,i is the timestamp in seconds when song, j, was listened to for the ith time and lj(t) is the total
number of times song, j, has been listened to at time, t.

 (vii) the same area as in (vi), but divided by the length of the x-axis (total time passed between the first and
the 200th listening). This is given by

 where tj,i is the timestamp in seconds when song, j, was listened to for the ith time and lj(t) is the total
number of times song, j, has been listened to at time, t.

 (viii) the same area as in (vi), but subtracted from the area under the diagonal. This is given by

where tj,i is the timestamp in seconds when song, j, was listened to for the ith time and lj(t) is the total number
of times song, j, has been listened to at time, t.

Table 4 shows the correlation coefficients for the parameters listed above and the popularity of songs.

Prediction model
These parameters are used in our machine-learning ensemble for song popularity predictions. The ensemble
includes classifiers based on Support Vector Classification, Random Forest, Ada Boost, Gradient Boost,
K-Neighbors, and a neural network. The different classifiers hold a majority vote on the classification of each
song. Each song is classified as either a future hit-song or an average song, where hit-songs are defined as songs
in the top 1% of songs, which coincidentally equates to being listened to approximately at least 1000 times in
the best month in our dataset. Given the challenge of defining a precise “hit song” and comparing absolute
popularity metrics across different systems, we chose this classification approach over regression. By basing our
classification on songs included in the last.fm chart of top-performing songs that we defined, we emphasize the
intuitive and comparative nature of the model results. In the following, we give a brief overview of the machine
learning models used, the specific implementation, and their hyperparameter settings.

Support vector classification is a supervised learning model that tries to map training data into a higher
dimensional space with the aim of maximizing the gap between points of different classes in that space43. In
this study, we use the Python sklearn implementation44 with balanced class weights and a value of C = 1 for the
regularization hyperparameter.

Random Forest classification is a supervised learning model that builds multiple randomized decision trees
based on the training set45. The classification outcome is then the majority vote of the individual trees. In this
study, we use the Python sklearn implementation46 with 100 estimators and balanced class weights.

Ada Boost, short for adaptive boosting, is a classifier that iteratively learns from the mistakes of weak
classifiers, turning them into strong classifiers47. In this study, we use the Python sklearn implementation48 with
100 estimators and a decision tree classifier.

Gradient Boost classifier is a classifier that works as an ensemble of weak classifiers, typically decision trees.
These weak classifiers are gradually added during the learning process while aiming for maximum correlation
with the negative gradient of the loss function49. In this study, we use the Python sklearn implementation50
with 100 estimators, a learning rate of 1, and a maximum depth of 1. In addition to this, we added a histogram

(3)�tj = tj,200 − tj,1

(4)Aj =

∫ tj,200

t=tj,1

lj(t)dt

(5)A′′
j =

∫ tj,200
t=tj,1 lj(t)dt

tj,200 − tj,1

(6)A′
j =

(tj,200 − tj,1)(lj(t = tj,200)− lj(t = tj,1))

2
−

∫ tj,200

t=tj,1

lj(t)dt

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

gradient boost classifier, which uses binned input variables. We use the Python sklearn implementation51 with
a maximum of 100 iterations, a learning rate of 0.1 and a maximum depth of 3.

K-nearest neighbor classification is based on a multidimensional feature space that is populated by the feature
vectors of the training set and their labels52. During classification, one looks at the nearest k neighbors of an
element and attaches the label to it that is most common among its neighbors. In this study, we use the Python
sklearn implementation53 with the number of nearest neighbors k equal to 5.

A multilayer perceptron is a fully connected, feed-forward artificial neural network that consists of at least
three layers: an input, a hidden layer, and an output layer54. All nodes in each layer are connected to all other
nodes of the following layer. It uses non-linear activation functions and learns through back-propagation. In this
study, we use the Python sklearn implementation55 with 2 layers, 100 neurons per hidden layer, RELU activation
function, ADAM solver, and a maximum number of iterations of 1000.

These machine learning models are each trained on (the same) 60% of the data and then used to classify the
other 40%. The data is classified according to the majority vote of the different models.

Data availability
The data that support the findings of this study are available from last.fm but restrictions apply to the availability
of these data, which were used under license for the current study, and so are not publicly available. Data are
however available from the authors upon reasonable request and with permission of last.fm. Last.fm offers limited
public access to their data via their public API https:// www. last. fm/ api. The authors have created an open-source
software tool to download the data used in this study through the public API, which is available at https:// github.
com/ Nikla sRz/ lastfm- data- downl oader.

