
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8370  | https://doi.org/10.1038/s41598-024-58932-9

www.nature.com/scientificreports

Urban segregation on multilayered 
transport networks: a random walk 
approach
Mateo Neira 1,2*, Carlos Molinero 2, Stephen Marshall 3 & Elsa Arcaute 1,2

We present a novel method for analysing socio-spatial segregation in cities by considering constraints 
imposed by transportation networks. Using a multilayered network approach, we model the 
interaction probabilities of socio-economic groups with random walks and Lévy flights. This method 
allows for evaluation of new transport infrastructure’s impact on segregation while quantifying each 
network’s contribution to interaction opportunities. The proposed random walk segregation index 
measures the probability of individuals encountering diverse social groups based on their available 
means of transit via random walks. The index incorporates temporal constraints in urban mobility 
with a parameter, α ∈ [0, 1) , of the probability of the random walk continuing at each time step. By 
applying this to a toy model and conducting a sensitivity analysis, we explore how the index changes 
dependent on this temporal constraint. When the parameter equals zero, the measure simplifies to an 
isolation index. When the parameter approaches one it represents the city’s overall socio-economic 
distribution by mirroring the steady-state of the random walk process. Using Cuenca, Ecuador as 
a case study, we illustrate the method’s applicability in transportation planning as a valuable tool 
for policymakers, addressing spatial distribution of socio-economic groups and the connectivity of 
existing transport networks, thus promoting equitable interactions throughout the city.

Cities exist to connect people, influencing human interactions through their structural  networks1–3. A suc-
cessful city maximises face-to-face  interactions1, providing equal opportunities for all  inhabitants4. However, 
understanding the dynamics in cities remains a challenge due to the complexity of urbanisation, social effects, 
and policy  concerns5. One critical factor influencing these dynamics is urban segregation, which affects socio-
spatial interactions within cities.

Urban segregation refers to the spatial separation of different social, ethnic, racial, or economic groups within 
a  city6. It is characterised by the unequal distribution of these groups across neighbourhoods or areas within 
a city - presenting distinct socio-spatial  patterns7. Urban segregation can occur due to various factors, such as 
historical policies, social preferences, economic disparities, or  discrimination8. The unequal distribution of 
population groups in cities can have significant consequences, affecting access to resources, opportunities (both 
social and economic) while reinforcing social isolation and perpetuating  inequalities9. Understanding urban 
segregation is essential for fostering social integration within cities, reducing disparities and promoting more 
equitable and inclusive  places10.

Although urban segregation has been extensively studied, there is limited research investigating how cou-
pled transport systems affect urban segregation. To address this gap, the current study integrates concepts from 
complexity science and complex network analysis, proposing a novel approach to examine urban segregation in 
relation to transport networks to quantify the likelihood of interactions between different population groups. This 
study aims to shed light on the intricate connections between urban mobility and segregation, thereby providing 
insights that can inform more inclusive and equitable urban planning and policies.

Residential segregation can be defined as any pattern in the spatial distribution of population groups that 
deviates significantly from a random  distribution11. This distribution can be a product of social and spatial differ-
entiation, as people have different preferences and resources. People’s individual choices can lead to an aggregate 
outcome that is completely different than what one would  expect12. These ideas were formalised by physicists 
who coined the term sociodynamics13 and sociophysics14. Segregation, diffusion, and collective behaviour were 
explored through this lens with the seminal work of Thomas  Schelling15 and Mark  Granovetter16. Most statistical 
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methods used to measure segregation found in the literature aim to assess how evenly different population groups 
are distributed in different areas of the city.

Although many methods to measure urban segregation had been developed, it wasn’t until the work of Massey 
and  Denton7 that they were systematically reviewed and organised. Massey and Denton defined segregation as 
the degree to which two or more groups live separately from one another. The concept of urban segregation now 
encompasses various types, including residential, workplace, and experienced segregation. Residential segrega-
tion refers to the spatial separation of social groups within neighbourhoods, while workplace segregation pertains 
to the unequal distribution of social groups across occupations and workplaces. Experienced segregation, on the 
other hand, concerns segregation as experienced through the daily activities people undertake in urban areas.

Residential and workplace segregation have long been the focus of urban segregation research, with a grow-
ing emphasis on experienced segregation in more recently years with the increase amount of data about people’s 
mobility patterns as captured through location enabled  devices17,18. This shift towards examining daily mobility 
patterns unveils a more nuanced understanding of segregation. Similarly recent work has also employed an 
intersectional approach using mobility surveys to reveal variation in mobility patterns based on gender, age, 
and social classes in  cities19.

Segregation has also been a problem explored within network science, specifically in the study in social 
networks; although the framework is different from residential segregation, it has been extended in interesting 
ways to spatially embedded networks. In social networks, individuals have a tendency to relate with others who 
are similar to them across different characteristics; a property known as homophily20, and known within network 
science as assortative mixing21. This can have important implications in the information people in the network 
receive, attitudes they form, and interactions they  experience22,23. Measures of assortative mixing can be related 
to the measures of exposure from residential segregation we discussed previously. Many measures have been 
proposed by different authors, and in general, they can be divided into two approaches; descriptive graph statistics 
and spectral graph theory22.

