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Content‑illumination coupling 
guided low‑light image 
enhancement network
Ruini Zhao 1, Meilin Xie 1,4, Xubin Feng 1*, Xiuqin Su 1,4, Huiming Zhang 2 & Wei Yang 3

Current low‑light enhancement algorithms fail to suppress noise when enhancing brightness, and 
may introduces structural distortion and color distortion caused by halos or artifacts. This paper 
proposes a content‑illumination coupling guided low‑light image enhancement network (CICGNet), 
it develops a truss topology based on Retinex as backbone to decompose low‑light image component 
in an end‑to‑end way. The preservation of content features and the enhancement of illumination 
features are carried out along with depth and width direction of the truss topology. Each submodule 
uses the same resolution input and output to avoid the introduction of noise. Illumination component 
prevents misestimation of global and local illumination by using pre‑ and post‑activation features at 
different depth levels, this way could avoid possible halos and artifacts. The network progressively 
enhances the illumination component and maintains the content component stage‑by‑stage. The 
proposed algorithm demonstrates better performance compared with advanced attention‑based low‑
light enhancement algorithms and state‑of‑the‑art image restoration algorithms. We also perform 
extensive ablation studies and demonstrate the impact of low‑light enhancement algorithm on the 
downstream task of computer vision. Code is available at: https:// github. com/ Ruini 94/ CICGN et.
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The low-light enhancement algorithm has very broad application prospects in fields such as intelligent driving 
and intelligent security. For the environmental perception technology involved, most of them are based on 
sufficient illumination. Most perception algorithms are not suitable for the case of insufficient illumination. To 
improve the safety of intelligent driving and the accuracy of intelligent security, the basic goal is to restore the 
degraded scene to be recognized.

Most of the early methods are based on histogram equalization to enhance the brightness and contrast of 
low-light  images1,2. Histogram equalization will cause grayscale overlap, loss of local details, obvious block 
effects when merging gray levels. This type of methods is a global enhancement method, which cannot effec-
tively improve local contrast, and shows poor enhancement effect on images with uneven illumination. The 
local equalization performed on different spatial  regions3 usually has a greater impact on the average brightness. 
Subsequently, Retinex theory was proposed to decompose the reflectance component and illumination compo-
nent of images, and subsequent low-light enhancement algorithms improve the classic histogram equalization 
and Retinex-based methods in many ways. Due to the uncertainty of the initial position, end position and path 
selection, the path-based Retinex  algorithms4 are easy to introduce unnecessary noise. They also show higher 
computational complexity, they are difficult to prevent color distortion. The center/surround-based Retinex 
 algorithms5 need to set multiple uncertainty parameters, resulting in uncertainty in the contrast, chroma, sharp-
ness of the enhanced image. The original Retinex-based algorithms and the subsequent improved algorithms 
involving color distortion need to obtain the illumination map. Most of the priors used to estimate the illumina-
tion map are artificially set, these methods show poor generalization. Most Retinex-based learning  methods6 
use a two-stage strategy to achieve low-light enhancement, Retinex is generally used for pre-processing in the 
first-stage. Learning-based low-light enhancement algorithms fail to suppress noise, and cannot eliminate noise 
or even enhance noise when enhancing illumination. Meanwhile, the current algorithms cannot estimate global 
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and local illumination simultaneously, inaccurate illumination estimation will cause halos and artifacts, which 
will cause color or structural distortion.

The main contributions of proposed network are as follows:

• Inspired by the use of pre-activation features as optimization item in super-resolution tasks, it is expected 
to provide stronger supervision for the network, our proposed network develops a cascaded multi-residual 
architecture (CMRA) using pre- and post-activation features at different depth levels, it improves the reus-
ability of features.

• Proposed network uses a truss topology as backbone, it is shown as Fig. 1, which is integrated into Retinex 
in an end-to-end way. Proposed network performs multiple decompositions of content-illumination feature 
and reconstruction of enhanced features along with depth and width directions of truss topology.

• This paper explores the effects of low-light enhancement algorithms on semantic segmentation performance 
under different data distributions and data amounts, that’s, low-level image reconstruction tasks serve high-
level visual perception tasks under different application conditions.