Received: 9 February 2023; Accepted: 5 April 2024

References
 1. Ingham, T. Over 60,000 tracks are now uploaded to Spotify every day. That’s nearly one per second. https:// www. music busin esswo

rldwi de. com/ over- 60000- tracks- are- now- uploa ded- to- Spoti fy- daily- thats- nearly- one- per- second/. Accessed 25 Aug 2022 (2021).
 2. Houghton, B. 60,000 tracks are uploaded to Spotify every day. https:// www. hypeb ot. com/ hypeb ot/ 2021/ 02/ 60000- tracks- are- uploa

ded- to- Spoti fy- every- day. html. Accessed 25 Aug 2022 (2021).
 3. Hu, H.-B. & Han, D.-Y. Empirical analysis of individual popularity and activity on an online music service system. Phys. A Stat.

Mech. Appl. 387, 5916–5921. https:// doi. org/ 10. 1016/j. physa. 2008. 06. 018 (2008).
 4. Rosen, S. The economics of superstars. Am. Econ. Rev. 71, 845–858 (1981).
 5. Pham, J., Kyauk, E. & Park, E. Predicting song popularity. In Technical Report. Vol. 26. Department Computer Science, Stanford

University (2016).
 6. Dhanaraj, R. & Logan, B. Automatic prediction of hit songs. In Proceedings of the International Conference on Music Information

Retrieval (ISMIR). 488–491 (2005).
 7. Pachet, F. & Roy, P. Hit song science is not yet a science. In ISMIR. 355–360 (2008).

Table 4. Pearson correlation coefficients between prediction parameters and song popularity. The prediction
parameters were computed on the first 200 listenings for each song. Song popularity was defined as the
maximum number of times a song was listened to last.fm in its best month. All p-values are below 10−50.

(i) Previous popularity of artist 0.135

(ii) Genre average 0.069

(iii) Time to reach 200 listenings −0.201

(iv) Time between repeated listenings −0.193

(v) Number of repeated listeners 0.039

(vi) Area under the trend curve −0.223

(vii) Area under the trend curve (normalized) −0.044

(viii) Area under the trend curve (subtracted from diagonal) −0.085

(ix) Influence 6 h 0.159

(x) Influence 12 h 0.169

(xi) Influence 24 h 0.174

(xii) Homophily 0.081

(xiii) Degree (friendship NW) 0.090

(xiv) Pagerank (friendship NW) −0.054

(xv) Nearest neighbor degree (friendship NW) −0.081

(xvi) Clustering coefficient (friendship NW) 0.069

(xvii) Degree (influencer NW) 0.132

(xviii) Pagerank (influencer NW) 0.110

(xix) Nearest neighbor degree (influencer NW) 0.090

(xx) Clustering (influencer NW) 0.062

https://www.last.fm/api
https://github.com/NiklasRz/lastfm-data-downloader
https://github.com/NiklasRz/lastfm-data-downloader
https://www.musicbusinessworldwide.com/over-60000-tracks-are-now-uploaded-to-spotify-daily-thats-nearly-one-per-second/
https://www.musicbusinessworldwide.com/over-60000-tracks-are-now-uploaded-to-spotify-daily-thats-nearly-one-per-second/
https://www.hypebot.com/hypebot/2021/02/60000-tracks-are-uploaded-to-spotify-every-day.html
https://www.hypebot.com/hypebot/2021/02/60000-tracks-are-uploaded-to-spotify-every-day.html
https://doi.org/10.1016/j.physa.2008.06.018

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

 8. Ni, Y., Santos-Rodriguez, R., Mcvicar, M. & De Bie, T. Hit song science once again a science. In 4th International Workshop on
Machine Learning and Music (Citeseer, 2011).

 9. Interiano, M. et al. Musical trends and predictability of success in contemporary songs in and out of the top charts. R. Soc. Open
Sci. 5, 171274 https:// doi. org/ 10. 1098/ rsos. 171274. eprint https:// royal socie typub lishi ng. org/ doi/ pdf/ 10. 1098/ rsos. 171274 (2018).