More recent studies have increasingly focused on understanding how segregation manifests itself at different 
 scales24–26. However, the scale at which to study segregation still remains an open question, with most research 
studying segregation using different methods but mostly working with census track data and their adjacencies 
to derive segregation measures. Underlying these studies there is an assumption that all persons sharing a tract, 
whether they are located in the centre of the tract or towards the periphery, have equal proximity to residents 
outside the tract as well as being equally proximate to everyone within its boundaries. This assumption stems 
from treating tracts as as spatially homogeneous irrespective of their relative distances and the connectivity pat-
terns provided by the street network and additional transport networks that might be present. In our work we 
address this problem by providing a method that explicitly takes into account a city’s connectivity structure by 
modelling all modes of transport as a multilayered network. This methodological innovation allows us to analyse 
the impacts of different transport modes on socio-spatial segregation, offering a more detailed perspective on 
the potential of transport infrastructure to both exacerbate and mitigate segregation.

The proposed method for quantifying segregation using multilayer networks and random walks takes into 
account the heterogeneity of the connectivity different groups of people have dependent of where they are located 
in a city. Segregation is understood as unequal opportunities for encounters, measured as the lack of exposure 
between different population groups. To measure the lack of exposure between groups their spatial relation-
ships must be taken into account, as well as the constraints that the available transport networks impose on the 
opportunities for encounters. The paper is structured as follows: we first provide a brief overview of similar 
studies that have used random walks to measure segregation. Then we introduce the methodology and apply the 
method to a toy model in order to explore the sensitivity of the parameters. Finally, we apply the framework to 
study segregation in the city of Cuenca, Ecuador, and we show how the measure can be used to assess the impact 
of transport infrastructure on segregation.

Related works
Socio-spatial segregation, the uneven distribution of population groups within a city, has been a focal point 
of research due to its implications for societal  inequalities7,11. Traditional studies have predominantly used 
aggregate-level indices to measure the extent of segregation within predefined spatial units, focusing mainly 
on the dimensions of evenness and  exposure22. However, these methods often overlook the complex social and 
spatial interactions within urban environments.

Recent advancements in network science, including measures like the assortativity  coefficient21 and the 
spectral segregation  index27, have begun to address these complexities by considering social and spatial network 
structures. Despite their advancements, these measures face limitations, such as reliance on residential proximity 
and sensitivity to group composition.

To address these issues, Ballester and  Vorsatz28 introduced a random-walk based approach, utilising an 
eigenvector-based centrality measure to estimate the likelihood of inter-group encounters. Further building on 
random-walk methods, Sousa and  Nicosia29 proposed non-parametric measures that use random walk trajec-
tories to quantify segregation, accounting for the diversity of urban systems through a null model. Although 
these graph-theoretic approaches provide a natural way to capture the dimensions of residential segregation, 
their application has been limited to arbitrary definitions of areal units in which different groups reside. How-
ever, they provide an intuitive way to include information about the links between places in a city and capture 
segregation at a more dis-aggregate spatial scale as a result of limitations on probabilities of interactions between 
different groups.

More recently a number of studies have quantified how segregated urban areas are by analysing individual 
mobility patterns and the places people  visit18,30–32. These studies emphasises the use of large-scale, high-resolution 
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data (e.g., GPS data from smartphones, credit card transactions, mobile phone data) to analyse urban segregation 
and human mobility. Within this context—we complement these studies by providing a method that can help 
to interrogate how the urban structure—in terms of its transport network, once established, can exacerbate or 
mitigate segregation patterns. The choice of a multilayered network and a random walk  approach33 is driven by 
the need to model these complex interactions comprehensively.

Building on this foundation, we propose a novel approach using multilayered networks to model the city’s 
transport systems, integrating socio-economic data to assess segregation more dynamically. This method employs 
a modified random-walk-based segregation  index28 to quantify interaction probabilities among population 
groups, factoring in the spatio-temporal constraints of the transport network. This approach not only overcomes 
the spatial limitations of previous methods but also elucidates the role of transport infrastructure in shaping 
urban segregation patterns.

Multilayered networks, with their multiple types of connections among nodes, offer a comprehensive frame-
work for analyzing complex phenomena like information spread and disease transmission. In our work, each layer 
represents a different transport system, providing a nuanced view of how urban planning and policy interven-
tions can leverage these networks to create more integrated environments. By challenging spatial homogeneity 
assumptions and highlighting targeted infrastructure improvements, our approach advocates for proactive urban 
planning to mitigate segregation and promote equity.

Methods
Random walk segregation on multilayered networks
We can study the structure and interactions in urban systems through their networks. In particular, multilayered 
networks allow us to capture the coupling of multiple transport systems, and by doing so it is able to better capture 
the spatio-temporal constraints they impose on different places and can be used to measure urban segregation 
at a fine spatial resolution.

Here we set a formal description of the independent transport network graphs and their inter-modal coupling 
to create the multilayered network. We describe the assignment of socio-economic variables to the multilayered 
network, as well as the measures that will be used to assess change in urban structure and segregation.