Related work
Traditional retinex‑based methods
Yue et al.7 combine both reflectance and illumination layers to perform image decomposition, they regularize 
the illumination layer so that the decomposed reflectance would not be affected much by illumination. Fu et al.8 
propose a weighted variational model to estimate both the reflectance and the illumination, the model could 
preserve the estimated reflectance with more details. Zhang et al.9 consider exposure correction problems as 
an illumination estimation optimization, they also leverage perceptually bidirectional similarity to generate the 
desired result with even exposure, vivid color and clear textures. Cai et al.10 propose a joint intrinsic-extrinsic 
prior model to estimate both illumination and reflectance, the model could preserve the structure information by 
shape prior, estimate reflectance with texture prior and capture illumination information based on illumination 
prior. Gao et al.11 propose a naturalness preserved illumination estimation algorithm by a joint edge-preserving 
filter. The proposed algorithm could comprehensively take all the constraints into consideration, including spatial 
smoothness, sharp edges on illumination boundaries. Li et al.12 propose a robust Retinex model considering a 
noise map to improve the performance of enhancing low-light images with intensive noise.

Retinex‑based learning methods
Zhang et al.13 decompose images into two components, one component is used for illumination adjustment, the 
other is used for degradation removal. Zhao et al.14 propose a generative strategy for Retinex decomposition, 
they also propose a network to estimate latent component for low-light enhancement, proposed method could 
reduce the coupling relationship between illumination and reflectance component. Liu et al.15 construct a model 
to represent the intrinsic underexposed structure of low-light images, they also design a cooperative reference-
free learning strategy to search low-light prior architecture from a compact search space. Lu et al.16 propose a 
two-branch exposure-fusion network to deal with blind low-light enhancement, they leverage an enhancement 
strategy to estimate the transfer function for varied illumination levels. They also introduce a generation-and-
fusion strategy to enhance slightly and heavily distorted images. Zhu et al.17 propose a three-branch network to 
deal with illumination, reflectance and noise based on Retinex respectively, they also design a zero-shot scheme 
to iteratively minimize loss function. Hui et al.18 propose a decomposition network to decompose the image into 
reflectance and illumination maps, they enhance two maps separately. They also propose an adaptive residual 
feature block to leverage the feature correlation between low-light and normal-light images. Hui et al.19 leverage 
a detail component prediction model to obtain detail enhancement component, they propose a decomposition 
network to decompose V-channel into reflectance map and illumination map, the enhancement component is 
used to enhance the reflectance map.

Other learning methods
Jin et al.20 propose an event-guided low light enhancement network, the generator contains image enhancement 
branch for enhancing low-light image and a gradient reconstruction branch for learning gradient from events. 
Cai et al.21 propose a network with a higher compression rate and better enhancement performance for low-
light images, the network is a two-branch architecture with lower computational cost, one is main enhancement 
branch, the other is signal-to-noise aware branch.  MBPNet22 consists of four different branches which map the 
relationship at different scales, the network leverages a progressive enhancement strategy, it also embeds long 

Figure 1.  Schematic diagram of truss topology.
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short-term memory networks in four branches for iteratively performing the enhancement process. Han et al.23 
propose a dual-branch fusion low-light image enhancement, the upper branch is a refinement branch focusing 
on noise suppression, and the lower branch is a U-Net-like global reconstruction branch for high-quality image 
generation. Lv et al.24 propose a low-light enhancement network with four branches, in which Attention-Net is 
used to estimate the illumination to guide the method to pay more attention to the underexposed areas, Noise-
Net is used to guide the denoising process, Enhancement-Net can simultaneously enhance and denoise, the 
Reinforce-Net is used for contrast re-enhancement. Lu et al.25 propose a multi-branch topology residual block-
based network, the network increases the width of the network and enhances information delivery along with 
the depth and width directions.

Current low-light enhancement algorithms fail to suppress noise when enhancing brightness, and may 
also introduces structural distortion and color distortion caused by halos or artifacts. Our proposed low-light 
enhancement network is expected to enhance the illumination component and maintain the content illumination 
by stage-by-stage learning. Each submodule uses the same resolution input and output to avoid the introduction 
of noise. The illumination component in the initial stage focuses on global illumination features, subsequent 
stages pay more attention to local features to prevent color distortion caused by the halo and inaccurate illumina-
tion estimation. We use a multi-space pyramid content learning module to adaptively adjust the content features 
based on stage-by-stage illumination components to prevent structural distortion.