 10. Lassche, A., Karsdorp, F. & Stronks, E. Repetition and popularity in early modern songs. In DH 2019: Proceedings of the 2019
Digital Humanities Conference (2019 Digital Humanities Conference, 2019).

 11. Yang, L.-C., Chou, S.-Y., Liu, J.-Y., Yang, Y.-H. & Chen, Y.-A. Revisiting the problem of audio-based hit song prediction using
convolutional neural networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 621–625
https:// doi. org/ 10. 1109/ ICASSP. 2017. 79522 30 (2017).

 12. Middlebrook, K. & Sheik, K. Song hit prediction: Predicting billboard hits using Spotify data. CoRR eprintarXiv: 1908. 08609 (2019).
 13. Martin-Gutierrez, D., Penaloza, G. H., Belmonte-Hernandez, A. & Garcia, F. A. A multimodal end-to-end deep learning

architecture for music popularity prediction. IEEE Access 8, 39361–39374. https:// doi. org/ 10. 1109/ access. 2020. 29760 33 (2020).
 14. Askin, N. & Mauskapf, M. What makes popular culture popular? Product features and optimal differentiation in music. Am. Sociol.

Rev. 82, 910–944. https:// doi. org/ 10. 1177/ 00031 22417 728662 (2017).
 15. Shin, S. & Park, J. On-chart success dynamics of popular songs. Adv. Complex Syst. 21, 1850008. https:// doi. org/ 10. 1142/ S0219

52591 85000 8X (2018).
 16. Im, H., Song, H. & Jung, J. A survival analysis of songs on digital music platform. Telem. Inform. 35, 1675–1686. https:// doi. org/

10. 1016/j. tele. 2018. 04. 013 (2018).
 17. Kim, S. T. & Oh, J. H. Music intelligence: Granular data and prediction of top ten hit songs. Decis. Supp. Syst. 145, 113535. https://

doi. org/ 10. 1016/j. dss. 2021. 113535 (2021).
 18. Yu, H., Li, Y., Zhang, S. & Liang, C. Popularity prediction for artists based on user songs dataset. In Proceedings of the 2019 5th

International Conference on Computing and Artificial Intelligence, ICCAI ’19. 17–24. https:// doi. org/ 10. 1145/ 33304 82. 33304 93
(Association for Computing Machinery, 2019).

 19. Kim, Y., Suh, B. & Lee, K. #nowplaying the future billboard: Mining music listening behaviors of Twitter users for hit song
prediction. In Proceedings of the First International Workshop on Social Media Retrieval and Analysis, SoMeRA ’14. 51–56. https://
doi. org/ 10. 1145/ 26321 88. 26322 06 (Association for Computing Machinery, 2014).

 20. Tsiara, E. & Tjortjis, C. Using Twitter to predict chart position for songs. In Artificial Intelligence Applications and Innovations
(Maglogiannis, I., Iliadis, L. & Pimenidis, E. eds.). 62–72 (Springer, 2020).

 21. Rosati, D. P., Woolhouse, M. H., Bolker, B. M. & Earn, D. J. D. Modelling song popularity as a contagious process. Proc. R. Soc. A
Math. Phys. Eng. Sci. 477, 20210457. https:// doi. org/ 10. 1098/ rspa. 2021. 0457 (2021).

 22. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379. https://
doi. org/ 10. 1056/ nejms a0660 82 (2007).

 23. Smirnov, I. & Thurner, S. Formation of homophily in academic performance: Students change their friends rather than performance.
PLOS ONE 12, e0183473. https:// doi. org/ 10. 1371/ journ al. pone. 01834 73 (2017).

 24. Miller McPherson, L.S.-L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).
 25. Franken, A., Keijsers, L., Dijkstra, J. K. & ter Bogt, T. Music preferences, friendship, and externalizing behavior in early adolescence:

A SIENA examination of the music marker theory using the SNARE study. J. Youth Adolesc. 46, 1839–1850. https:// doi. org/ 10.
1007/ s10964- 017- 0633-4 (2017).

 26. Mechant, P. & Evens, T. Interaction in web-based communities: A case study of last.fm. Int. J. Web Based Commun. 7, 234–249
https:// doi. org/ 10. 1504/ IJWBC. 2011. 039513. eprint https:// www. inder scien ceonl ine. com/ doi/ pdf/ 10. 1504/ IJWBC. 2011. 039513
(2011).