Each transport network is modelled as a directed graph in their primal representation, where each intersec-
tion or station is modelled as a node, and their connections—such as streets, routes, or transport lines—are 
modelled as temporally weighted links. All the transport networks are represented by an ordered list of networks, 
�G given by:

where M indicates the total number of transport modes available in the city, and Gi = (Ni , Li ,wi) is the trans-
port network i. Ni is a set of nodes, Li is a set of links, and wi is a function that takes a link and returns a weight 
( wi : Li → R ) equal to the travel time between the links of the node in minutes. In the case of street networks, 
this is calculated using an average walking speed of 5 km/h.

Additionally, we define the coupling of the different transport networks through a M ×M list of bipartite 
networks Gi,j = (Ni ,Nj , Li,j ,wi,j) for each i < j and i, j ∈ {1, 2...M} . G indicates the bipartite network with node 
sets Ni and Nj and the link set Li,j . The links of the network Gi,j are called interlinks and connect the nodes of 
layer i to nodes of a different layer j and wi,j is a function that takes a link and returns a weight ( wi,j : Ei,j → R ) 
equal to the transfer time in minutes between two transport layers.

Finally, the multilayer network M is given by the triple:

where Y indicates the set of layers Y = {i|i ∈ {1, 2, ...,M}} for each transport network. This multilayered network 
can be described by a supra-adjacency matrix AM

34 and the corresponding time-weighted supra-adjacency 
matrix TM.

The minimum number of transport networks a city can have is one, corresponding to the street network. 
Socio-economic data needs to be incorporated into the nodes of the street network to measure urban segrega-
tion using the multilayered model. Formally, this is captured by classifying each individual from a total set 
N = {1, 2, ..., n} of n individuals in a city, into different socio-economic groups B. Let nb,i be the number of 
individuals of group b ∈ B that will start a journey through the city in the multilayered nodes i ∈ Nµ , where µ 
denotes the layer, and in particular µ = 1 corresponds to the street network one. The number of individuals who 
belong to a group b is nb =

∑

i nb,i , and the number of individuals who will start their journey from node i is 
ni =

∑

b∈B nb,i . The column vectors cb = (
nb,i
ni
)i and db = (

nb,i
nb

)i are referred to as the vectors of group concentra-
tions and group densities, respectively.

This representation allows us to create time-weighted paths, as illustrated in Fig. 1b,and calculate the prob-
abilities of different nodes in the system being occupied by different population groups to measure segregation.

Dynamic isolation index
To calculate segregation in a city we define a transition matrix P that contains entries πi→j , which indicate the 
probability that a random walker transitions from node i to node j at each time step. Additionally, we define 
a parameter α ∈ [0, 1) that encodes the probability that at each time step the random walk continues, or stops 
(with probability 1− α ). This parameter is important in calibrating the expected duration of the random walk to 
align with empirical observations of urban mobility. Given this transition matrix and the parameter α , the prob-
ability of a walk starting in i and ending in j is defined as qij in a matrix Q such that Q = (1− α)(I − αP)−1P.

(1)�G = (G1,G2, ...,Gi , ...GM)

(2)M = (Y , �G,G)
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Given the initial concentrations cb and densities db of populations groups across the city, the normalised 
segregation ( ̄σb,i ) of each group b in the node i is defined as follows:

where σ̄ (b, i) is equal to the probability, up to the multiplicative scalar n, that a randomly chosen individual from 
group b encounters another randomly chosen individual from the same group. Note that if σ̄ (b, i) > 1 we can 
say that group b is isolated. The segregation index of group b in the city is the average of the segregation indices 
of all the nodes for that group: σ̄b =

∑

i σ̄b,i , and the segregation of the city is defined as the weighted average 
over the segregation indices of the groups: σ̄ =

∑

b
nb
b σ̄b.

Given this definition, the segregation index depends on two values: α and the probability of transition πi→j . 
α encodes the temporal constraints on mobility and can be related directly to the amount of time people are 
willing to spend on travel τ , where the expected τ of a random walk given α is:

An important aspect of our model is the interpretation of the alpha parameter. When α approaches 1, the model 
assumes that the random walk almost always continues, leading to a scenario where the transition matrix P mir-
rors the steady-state distribution of the random walk. This state reflects a scenario where the movement patterns 
within the city reach a dynamic equilibrium, allowing us to examine the long-term behaviour and connectivity 
within the urban network.

Random walk strategies
Diverse types of random walk strategies can be explored in terms of the weight  matrices33. In this work we look 
at the diffusion process of a random walk to measure segregation by using two different strategies: local and 
non-local random walks. For local strategies, a random walker is restricted to adjacent nodes on the network, 
where as for non-local strategies a random walker can hop beyond nearest neighbours with a probability given 
by a generalised cost of moving to a particular location as shown in Fig. 1a.

(3)σ̄b,i =
(nb

n

)−1

db,i
∑

j

qijcb,j

(4)E(τ ) = TM
1

1− α
.