Methodology
We propose a content-illumination coupling guided low-light image enhancement network (CICGNet), it is 
shown as Fig. 2, CICGNet develops a truss topology as backbone and integrates Retinex in an end-to-end 
way. The proposed network decomposes low-light samples and reconstructs normal light samples based on 
Retinex. Retinex decomposes the any input sample into illumination component and reflectance component. 
The reflectance component is the color of the object itself and has nothing to do with the intensity or illumi-
nation. We regard the reflectance component as the content component of the sample. CICGNet regards the 
low-light enhancement task as the enhancement of illumination component and the maintenance of the content 
component.

The initial features of the low-light samples are decomposed along with deep and width directions of truss 
topology. The feature decomposition and reconstruction of the network are iterated for many times based on the 
truss topology. All extracted features of the previous stage are integrated into the subsequent stage. Meanwhile, 

Figure 2.  Overall architecture of CICGNet.
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the multi-residual illumination learning module is used to enhance the reusability of pre- and post-activation 
features, multi-space pyramid content learning module is used to enhance the reusability of pre- and post-
activation features and multi-level features at different depth levels.

After the shallow features of low-light images are extracted and activated, they are sent to the multi-residual 
illumination learning module and multi-space pyramid content learning module along with truss rod, respec-
tively. The shallow features are extracted using 3 × 3 convolution kernel, stride is 1, padding is 1, the output 
channel is 32, ReLU is used for nonlinear activation. Above two modules will be introduced in detail below.

Cascaded multi‑residual illumination learning module
Layers at different depth can extract feature under different receptive fields, extracted feature show different roles 
in different tasks. As the depth of the network increases, gradient is prone to disappear when passing through 
multiple layers of backpropagation. Meanwhile, the increase in model depth will cause network performance 
to decrease rather than increase. To solve this problem, deep residual  network26 establishes a direct mapping 
between low-level features and high-level features through skip connections. Classic residual architecture is 
shown as Fig. 3a, the input x0 is directly applied to the output Conv2(Conv1(x0)) through skip connection. It ena-
bles deep layers to take advantages of extracted features from shallow layer, makes the information transmission 
more complete and increases the reusability of information. It can be used to improve gradient disappearance 
and significantly improve network performance. Ignoring the activation function, residual blocks are shown in 
Eq. (1). The two convolution operations in residual blocks are shown in Eq. (2).

Multiple residual blocks are used for cascaded feature extraction, as shown in Fig. 3b, this section improves 
the cascaded residual blocks on this basis. As shown in Eq. (3) and (4), the original residual network directly 
maps the input x0 in the output of a residual block ResBlock1 . As shown in Eq. (7), the input to the nth residual 
block ResBlockn is xn−1 . Similarly, as shown in Eq. (8), the output of the previous residual block xn−1 is mapped 
to xn−0 before nonlinear fitting is performed.

As the depth of the network increases, there are more combinations of features at different levels. To further 
improve the feature expression ability of residual architecture, this section improves on the classic cascaded 
residual architecture and proposes CMRA. Inspired by the use of pre-activation features as a loss function in 
super-resolution task to optimize the network. This loss function takes into account that the activated features 
are very sparse as the depth of the network increases. For the classic baboon image in super-resolution task, 
the activated neurons only account for 11.17% with VGG19-5427. Considering that the sparse features are not 

(1)x1 = Conv1(x0)+ x0,

(2)x1 = Conv2((Conv1(x0))+ x0,

(3)x1_0 = ResBlock1(x0),

(4)x1 = ReLU
(

x1_0 + x0
)

,

(5)x2_0 = ResBlock2(x1),

(6)x2 = ReLU
(

x2_0 + x1
)

,

(7)xn_0 = ResBlockn(xn−1),

(8)xn = ReLU
(

xn_0 + xn−1

)

,

Figure 3.  (a) Classic residual architecture. (b) classic cascaded residual architecture (CRA). (c) proposed 
CMRA.
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enough to provide strong supervision for the network. For the proposed multi-residual architecture, in addition 
to using the post-activation features of the previous residual module, combined with the pre-activation features 
of the previous residual module, a multi-residual mapping module is formed. As shown in Fig. 3c, taking the nth 
multi-residual architecture (MRA) as an example, in addition to integrating the input xn_0 of the current stage 
and the activated output xn−1 of previous stage, the MRA needs to combine the input xn−2 before activation of 
the previous stage, as shown in Eq. (10). Instead of using a full residual connection that would cause the model 
to be too large, the proposed cascaded multi-residual architecture can reduce the computational complexity 
of the model, and obtain multiple sets of pre-activation and post-activation features at different depth levels.

