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A 2‑order additive fuzzy measure 
identification method based 
on hesitant fuzzy linguistic 
interaction degree and its 
application in credit assessment
Mu Zhang 1*, Wen‑jun Li 1,2 & Cheng Cao 1,2

To reflect both fuzziness and hesitation in the evaluation of interactivity between attributes in the 
identification process of 2‑order additive fuzzy measure, this work uses the hesitant fuzzy linguistic 
term set (HFLTS) to describe and depict the interactivity between attributes. Firstly, the interactivity 
between attributes is defined by the supermodular game theory. According to this definition, a 
linguistic term set is established to characterize the interactivity between attributes. Under the 
linguistic term set, the experts employ linguistic expressions generated by context‑free grammar 
to qualitatively describe the interactivity between attributes. Secondly, through the conversion 
function, the linguistic expressions are transformed into the hesitant fuzzy linguistic term sets 
(HFLTSs). The individual evaluation results of all experts were further aggregated with the defined 
hesitant fuzzy linguistic weighted power average operator (HFLWPA). Thirdly, based on the standard 
Euclidean distance formula of the hesitant fuzzy linguistic elements (HFLEs), the hesitant fuzzy 
linguistic interaction degree (HFLID) between attributes is defined and calculated by constructing 
a piecewise function. As a result, a 2‑order additive fuzzy measure identification method based on 
HFLID is proposed. Based on the proposed method, using the Choquet fuzzy integral as nonlinear 
integration operator, a multi‑attribute decision making (MADM) process is then presented. Taking the 
credit assessment of the big data listed companies in China as an application example, the analysis 
results of application example prove the feasibility and effectiveness of the proposed method. This 
work successfully reflects both the fuzziness and hesitation in evaluating the interactivity between 
attributes in the identification process of 2‑order additive fuzzy measure, enriches the theoretical 
framework of 2‑order additive fuzzy measure, and expands the applicability and methodology of 
2‑order additive fuzzy measure in multi‑attribute decision making.

Keywords Interactivity between attributes, Hesitant fuzzy linguistic term set, 2-order additive fuzzy 
measure, Choquet fuzzy integral, Multi-attribute decision making, Credit assessment

In the process of multi-attribute decision making (MADM), due to the influence of the interaction among 
attributes, such as complementarity and repeatability, the classical weighted arithmetic mean method is often 
 invalid1. To address this problem, to flexibly describe and depict any interaction among attributes,  Sugeno2 
proposed the concept of fuzzy measure and fuzzy integral. Since then, research on fuzzy measures had become 
increasingly rich, and gradually formed the theory of fuzzy  measures3,4. However, in the practical application 
process, when there are n attributes, the general fuzzy measure usually needs to determine  2n − 2  parameters4,5. 
This complexity greatly limits its practical application. Thereafter, to address the complexity of discrete fuzzy 
measures,  Grabisch6 proposed the concept of k-order additive fuzzy measures, including usual additive measures 
and fuzzy measures. Every discrete fuzzy measure is a k-order additive fuzzy measure for a unique k. The k-order 
additive fuzzy measures cover all fuzzy measures with any complexity from classical additive measure (k = 1) 
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to general fuzzy measure (k = n). Among them, the 2-order additive fuzzy measure only needs to determine 
n(n+ 1)/2 parameters, involving the relative importance of attributes and the interaction between attributes, 
which solves the contradiction between complexity and performance ability well, so it has been widely  used7.

However, due to the difficulty in explaining and understanding the interaction between  attributes8 and the 
uncertainty of decision makers’ cognition, decision makers often cannot give accurate quantitative evaluations 
of interactivity between attributes, which is often fuzzy and hesitant. The existing 2-order additive fuzzy measure 
identification methods mainly use subjective  methods9–16 and objective  methods7,17–22 to describe and depict 
the interactivity between attributes. Compared with the objective methods, the subjective methods are more 
explanatory, so they have been applied more widely. However, in the existing subjective methods, most methods 
cannot reflect the fuzziness of decision-making, while a few methods, although able to reflect the fuzziness of 
decision-making, cannot reflect the hesitation of decision-making. Therefore, it is urgent to construct an evalu-
ation method for the interactivity between attributes that can reflect both fuzziness and hesitation.

In23, Rodríguez et al. introduced the concept of a hesitant fuzzy linguistic term set (HFLTS) to provide a 
linguistic and computational basis for increasing the flexibility and richness of linguistic elicitation based on the 
fuzzy linguistic approach and the use of context-free grammar to support the elicitation of linguistic information 
by experts in hesitant situations under qualitative settings. Hesitant fuzzy linguistic information is based on the 
linguistic expressions given by people; therefore, it is closer to people’s thinking and cognition; and can flexibly 
and comprehensively reflect the real preferences of decision-makers24. HFLTS provides a new and powerful tool 
to characterize experts’ qualitative decision information and has thus been successfully applied in the field of 
uncertain  MADM25–28.