Figure 1.  (a) Example of a multilayer network modelling different transport systems and their interconnections 
along with possible types of transitions that can be modelled using local and non-local random walks. (b) An 
illustration of a time-weighted path along the multilayered network.
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Local random walks
Normal random walk: in this case, the weights coincide with the elements of the adjacency  matrix35, from which 
we can calculate the transition matrix given by :

where Aij is the adjacency matrix element indicating the presence (1) or absence (0) of a link between nodes i 
and j, and ki is the degree of node i. This approach ensures that the normal random walker transitions with equal 
probability to any of its immediate neighbours, embodying a uniform distribution of transition probabilities that 
reflect an unbiased exploration of the network’s local structure.

Preferential navigation: in the preferential navigation case, a random walker transitions to a neighbour with a 
probability that depends on a quantity qi > 0 assigned to each node i of the network. The value qi can represent 
a topological feature of the respective node or a value independent of the network structure, that quantifies an 
existing resource at each node,

where β controls the influence of the incorporated features into the random walk. Such features can encompass 
information about the global structure of the network. This weighting introduces a bias in the transition prob-
abilities, making transitions to more central nodes more likely. This approach can indeed lead to a transition 
matrix that approximates a power-law distribution, especially in networks where node centrality is unevenly 
distributed. The initial transition matrix for preferential navigation is generated by first calculating the centrality 
measure for each node and then normalising these values to sum to 1 for each row in the matrix, ensuring that 
they represent valid probabilities.

Non‑local random walks
Non-local random walks on the network are motivated by the possibility of transitioning from one node to 
another irrespective if it is a direct neighbour. One particular type of non-local random walks are Lévy flights. 
These are random walks with displacements of length l, and a probability distribution given by an inverse 
power-law relation. There have been empirical studies showing that human mobility patterns display this type 
of  behaviour36–38.

Lévy flights are characterized by step lengths that follow an inverse power-law distribution, allowing for both 
short and long-range moves within the network. The transition probabilities for a Lévy flight are determined by 
the inverse of the distance dij between nodes, raised to the power of β . Lévy flights on networks can be described 
in terms of weights d−β

ij  , where β ∈ R>0 , R>0 = {x ∈ R | x > 0} . In the case of Lévy flights the probability 
transition matrix is equal to d−β

ij —where the probability of transitioning from node i to node j in the network 
is a function of the time it takes to travel within the network from i to j. We can use this probability transition 
matrix to calculate Q such that Q = (1− α)(I − αP)−1P.

Incorporating both local and non-local random walk strategies enables our model to simulate a wide range 
of mobility behaviours, from local movements to occasional long-distance travel, providing a comprehensive 
framework for analysing urban segregation dynamics.

Results
Measuring segregation on a synthetic city
We test the method by first running the different types of random walks and measuring the resultant segregation 
on a toy model represented by a mono-layered network comprised of 50 nodes and a population of 500 divided 
into two groups, as shown in Fig. 2. For this toy model, we test the three types of random walks to visualise how 
the network structure affects segregation, and run a sensitivity analysis for the parameters on both local and 
non-local random walks.

Figure 3 shows the influence that different dynamics have on the measure of segregation on the toy model. The 
measure is able to capture the influence of the network structure on segregation, where not only are the nodes 
that act like bridges between the two communities less segregated, but also the nodes that are within a short 
network distance. When the dynamics change from normal to preferential random walk, segregation decreases, 
as most people will tend towards a smaller subset of final positions regardless of their initial position. In the 
case of a Lévy flight, the segregation is the lowest, this is not directly comparable to the previous two types of 
random walks since, in this case, the α value no longer represents the same temporal constraint. This is because 
it’s the relationship between α and expected travel time is influence by the step length distribution rather than 
the temporal sequence of steps. This changes the characteristics of the walk, allowing more long-distance jumps, 
which impacts segregation differently compared to the other two dynamics.

We perform a sensitivity analysis of both preferential and Lévy flight models of segregation, in order to show 
the impact of the parameter values on the segregation index, see Fig. 4. It is important to note that a segregation 
index closer to zero indicates no segregation, while increasing values signify higher segregation levels.

In the preferential random walk model, the segregation index is primarily influenced by parameter α ; as α and 
β increase, segregation decreases due to greater spatial mobility and individuals converging to the same subset 
of nodes. For the Lévy flight model, higher values of β lead to reduced spatial mobility, and as β approaches two, 
segregation increases dramatically.

(5)πi→j =
Aij

ki
.

(6)πi→j =
Aijq

β
j

∑N
l=1 Ailq

β

l

,
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Evaluating a transport network intervention strategy
We test the proposed model on the city of Cuenca, Ecuador to investigate how the introduction of a new mode of 
transport affects segregation of different socio-economic groups. Cuenca, with a population of 505,585 according 
to the 2010 census, is the third largest agglomeration in Ecuador after Guayaquil and Quito. It serves as a service 
and market centre for the southeastern region of the  country39, and the urban area extends over 72.48 Km2 , 
housing 331,885 people.

Previous research on urban development in Cuenca which studied the evolution of city’s size and population 
density has emphasised the importance of planned densification policies to counteract the negative impacts of 
urban sprawl and create liveable urban  areas40. Research on socio-spatial segregation in the city, which used 
measures of evenness, exposure, and clustering, has shown that there are two parallel processes of spatial segre-
gation occurring within the urban area: segregation of low socio-economic status households towards the north 
and west periphery of the city, and self-segregation of high socio-economic status households in areas along the 
Tomebamba  River41.