 27. Bischoff, K. We love rock ’n’ roll: Analyzing and predicting friendship links in last.fm. In Proceedings of the 4th Annual ACM Web
Science Conference, WebSci ’12. 47–56. https:// doi. org/ 10. 1145/ 23807 18. 23807 25 (Association for Computing Machinery, 2012).

 28. Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).
 29. Sadilek, M., Klimek, P. & Thurner, S. Asocial balance—How your friends determine your enemies: understanding the co-evolution

of friendship and enmity interactions in a virtual world. J. Comput. Soc. Sci. 1, 227–239. https:// doi. org/ 10. 1007/ s42001- 017- 0010-9
(2017).

 30. Guidotti, R. & Rossetti, G. “Know thyself ” how personal music tastes shape the last.fm online social network. In Formal Methods.
FM 2019 International Workshops (Sekerinski, E. et al. eds.) 146–161 (Springer, 2020).

 31. Duricic, T., Kowald, D., Schedl, M. & Lex, E. My friends also prefer diverse music: Homophily and link prediction with user
preferences for mainstream, novelty, and diversity in music. In Proceedings of the 2021 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, ASONAM ’21. 447–454. https:// doi. org/ 10. 1145/ 34873 51. 34927 06 (Association
for Computing Machinery, 2022).

 32. Di Bona, G. et al. Social Interactions Affect Discovery Processes. https:// doi. org/ 10. 48550/ ARXIV. 2202. 05099 (2022).
 33. Pálovics, R. & Benczúr, A. A. Temporal influence over the last.fm social network. Soc. Netw. Anal. Min.https:// doi. org/ 10. 1007/

s13278- 014- 0244-y (2015).
 34. Pálovics, R. & Benczúr, A. A. Temporal influence over the last.fm social network. In Proceedings of the 2013 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining, ASONAM ’13. 486–493 https:// doi. org/ 10. 1145/ 24925 17. 24925
32 (Association for Computing Machinery, 2013).

 35. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences (Cambridge
University Press, 1994).

 36. Zhou, Z., Xu, K. & Zhao, J. Homophily of music listening in online social networks of China. Soc. Netw. 55, 160–169. https:// doi.
org/ 10. 1016/j. socnet. 2018. 07. 001 (2018).

 37. Bisgin, H., Agarwal, N. & Xu, X. A study of homophily on social media. World Wide Web 15, 213–232. https:// doi. org/ 10. 1007/
s11280- 011- 0143-3 (2011).

 38. Salganik, M. J., Dodds, P. S. & Watts, D. J. Experimental study of inequality and unpredictability in an artificial cultural market.
Science 311, 854–856. https:// doi. org/ 10. 1126/ scien ce. 11210 66 (2006).

 39. Salganik, M. J. & Watts, D. J. Leading the herd astray: An experimental study of self-fulfilling prophecies in an artificial cultural
market. Soc. Psychol. Q. 71, 338–355. https:// doi. org/ 10. 1177/ 01902 72508 07100 404 (2008).

 40. Lynn, F. B., Walker, M. H. & Peterson, C. Is popular more likeable? Choice status by intrinsic appeal in an experimental music
market. Soc. Psychol. Q. 79, 168–180. https:// doi. org/ 10. 1177/ 01902 72516 645603 (2016).

 41. Monechi, B., Gravino, P., Servedio, V. D. P., Tria, F. & Loreto, V. Significance and popularity in music production. R. Soc. Open Sci.
4, 170433. https:// doi. org/ 10. 1098/ rsos. 170433 (2017).

 42. van Kemenade, H. Pylast. https:// github. com/ pylast/ pylast (2024). Accessed 13 Jan 2024.
 43. Hsu, C.-W., Chang, C.-C. & Lin, C.-J. A practical guide to support vector classification. J. Mach. Learn. Res. 101(1), 1396–1400

(2003).
 44. scikit-learn developers. Svc in Python Sklearn. https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. svm. SVC. html. Accessed

22 Nov 2022 (2022).
 45. Biau, G. & Scornet, E. A random forest guided tour. TEST 25, 197–227. https:// doi. org/ 10. 1007/ s11749- 016- 0481-7 (2016).
 46. scikit-learn developers. Random Forest in Python Sklearn. https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. ensem ble.