As shown in Fig. 2, the red dashed box is a multi-residual illumination learning module, which is used to 
extract the illumination component. The input and output channels of the blue convolutional block in this 
module are both 32, the kernel size is 3 × 3, stride is 1, padding is 1. For the specific parameters in the scaling 
Squeeze-Excitation (SE) module, as shown in Fig. 4, the spatial features are compressed using adaptive averag-
ing pooling, the channel scaling factor R is 4, and the channel features are fitted nonlinearly using the ReLU. For 
the nonlinear fitting at the end of each residual module, we use LeakyReLU to preserve the neuronal activation 
values of the positive and negative regions. The Sigmoid is used to map the output of the module into probability 
to weight the initial features.

Multi‑space pyramid content learning module
Aiming at the maintenance of content features, as shown in Fig. 5, we propose a multi-space pyramid content 
learning module. Inspired by the good performance of pyramid architecture on various computer vision tasks, to 
capture different content details, we use pyramid structure to obtain the features of the same instance at different 
resolutions. Specifically, we use maximum pooling to obtain features of 1/2, 1/4 and 1/8 resolution, respectively. 
The CMRA proposed in the illumination learning module is used to enhance features of different scales, that 
is, the architecture consistent with the illumination learning module is used for the four spaces of the feature 
pyramid. As shown in Fig. 5, the gray block with red dashed lines in content learning module uses the same 
architecture as the illumination learning module. While enhancing the reusability of pre- and post-activation 
features at different depth levels, it is also used to enhance the reusability of multi-space features. The construc-
tion and enhancement of multi-space features are shown in Eqs. (11)–(16).

(9)x2 = ReLU
(

x2_0 + x1 + x0
)

,

(10)xn = ReLU
(

xn_0 + xn−1 + xn−2

)

.

(11)F0 = CMRA(F),

Figure 4.  Scaling SE module.

Figure 5.  Multi-space pyramid content learning module.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8456  | https://doi.org/10.1038/s41598-024-58965-0

www.nature.com/scientificreports/

where CMRA represents cascaded multi-residual architecture, MaxPool is maximum pooling, H and W repre-
sent height and width of initial features. After enhancing the features at the four spaces respectively, bilinear 
interpolation is used to restore the feature resolution. Then we use dense connections to splice features at four 
scales according to channel. For spliced features, multiple convolution kernels are used to extract the features 
under the extended channel. For the spliced multi-scale content features, as shown in Eq. (16), we use channel 
compression strategy to model the complementary or redundant relationship of the multiple channels, this way 
can obtain the output of final content learning module.

where Up represents bilinear interpolation, Concat indicates splicing by channel.

Feature decomposition and reconstruction
As shown in Fig. 6, the proposed CICGNet contains several times of feature decomposition and reconstruction 
along with truss topology. As mentioned above, the initial features of low-light images are sent into the illumina-
tion learning module and content learning module to enhance illumination feature and maintain content feature 
respectively. The red and black dashed boxes in Fig. 6 represent illumination learning module and content learn-
ing module. Each stage of feature decomposition and reconstruction will incorporate the features of previous 
stage to form an adaptive multi-feature fusion. The initial features, decomposition features of the first, second, 
third, fourth, fifth stages of the low-light image are represented by purple, gray, green, blue, red and orange lines 
respectively. In the five-time feature decomposition and reconstruction based on Retinex, the network always 
maintains the content feature component and gradually enhances the illumination feature components, it finally 
obtains an enhanced image that meets the visual effect.