In our study, we analyse the impact of both the bus network, and the tram which began its operation on the 
25 May 2020, on Cuenca. We use the various measures described in the previous section to assess segregation in 
the city at a finer spatial scale by analysing population data at census block level and incorporating the spatio-
temporal constraints that the various transport networks impose.

To achieve this, we first classify the population into four groups based on socio-economic data from the 
census. We then merge this data to the street network, and build three distinct multilayered networks which 
contained only the street network ( Ms ), the street network and bus network ( Msb ), and finally the street net-
work, bus network and tram network ( Msbt ) respectively. Finally we apply the different types of random walk 

Figure 2.  Features of toy model. (a) Street network structure and betweenness centrality values, (b) population 
distribution by groups, each node contains 10 people.

Figure 3.  Segregation measures on the toy model city for: (a) normal random walk with α = 0.85 , (b) 
preferential random walk with α = 0.85 and β = 1 , and c) Lévy flight with α = 0.85 and β = 2.
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segregation measures introduced previously to each network, in order to understand the effects that each has 
on the segregation of the different groups within the city.

To classify the population in Cuenca into four distinct socio-economic groups we first calculate an index of 
life  conditions41 at the household level. The index incorporates various factors such as the physical characteristics 
of dwellings, basic services of the household, education levels of residents, and access to health care. The index of 
life conditions (ICV) ranges from 0 to 2 where households with less than one express deprivation and above one 
present life conditions above standard. The ICV values are calculated at the dwelling level, and then assigned to 
all individuals who reside within the dwelling. Using this index, we create four groups by dividing the resultant 
data into quartiles and we classify each person within the city into one of these four groups. We then aggregate the 
population for each group at the urban block level, resulting in a distribution of the population at a fine-spatial 
scale. The spatial distribution of the mean values of the index of life conditions at the block level can be found 
in the Supplementary Material, and the distribution of each group within the city in Fig. 5.

Most individuals in the city have ICV values less than one, showing that they do not meet the mini-
mum threshold for well-being across one or more variables. The ICV values across the population follow a 
normal distribution with a mean of 0.9. Given this distribution the population is divided into quartiles, 
B = (Q1,Q2,Q3,Q4) . Figure 5 shows the spatial distribution of concentration cb of each group at the census 
block level. Quartiles Q1 and Q4 show clear spatial patterns, individuals with high ICV values locate along the 
Tomebamba River and towards the north-east while individuals with low ICV values locate towards the periphery, 
with some concentration within the city’s historic center.

Socio-economic information is obtained from census data captured at the block level. The block geometries 
define the urban area that will be studied. Since these geometries are not connected, their nodes are extracted as 
points and an alpha  shape42 is used to determine the bounding polygon to define our study area. Different alpha 
values were tested to arrive at an optimal urban boundary for the case study. The resulting area is used to obtain 
the street network data, as well as set spatial limits on the other transport networks.

Transport network data is obtained from Open Street Map (OSM) and shapefiles provided by llactaLab—Sus-
tainable Cities Research Group at the University of Cuenca. To construct the street network,  osmnx43 is used to 
download and construct the network. All street segments are included, except those that relate to private streets, 
emergency access, steps, cycleways, and paths. Since the street network has to be modelled as a walkable layer, 
street directionality is disregarded by adding additional reciprocal links to all oneway streets. In addition, the 
distance weight attribute of the links is turned to a time-weighted attribute by multiplying the distance of each 
link by an average walking speed equal to 5 Km/h.

To construct the bus and tram networks similar approaches are taken. For both networks the available data 
consists of two shapefiles, one containing the line geometries of the transport routes and another containing point 
geometries of the stops or stations within the city. Custom functions are developed to transform these shapefiles 
into directed multigraphs, which preserve information about their geometric properties.

The first step involved processing the line geometries so that all routes are represented as a single polyline. 
Since the point geometries, representing the stops or stations do not always match the polyline geometries and 
contain no information about which line a specific stop belongs to additional processing is needed to match 
stops/stations to their routes.

To address this, a 50 m buffer is set for each route. All points which fall within this buffer are aligned 
or ’snapped’ to the corresponding route. Once the geometries of the routes and stops/stations are matched 
a directed multigraph for each route is created by cutting the line geometries by the points and creating the 

Figure 4.  Sensitivity analysis for (a) local (preferential random walk) model and (b) Non-local (Lévy flight) 
model. In the case of local random walks the model is mainly driven by α—as it controls the spatial mobility 
of the population, with values closer to zero resulting in interactions that are constrained to direct neighbours. 
In the case of non-local random walks the model is mainly driven by β—with segregation being the lowest for 
values close 0 where there is equal probability of transitions between nodes regardless of distance.
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corresponding nodes and links. Geometric properties are conserved for visualisation purposes, and a temporal 
weight is added to each link by calculating travel time using an average travel speed of 30 Km/h for the bus 
network and 40 Km/h for the tram network.