Rando mFore stCla ssifi er. html. Accessed 22 Nov 2022 (2022).

https://doi.org/10.1098/rsos.171274
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.171274
https://doi.org/10.1109/ICASSP.2017.7952230
http://arxiv.org/abs/1908.08609
https://doi.org/10.1109/access.2020.2976033
https://doi.org/10.1177/0003122417728662
https://doi.org/10.1142/S021952591850008X
https://doi.org/10.1142/S021952591850008X
https://doi.org/10.1016/j.tele.2018.04.013
https://doi.org/10.1016/j.tele.2018.04.013
https://doi.org/10.1016/j.dss.2021.113535
https://doi.org/10.1016/j.dss.2021.113535
https://doi.org/10.1145/3330482.3330493
https://doi.org/10.1145/2632188.2632206
https://doi.org/10.1145/2632188.2632206
https://doi.org/10.1098/rspa.2021.0457
https://doi.org/10.1056/nejmsa066082
https://doi.org/10.1056/nejmsa066082
https://doi.org/10.1371/journal.pone.0183473
https://doi.org/10.1007/s10964-017-0633-4
https://doi.org/10.1007/s10964-017-0633-4
https://doi.org/10.1504/IJWBC.2011.039513
https://www.inderscienceonline.com/doi/pdf/10.1504/IJWBC.2011.039513
https://doi.org/10.1145/2380718.2380725
https://doi.org/10.1007/s42001-017-0010-9
https://doi.org/10.1145/3487351.3492706
https://doi.org/10.48550/ARXIV.2202.05099
https://doi.org/10.1007/s13278-014-0244-y
https://doi.org/10.1007/s13278-014-0244-y
https://doi.org/10.1145/2492517.2492532
https://doi.org/10.1145/2492517.2492532
https://doi.org/10.1016/j.socnet.2018.07.001
https://doi.org/10.1016/j.socnet.2018.07.001
https://doi.org/10.1007/s11280-011-0143-3
https://doi.org/10.1007/s11280-011-0143-3
https://doi.org/10.1126/science.1121066
https://doi.org/10.1177/019027250807100404
https://doi.org/10.1177/0190272516645603
https://doi.org/10.1098/rsos.170433
https://github.com/pylast/pylast
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://doi.org/10.1007/s11749-016-0481-7
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:8929 | https://doi.org/10.1038/s41598-024-58969-w

www.nature.com/scientificreports/

 47. Schapire, R. E. Explaining AdaBoost. In Empirical Inference. 37–52. https:// doi. org/ 10. 1007/ 978-3- 642- 41136-6_5 (Springer, 2013).
 48. scikit-learn developers. Ada Boost in Python Sklearn. https:// scikit- learn. org/ stable/ modul es/ ensem ble. html# adabo ost. Accessed

22 Nov 2022 (2022).
 49. Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013).
 50. scikit-learn developers. Gradient Tree Boosting in Python Sklearn. https:// scikit- learn. org/ stable/ modul es/ ensem ble. html# gradi

ent- tree- boost ing. Accessed 22 Nov 2022 (2022).
 51. scikit-learn developers. Histogram Gradient Tree Boosting in Python Sklearn. https:// scikit- learn. org/ stable/ modul es/ ensem ble.

html# histo gram- based- gradi ent- boost ing. Accessed 16 Sep 2023 (2023).
 52. Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27. https:// doi. org/ 10. 1109/ TIT. 1967.

10539 64 (1967).
 53. scikit-learn developers. K Neighbors Classifier in Python Sklearn. https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. neigh

bors. KNeig hbors Class ifier. html. Accessed 22 Nov 2022 (2022).
 54. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).
 55. scikit-learn developers. Multi-Layer Perceptron Classifier. https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. neural_ netwo

rk. MLPCl assifi er. html. Accessed 22 Nov 2022 (2022).

Author contributions
NR, ST, VDPS conceptualized the work and designed the model. NR collected and prepared the data and
performed the analysis. NR and ST wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 024- 58969-w.

Correspondence and requests for materials should be addressed to S.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1007/978-3-642-41136-6_5
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://doi.org/10.1038/s41598-024-58969-w
https://doi.org/10.1038/s41598-024-58969-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantifying the impact of homophily and influencer networks on song popularity prediction
	Homophily
	Influencer network
	Prediction strategy
	Results
	Influencer network
	Homophily results
	Improving predictions

	Discussion
	Methods
	Data
	Data collection
	Data pre-processing
	Prediction parameters
	Prediction model

	References