Loss function
To realize low-light enhancement task, we consider structural distortion, content loss and uneven illumination 
condition, we combine structural loss ( Lstr ), content loss ( Lcon ) and illumination region loss ( Lreg ) to optimize 
the proposed CICGNet as shown in Eq. (17). We use structure similarity index measure (SSIM) and multi-scale 
SSIM (MS-SSIM) to constrain structural distortion, it is shown as Eq. (18). We leverage trained VGG19 on Ima-
geNet to extract content feature of enhanced image and ground truth, then we use L1 loss to constrain extracted 
feature to prevent content loss, it is shown as Eq. (19). We use the illumination region  loss28 to deal with uneven 
illumination, it is shown as Eq. (20)

where w and h represent width and height of input low-light image, GL

(

xij
)

 and GTL are low-light part of 
enhanced image and its corresponding ground truth, GH

(

xij
)

 and GTH are rest part of enhanced image and its 
corresponding ground truth.

Experiments and results
Datasets and experimental details
We choose three real low-light enhancement datasets  (LOL29,  LSRW30 and VE-LOL-L31) and two synthetic low-
light enhancement datasets  (BrighteningTrain32 and  CityscapesL33) to evaluate our proposed CICGNet. LOL is 
the first truly captured paired low-light enhancement dataset, collected by varying exposure time and ISO, and 

(12)F1/2 = CMRA(MaxPool(F, (H/2), (W/2))),

(13)F1/4 = CMRA(MaxPool(F, (H/4), (W/4))),

(14)F1/8 = CMRA(MaxPool(F, (H/8), (W/8))),

(15)F = Concat,

(16)out = Conv1×1(F),

(17)L = Lstr + Lcon + Lreg ,

(18)Lstr = 2− Lssim − Lms−ssim,

(19)Lcontent = �VGG(G
(

xij
)

)− VGG(GT))�
1
,

(20)Lregion = 4 · 1
w·h

∑w
i=1

∑h
j=1

(

�GL

(

xij
)

,GTL�1

)

+ 1
w·h

∑w
i=1

∑h
j=1

(

�GH

(

xij
)

,GTH�1

)

,

Figure 6.  Multi-stage feature decomposition and reconstruction architecture.
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image registration is applied to the captured images. The dataset contains 485 training pairs and 15 test pairs. 
LSRW is captured using Nikon D7500 and HUAWEI P40 Pro, again by varying exposure time and ISO to obtain 
pairs of images. The ISO for low light condition is 50 and ISO for normal light condition is fixed at 100. The 
dataset contains a total of 5600 training pairs and 50 testing pairs. VE-LOL-L is a subset of VE-LOL applied to 
low-level visual tasks. We use 400 pairs and 100 pairs as training samples and test samples in VE-LOL-L-Cap-
Full. BrighteningTrain performs low-light synthesis on the Raw images of RAISE, the synthesis process takes 
into account the degradation process of low-light images and combines the statistical characteristics of natural 
images. It contains 900 pairs and 100 pairs as training samples and test samples.

We compare our proposed CICGNet with six state-of-the-art low-light enhancement algorithms, including 
 HDRNet34, three attention-based methods  ALEN35,  SARN36 and  ABSGNet37, and two latest advanced low-level 
image translation methods,  MPRNet38 and  Restormer39. As mentioned above, all comparative experiments are 
performed on three real datasets and two synthetic datasets. For fair comparison, all methods are retrained on 
five datasets.

We perform all experiments on Tesla A100. We use AdamW as optimizer, the learning rate is adjusted using 
cosine annealing decay. The initial learning rate is 5 ×  10–4, the minimum learning rate decays to 5 ×  10–6, batch 
size is 4. For all experiments, the training samples are randomly cropped into 256 × 256 patches and horizontally 
flipped with a probability of 0.5. Due to Restormer’s high computational complexity, its training samples are 
randomly cropped into 200 × 200, it also does not use the progressive learning strategy.

Quantitative evaluation
In this section, we report quantitative evaluation results on five low-light enhancement datasets, including three 
real low-light enhancement datasets and two synthetic low-light enhancement datasets. We choose peak signal to 
noise ratio (PSNR), SSIM, learned perceptual image patch similarity (LPIPS)40, color difference metric  deltaE41 
and universal quality image index (UQI)42 as evaluation metrics. We give quantitative results on five low-light 
enhancement datasets from Tables 1, 2, 3, 4 and 5. All tables give average values for corresponding test datasets. 
The upward arrow represents that the higher the value, the better the network performance.