After creating a directed multigraph for each route for the bus and tram network, transfer links are created 
for routes within each that shared the same stop/station. These transfer links are weighted by an average waiting 
time of 10 min for the bus network and 5 min for the tram network. The resulting graphs are: (1) a strongly con-
nected multidigraph for the street network, defined as Gs = (Ns , Ls ,ws) ; (2) a strongly connected multidigraph for 
the bus network, defined as Gb = (Nb, Lb,wb) ; and (3) a strongly connected multidigraph for the tram network, 
defined as Gt = (Nt , Lt ,wt) . Each graph can be described by their adjacency and time-weighted adjacency matrix. 
The topological and geometric structure of these graphs are shown in the Supplementary Material.

Once each individual transport network is modelled as a graph, we follow the procedure described in the 
methodology section to create the different multilayered networks Ms , Msb , Msbt . For each multilayered 
network we assign the calculated socio-economic groups described previously to the nodes of the street network 
layer. To achieve this, we first create a Voronoi tessellation using the street intersection geometries. We then use 
a weighted area overlay interpolation to calculate population values for the Voronoi polygons. Finally, we assign 
the Voronoi polygon values to their corresponding node in the street network. This approach assumes that each 
individual living in a particular block will always start their journey from the same intersection, for the sake 
of simplicity. A representation of the multilayer network which captures all three transport modes is shown in 
Fig. 6. The properties of each individual transport network, as well as each resultant multilayered network can 
be seen in Table 1.

We analyse segregation given the population distribution through the Ms , Msb and Msbt , to capture the 
effects of the spatio-temporal constraints these networks impose, and how the bus network and the introduction 
of the tram affect segregation in the city. For all three networks a value of α = 0.85 is used, which is equal to an 
expected weighted walk length of 20 min on the street network and 25 min on the multilayered networks. These 
values were chosen to match the mean travel time of the population as captured through travel surveys. To plot 
out the spatial distribution of the calculated segregation values, we aggregate the values calculated at each node 
of the street network to a hexagonal grid using H3 geospatial indexing system at level 9, which corresponds 
to hexagons that have side lengths of roughly 200 m and with areas of roughly 0.1 km2 , and then we take the 
mean. Additionally, we run the three types of random walks described previously and highlight how each type 
of random walk can reveal different aspects of how the transport system affects segregation.

Given that the groups Q1 and Q4 present the highest levels of spatial clustering, and have been found to have 
the highest levels of segregation in the city in previous  studies41, we focus on these two groups to explore the 
results of this study in more detail, while reporting overall values of segregation for all groups at the city level. 
As it will be shown, the addition of the tram does not significantly reduce segregation in the city—and change 
is mostly driven by considering the bus network. Because of this, we only plot the spatial distribution of change 

Figure 5.  Population distribution by ICV index quartiles, with Q4 representing the highest life conditions and 
Q1 the lowest. Q1 clusters are primarily in the city’s north and west periphery, while Q4 clusters align with the 
Tomebamba river on a west-east axis. Q2 and Q3 groups show a more even distribution throughout the urban 
area.
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in segregation caused by considering all transport networks, and report only the city wide results for all three 
multilayered network models.

Normal random walk
The normal random walk segregation measure is only affected by the topological structure and connectivity 
of the transport networks available. Figure 7 shows the resultant spatial distribution of the segregation values 
for groups Q1 and Q4 when considering all transport networks. Overall, the group with the higher values of 

Figure 6.  Multilayer network Msbt of Cuenca showing the streets, bus, and tram networks as time-weighted 
graphs, along with their interlinks.

Table 1.  Transport network measures of Cuenca outlining the number of nodes N and links L for each graph, 
as well as the average distance weighted shortest path ℓ̄ij , average travel-time weighted shortest path τ̄ij , 
distance weighted diameter 〈ℓ〉 and travel-time weighted diameter 〈τ 〉.

Network N L ℓ̄ij Km τ̄ij min 〈ℓ〉 Km 〈τ〉 min

Gs 8836 24,554 6.21 74.55 23.045 276.54

Gb 1090 15,848 4.79 31.97 18.20 71.74

Gt 41 73 4.68 18.28 11.2 42

Msb 11,016 44,762 5.61 38.31 22.23 170.72

Msbt 11,059 44,921 5.60 37.75 22.23 170.72

Figure 7.  Spatial distribution of normalised segregation index for groups Q1 and Q4 in Cuenca measured using 
normal random walks on Msbt . Although the distribution on the Q4 population is concentrated along the east–
west axis following the Tomebamba river, only those in the south–east present high levels of segregation due to 
a lack of transport connections to other parts of the city. Relative change in the segregation index caused by the 
introduction of the bus and tram network, measured using normal random walks, shows that the bus and tram 
reduce segregation mainly in the city centre and in specific areas in the periphery.
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segregation, Q1, corresponds to the one with the lowest index of life conditions, and this is localised mostly in 
the western and northern periphery of the city. Q4 also presents some spatial clustering in the southern area of 
the city along one of the rivers. It is interesting to note that the segregation values that result from the normal 
random walk method in the street network yield similar results to the segregation values obtained through the 
relative size of the population groups in each census to the total size of the population group in the city. This 
might be due to the fact that temporal mobility of 20 min introduced through α is similar to the group interac-
tions that one would expect at the census track level.