PSNR measures the quality of signal reconstruction through the mean square error. The larger the PSNR, the 
less distortion between two samples. SSIM is more in line with the intuitive feeling of the human eye, it mainly 
considers brightness, contrast and structure. The larger the SSIM, the higher the similarity between two sam-
ples. LPIPS serves as a perceptual model, it learns to generate a reverse mapping between sample and its ground 
truth. The lower the LPIPS, the more similar the two samples are. DeltaE is used to measure the color retention 
under image restoration tasks. The smaller the deltaE, the smaller the color difference. UQI mainly measures 
image differences based on correlation loss, contrast loss and brightness distortion. UQI is highly consistent with 
subjective quality indicators. The larger the UQI, the more similar the two images are.

On the premise of ensuring low-light enhancement performance, we give comparison of computational com-
plexity, CPU/GPU inference time and network performance in Table 6. We present a comparison of MPRNet, 

Table 1.  The quantitative evaluation of LOL (15 images). Bold represents the optimal value, italics indicates 
the sub-optimal value.

Methods\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

HDRNet 18.095 0.794 0.189 14.463 0.872

ALEN 17.514 0.791 0.344 14.972 0.856

SARN 20.573 0.864 0.073 11.803 0.900

ABSGNet 20.437 0.858 0.125 11.310 0.895

CICGNet 22.420 0.894 0.073 8.940 0.921

MPRNet 22.388 0.887 0.087 8.596 0.925

Restormer 22.920 0.884 0.076 8.747 0.922

Table 2.  The quantitative evaluation of LSRW (50 images). Bold represents the optimal value, italics indicates 
the sub-optimal value.

Methods\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

HDRNet 18.685 0.669 0.144 13.655 0.889

ALEN 19.603 0.720 0.215 12.753 0.896

SARN 18.960 0.685 0.122 13.419 0.896

ABSGNet 19.085 0.716 0.202 13.249 0.889

CICGNet 19.630 0.716 0.163 12.242 0.898

MPRNet 19.677 0.719 0.223 12.564 0.893

Restormer 19.739 0.718 0.180 12.506 0.893
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Restormer, and CICGNet, which perform better on five low-light enhancement datasets. The computational 
complexity and inference time are calculated on 256 × 256. The calculation of computational complexity uses 
ptflops package. The running environments of CPU and GPU inference time are Intel i7-8750H CPU with 
16 GB RAM and Tesla A100 respectively. As shown in Table 6, our proposed CICGNet not only achieves the 
optimal SSIM on these three datasets, but also shows obvious advantages in CPU and GPU inference time and 
computational complexity.

Table 3.  The quantitative evaluation of VE-LOL (100 images). Bold represents the optimal value, italics 
indicates the sub-optimal value.

Methods\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

HDRNet 18.466 0.827 0.196 16.311 0.886

ALEN 19.180 0.755 0.537 13.822 0.894

SARN 20.641 0.835 0.138 12.070 0.926

ABSGNet 19.190 0.818 0.280 14.920 0.895

CICGNet 21.778 0.903 0.070 11.067 0.934

MPRNet 20.438 0.872 0.134 13.177 0.918

Restormer 22.185 0.866 0.115 10.986 0.936

Table 4.  The quantitative evaluation of BrighteningTrain (100 images). Bold represents the optimal value, 
italics indicates the sub-optimal value.

Methods\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

HDRNet 20.402 0.882 0.121 11.810 0.896

ALEN 21.453 0.875 0.153 10.331 0.920

SARN 24.072 0.940 0.038 7.988 0.939

ABSGNet 22.989 0.929 0.052 9.198 0.929

CICGNet 25.530 0.956 0.027 7.080 0.951

MPRNet 24.468 0.943 0.040 7.953 0.939

Restormer 25.833 0.953 0.031 6.586 0.953

Table 5.  The quantitative evaluation of CityscapesL (500 images). Bold represents the optimal value, italics 
indicates the sub-optimal value.