In Fig. 7 we can see the relative change in the values of the segregation index when taking into account all 
transport networks available, as opposed to only considering the street network. The central area of the city 
presents the highest decrease in segregation due to the increased connectivity to most other areas of the city 
through both the bus and tram network. Additionally, other areas such as specific regions in the north and west 
of the city also see significant reduction, and correspond to the areas in the periphery that have good coverage 
by the bus network.

Preferential random walk
We can also take into account the fact that people will tend to visit certain areas with more or less frequency 
depending on what those areas have to offer. In this case, we can use a preferential random walk that assigns 
probabilities of transition not only based on the connectivity and topological structure of the network, but also 
on the additional information about how attractive different places are, which can be quantified as an additional 
parameter q.

For this case study, we define q as the betweenness centrality of the nodes. The resultant segregation values 
for Q1 and Q4 can be seen in Fig. 8, they present similar spatial patterns of segregation to the normal random 
walk, with mostly a decrease of magnitude for all the areas. In this case however the reduction in segregation 
when considering all transport networks as opposed to only the street network, is much more pronounced, and 
it affects a much wider area in the city, as seen in Fig. 8. This is mainly driven by the fact that people will tend to 
visit the same areas regardless of their  residence44, increasing the probabilities that different groups end up in the 
same places. The areas which exhibit the highest change are areas that are well served by public transport, such 
as the city centre and along the linear corridors towards both the west and north of the city.

Lévy flights
Finally we use Lévy flights to better model how people move in urban areas based on how far or close different 
places are. In this case, the distance of the shortest paths between all nodes in the system are calculated and 
used to estimate a probability transition matrix P, this is then employed to calculate the probabilities of different 
individuals being present in the same area. Figure 9 shows the segregation values for Q1 and Q4 which exhibit 
very different spatial-patterns to both the normal and preferential random walks. Firstly, segregation values 
tend to be less extreme in all cases, with higher segregation values clustering near the centre and certain places 
in the west of the city for Q1, and towards the south east for Q4. The areas with the highest relative reduction in 
segregation when considering all transport modes as compared to the street network, are mostly concentrated 
in the west of the city as shown in Fig. 9.

Table 2 shows the normalised segregation index for each quartile group for the three networks as measured 
using normal random walks, preferential random walks, and Lévy flights. As mentioned in the previous section, 
values greater than 1 indicate that a group is over represented in a particular area. This means that the group is less 
exposed to other groups when considering the probabilities of two randomly chosen individuals encountering 

Figure 8.  Spatial distribution of the normalised segregation index for groups Q1 and Q4 in Cuenca measured 
using preferential random walks on Msbt . Although there is an overall lower segregation due to transition 
probabilities being concentrated in few places, there are still high segregation values for Q1 in the north and 
south-west of the city due to poor connectivity of the transport network in these areas. Relative change in the 
segregation index caused by the introduction of the bus and tram network, measured using preferential random 
walks, shows that a higher overall reduction in segregation is evident throughout most of the city, with the 
exception of the eastern part of the city where there is a lack of street network connectivity and no additional 
transport connections.
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each other as they move through the city. The value is then zero when the probabilities match the make up of 
the population of the city.

If we only consider the road network using normal random walks we arrive at similar results as those of 
Orellana and  Osorio41, where groups Q1 and Q4 present normalised segregation values σ̄ > 1 , showing that the 
process of socio-spatial segregation is more pronounced in the case of individuals with the lowest and highest 
ICV values. In all cases we see an overall decrease in segregation when adding the bus network, and a smaller 
decrease when adding the tram network, showing how increased connectivity can help integrate otherwise 
segregated parts of the city.

The normalised segregation in the multilayered network, Msb , shows no group over-representation. Consid-
ering the city’s public transportation, σ̄ across all quartiles displays no group isolation, meaning buses effectively 
improve mobility and access across diverse city areas despite physical constraints. However, trams don’t enhance 
this effect possibly due to similar routes with buses, serving already integrated groups.

The results from the Lévy flight method indicate that segregation is overall lower for Q4 compared to both 
the normal walk and preferential walk case—with only Q1 showing higher segregation values. We hypothesise 
that this is because the areas where Q4 is located in the city are much more integrated and present higher con-
nectivity through the transport network than those areas where group Q1 tends to cluster.

Through this analysis we showed that the introduction of the tram network did not have an important 
observed effect on increasing interactions between different groups in the city. However, the introduction of the 
tram presents an opportunity to restructure bus lines, reduce redundancies between these two systems, and pos-
sibly increase efficiency as well as decrease socio-economic segregation. The framework developed here, could 
hence provide useful information for such a restructuring, by providing a means of comparing the impact of 
different proposed interventions in the city.