Methods\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

HDRNet 21.118 0.822 0.274 14.829 0.896

ALEN 24.361 0.889 0.176 11.089 0.924

SARN 23.104 0.870 0.183 13.135 0.908

ABSGNet 24.729 0.896 0.168 10.712 0.927

CICGNet 25.383 0.901 0.162 9.816 0.936

MPRNet 25.495 0.889 0.165 9.606 0.928

Restormer 26.169 0.905 0.162 8.835 0.944

Table 6.  Comparison of computational complexity, inference time and SSIM. Bold indicates the optimal value.

Methods\index

SSIM↑

CPU inference time↓/second FLOPs↓/G GPU inference time↓/secondLOL VE-LOL BrighteningTrain

MPRNet 0.887 0.872 0.943 2.692 148.55 0.034

Restormer 0.884 0.866 0.953 8.776 140.99 0.252

CICGNet 0.894 0.903 0.956 1.622 32.65 0.032
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Qualitative evaluation
In this section, we show the visual enhancement effects of five test sample from Figs. 7, 8, 9, 10 and 11. As shown 
in Fig. 12, we also present the enhancement effect of using our proposed CICGNet on real night scenes in the 
BDD10K dataset.

As shown in Fig. 13, we give two sets of attention visualization results of real low-light samples in BDD10K, 
blue and red represent smaller and larger attention, respectively. We regard illumination component as attention 
along the width and depth of our proposed truss topology architecture. From stage1 to stage5, the early stage 
pays more attention to the global illumination map, the subsequent stages gradually tend to focus on the local 
illumination distribution.

Ablation study
We perform two sets of ablation study, firstly, we compare the performance of our proposed cascaded multi-resid-
ual architecture with two other residual connection ways in Table 7. These two compared residual architectures 
are shown in Fig. 14a and b, our proposed cascaded multi-residual architecture using pre- and post-activation 

Figure 7.  Visual results of low-light enhancement on LOL.

Figure 8.  Visual results of low-light enhancement on LSRW.
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features is shown in Fig. 14c. Secondly, we adjust the number of the feature decomposition and reconstruction. 
We perform the set of ablation study on CityscapesL, Table 8 shows the five indexes of image restoration quality, 
model size and inference time. We also present the effect of different scaling factors on model performance on 
the LOL in Table9. The scaling factors in the comparison experiments are 1, 4 (CICGNet), 8, and 16 respectively.

Figure 9.  Visual results of low-light enhancement on VELOL.

Figure 10.  Visual results of low-light enhancement on BrighteningTrain.
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Generalization
To evaluate the generalization of proposed CICGNet, we leverage the model trained on  BDD10K_L33 to quan-
titatively and qualitatively evaluate the test set of CityscapesL. We give these results in Table 10 and Fig. 15.

Application on semantic segmentation
To evaluate the effect of our proposed low-light enhancement algorithm on high-level vision task, we compare 
the effects of the above algorithms on semantic segmentation, we give their quantitative and qualitative results 
in Table 11 and Fig. 16. We leverage classic semantic segmentation DeepLabV3 + 43 to compare the above low-
light enhancement algorithms. The evaluation result is on the default 19 categories. Table 11 shows mean pixel 
accuracy (mPA) and mean interaction over union (mIoU). As shown in Fig. 16, we show the segmentation visual 

Figure 11.  Visual results of low-light enhancement on CityscapesL.

Figure 12.  Enhanced visual effects of real night in BDD10K.

(a) real night    (b) stage1    (c) stage2      (d) stage3     (e) stage4      (f) stage5     (g) output

Figure 13.  Stage-by-stage attention visualization.
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results on the CityscapesL sample, including directly segmenting low-light samples, and using the above seven 
algorithms to enhance low-light images and then perform semantic segmentation.

Cascading optimization strategy
We report the results of semantic segmentation under different processing methods for low-light scenes in 
Table 12. We denote the segmentation model trained by  CGNet44 on the original Cityscapes dataset (fine weather) 
as CityscapesSeg. Baseline represents segmentation of Cityscapes test sets, baseline0 indicates that low-light 

Table 7.  The quantitative evaluation of different residual connection architecture. Bold indicates the optimal 
value.

Dataset Architecture PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

LOL

Fig. 14a 21.586 0.831 0.075 10.440 0.907

Fig. 14b 21.344 0.829 0.078 10.671 0.908

Fig. 14c 22.420 0.894 0.073 8.940 0.921

VELOL

Fig. 14a 20.914 0.828 0.106 11.629 0.924

Fig. 14b 21.400 0.848 0.068 11.896 0.928

Fig. 14c 21.778 0.903 0.070 11.067 0.934

Figure 14.  Different residual connection architectures.

Table 8.  Comparison of different number of decomposition and reconstruction. Bold indicates the optimal 
value.

Number of decomposition and 
reconstruction Model↓/kb CPU inference time↓/second PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

1 856 0.304 23.761 0.886 0.177 12.100 0.916

3 2579 0.941 25.123 0.898 0.165 10.260 0.931

5 4333 1.622 25.383 0.901 0.162 9.816 0.936

7 6119 2.432 26.017 0.905 0.159 9.111 0.942

Table 9.  Comparison of different channel scaling factor on LOL. Bold indicates the optimal value.

Channel scaling factor\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

CICGNet 22.420 0.894 0.073 8.940 0.921

Ratio1 22.156 0.837 0.075 9.054 0.915

Ratio8 21.346 0.832 0.077 10.483 0.908

Ratio16 21.454 0.833 0.075 10.634 0.906
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samples from CityscapesL are divided using CityscapesSeg, baseline1 uses the proposed low-light enhance-
ment network CICGNet to enhance low-light samples and then uses CityscapesSeg for segmentation, baseline2 
leverages the low-light samples to fine-tune the CityscapesSeg, the learning rate is 5 ×  10–5, baseline3 represents 
cascade training low-light enhancement network and semantic segmentation network to form a unified cascade 
architecture.

Table 10.  Quantitative evaluation of generalization on CityscapesL (1500 images). Bold represents the optimal 
value, italics indicates the sub-optimal value.

Methods\index PSNR↑ SSIM↑ LPIPS↓ deltaE↓ UQI↑

HDRNet 19.216 0.811 0.359 18.873 0.858

ALEN 21.585 0.851 0.264 14.661 0.897

SARN 21.416 0.841 0.247 15.121 0.892

ABSGNet 21.119 0.857 0.260 14.110 0.900

MPRNet 22.008 0.834 0.258 14.712 0.881

Restormer 22.536 0.856 0.249 13.622 0.901

CICGNet 22.595 0.860 0.242 13.990 0.903

Figure 15.  Visual evaluation of generalization on CityscapesL sample.

Table 11.  Comparison of semantic segmentation performance after processing with low-light enhancement 
algorithms (1500 images). Bold represents the optimal value, italics indicates the sub-optimal value.

Methods\index

DeepLabv3 + _mobilenet DeepLabv3 + _resnet101

mPA↑/(%) mIoU↑/(%) mPA↑/(%) mIoU↑/(%)

Segmentation of low-light samples 29.10 23.00 34.40 26.85

HDRNet 21.55 16.76 27.23 19.62

SARN 33.37 26.90 38.59 29.84

ALEN 27.51 21.71 32.23 25.39

ABSGNet 34.85 25.69 37.03 28.43

MPRNet 34.66 25.31 37.46 28.77

Restormer 34.91 27.35 37.72 30.31

CICGNet 36.68 30.51 38.76 32.79
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Conclusion
Proposed low-light image enhancement is based on Retinex, it focuses on illumination component and content 
component along with depth and width directions of truss topology. We develop feature reuse concept to preserve 
content component and enhance illumination component in different truss branch. Comprehensive experiments 
show better performance in quantitative indexes and visual effects, compared with advanced attention-based 
low-light enhancement algorithms and state-of-the-art image restoration algorithms. We also perform several 

Figure 16.  Segmentation visual results of CityscapesL processed by low-light enhancement algorithm.

Table 12.  Comparison of semantic segmentation of different schemes for degraded samples. Bold represents 
the optimal value, italics indicates the sub-optimal value.

Scheme mPA↑/(%) mIoU↑/(%)

Baseline 65.64 56.06

Baseline0 9.90 5.38

Baseline1 30.01 21.53

Baseline2 37.80 30.71

Baseline3 38.16 31.05
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ablation studies, generalization experiment, and experiment on low-light enhancement algorithm applied to 
semantic segmentation.

Data availability
All data generated or analysed during this study are included in this published article.
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