Discussion
In this work, we presented a framework to measure segregation beyond the residential level, by estimating the 
interaction probabilities for different socio-economic groups considering the available transport networks. The 
different transport modes and mobility constraints were modelled as random walks in a multilayered network. 
By modelling these networks as multilayered systems through which random walks of various types can occur, 
we provide a nuanced understanding of how transport infrastructure influences segregation. Our approach 
highlights that network configuration can either facilitate or hinder socio-economic interactions, aiming to 
quantify the extent to which different transport modes support or impede the integration of diverse socio-
economic groups.

The method introduced assesses the impact of new infrastructure and quantifies each transport network’s 
contribution to the interaction opportunities. Our measure includes a parameter α ∈ [0, 1] , that represents the 
temporal constraints in urban movement. For example, applying this method to a toy model, and conducting a 

Figure 9.  Spatial distribution of the normalised segregation index for groups Q1 and Q4 in Cuenca measured 
using Lévy flights on Msbt . Segregation values tend to be less extreme overall, with higher values generally 
coinciding with the spatial clustering of different groups. Relative change in the segregation index, caused by 
the introduction of the bus and tram network and measured using Lévy flights, shows that the tram and bus 
networks mostly affect the western part of the city by greatly reducing travel times towards the centre.

Table 2.  Segregation measures for Cuenca, Ecuador by ICV quartile for different network models and random 
walk types.

Network

Normal Preferential Lévy flights

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Ms 1.37 1.07 1.09 1.42 1.29 1.04 1.03 1.31 1.17 0.91 0.89 0.99

Msb 1.11 0.85 0.87 1.18 0.88 0.65 0.64 0.84 1.17 0.89 0.86 0.94

Msbt 1.10 0.84 0.87 1.17 0.87 0.64 0.63 0.83 1.15 0.86 0.81 0.88
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sensitivity analysis, we find that α = 0 results in isolation index, whereas increasing α captures the steady-state 
random walk process and the city’s socio-economic distribution.

In our empirical analysis, we studied the city of Cuenca, Ecuador, using block-level socio-economic census 
data. We showed that the measure is able to capture the influence of the network structure on segregation, where 
not only are the areas of the city that act like bridges between the two communities less segregated, but also the 
areas that are within a short network distance, revealing patterns of segregation otherwise hidden to traditional 
residential segregation measures. Finally, we showed how the measure can be used to assess the introduction 
of new transport infrastructure, by applying the method to evaluate the introduction of a new tram to the city. 
Our findings show that unless the current bus network is reorganised, the effects of the new tram on integrating 
different socio-economic groups by increasing probabilities of interactions across different parts of the city are 
negligible. While our multilayer model reveals the complex interplay between different transport modes and 
urban segregation, we also conducted a comparative analysis using only the street network layer. This analysis 
showed that relying solely on the street network oversimplifies the urban mobility landscape and fails to capture 
the significant contributions of other transport modes to segregation dynamics. The results indicate that the 
multilayer model provides a more accurate and holistic understanding of urban segregation, revealing patterns 
and relationships that a single-layer model cannot.

Our study underscores the significance of transportation networks in mitigating urban segregation, particu-
larly emphasising the potential of targeted infrastructure interventions. The case of Cuenca, Ecuador, serves as an 
example, where our analysis offers specific insights for policymakers aiming to leverage transport infrastructure 
for socio-economic integration. Our findings suggest that the introduction of the tram system holds potential 
for enhancing connectivity across socio-economic divides. However, this potential can only be realised if accom-
panied by a strategic reorganisation of existing transport services, like the bus network, restructuring of the bus 
routes that currently overlap with the tram network, prioritising the development of transport infrastructure in 
undeserved areas to improve access to key resources and opportunities, thereby reducing spatial inequalities.

Beyond the specific context of Cuenca, our study offers generic recommendations for urban policymakers 
globally to use transport networks as tools for mitigating segregation: (1) conducting comprehensive analyses 
of cities’ transport networks as multilayered systems to identify critical gaps and opportunities for enhancing 
socio-economic integration. (2) Leveraging detailed socio-economic and mobility data to inform the develop-
ment and adjustment of transport services, ensuring they effectively address the mobility needs of diverse urban 
populations.

There are several limitations to our study that should be considered. First, our analysis is based on a single 
city, so it is not clear how well the results would generalise to other cities. Second, our measure of segregation is 
based on random and Lévy walks, which may not capture all the dynamics of segregation in real cities—specifi-
cally they don’t capture interactions that might happen throughout a journey. Additionally transfer penalties, 
which refer to the time, cost, and inconvenience associated with changing modes or lines within a transport 
system are not fully considered, and can significantly affect the accessibility and desirability of public transport 
options, especially for marginalised or socio-economically disadvantaged groups. Finally, our analysis does not 
take into account other factors that may influence segregation, such as cultural preferences and the distribution 
of amenities and jobs that act as attractors to different places.

Despite these limitations, the segregation index proposed is a valuable tool for studying the effects of the trans-
portation network on segregation. Overall, our study provides a new perspective on the dynamics of segregation 
in urban environments and offers a promising approach for measuring and analysing this complex phenomenon.

Data availibility
The datasets used and/or analysed during the current study available from the following repository: https:// doi. 
org/ 10. 5522/ 04/ 25193 645. v1. All analysis was conducted using Python and the code is publicly available in the 
same repository.
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