Based on this observation, to reflect both fuzziness and hesitation in the evaluation of interactivity between 
attributes, the present work uses the HFLTS to describe and depict the interactivity between attributes. As a 
result, a 2-order additive fuzzy measure identification method based on HFLID is proposed. The marginal con-
tributions of this paper may be as follows: 1) The interactivity between attributes is defined by the supermodular 
game theory. According to this definition, a linguistic term set is established to characterize the interactivity 
between attributes. Under the linguistic term set, the experts employ the linguistic expressions generated by the 
context-free grammar to qualitatively describe the interactivity between attributes. (2) Through the conversion 
function, the linguistic expressions are transformed into HFLTSs. The individual evaluation results of all experts 
are further aggregated with the defined hesitant fuzzy linguistic weighted power average operator (HFLWPA). 
(3) Based on the standard Euclidean distance formula of the hesitant fuzzy linguistic elements (HFLEs), the 
hesitant fuzzy linguistic interaction degree (HFLID) between attributes is defined and calculated by construct-
ing a piecewise function.

Based on the proposed method, using the Choquet fuzzy integral as a nonlinear integration  operator29,30, a 
MADM process is further presented and applied to the credit assessment of big data enterprises. The remain-
ing part of this paper is structured as follows: “Preparatory knowledge” introduces the preparatory knowledge 
employed in this study. “The proposed method” proposes the 2-order additive fuzzy measure identification 
method based on HFLID. “A MADM process based on the proposed method” presents the MADM process based 
on the proposed method. “Application Example” describes the application example analysis results. “Discussion” 
discusses the results obtained and “Conclusion” concludes this paper.

Preparatory knowledge
This section introduces the related definitions of HFLTS, 2-order additive fuzzy measure and Choquet fuzzy 
integral reported in the literature. This is the basis of “The proposed method” and “A MADM process based on 
the proposed method”.

Related definitions of HFLTS

Definition 1 23,31: Let X = {x1, x2, · · · , xn} be a universe of discourse, and 
S =

{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 be a linguistic term set. A hesitant fuzzy linguistic term set 
(HFLTS) in X is an object having the form

where hS(xi) is the set of elements in S, called hesitant fuzzy linguistic element (HFLE), it can be expressed as 
hS(xi) =

{

sϕl (xi)
∣

∣sϕl (xi) ∈ S, l = 1, 2, · · · , L
}

 , where sϕl (xi) is the φl-th element in hS(xi) , L denotes the number 
of elements in hS(xi).

Definition 2 24,31: Let GH be a context-free grammar, and S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 be a linguistic 
term set. The elements of GH = (VN ,VT , I , P) are defined as follows:

VN = {primary term, composite term, unary relation, binary relation, conjunction}; VT = {“less than”, “more 
than”, “at least”, “at most”, “between”, “and”, “ s−τ ”, · · · , “ s−1 ”, “ s0 ”, “ s1 ”, · · · , “ sτ”}; I ∈ VN ; P = {I refers to the primary 
term or composite term; the primary term refers to “ s−τ ”, · · · , “ s−1 ”, “ s0 ”, “ s1 ”, · · · , “ sτ ”; the composite term refers 
to unary relation + primary term, or binary relation + primary term + conjunction + primary term; the unary 
relation refers to “less than” or “more than” or “at least” or “at most”; the binary relation refers to “between”; the 
conjunction refers to “and”}.

HS = {< xi , hS(xi) > |xi ∈ X }
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Definition 3 24,31: Let S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 be a linguistic term set. Under the S, the language 
expression generated by GH is ll ∈ Sll , where Sll is the set of all language expressions. Then the Sll can be trans-
formed into the HFLTS by the transformation function EGH : ll → HS:

(1) EGH (st) = {st |st ∈ S };
(2) EGH (at most sm) = {st |st ∈ S, and st ≤ sm };
(3) EGH (less than sm) = {st |st ∈ S, and st < sm };
(4) EGH (at least sm) = {st |st ∈ S, and st ≥ sm };
(5) EGH (more than sm) = {st |st ∈ S, and st > sm };
(6) EGH (between sm and sn) = {st |st ∈ S, and sm ≤ st ≤ sn }.

D e f i n i t i o n  4  3 2 :  L e t  S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 b e  a  l i n g u i s t i c  t e r m  s e t , 
hS =

{

sηl
∣

∣sηl ∈ S, l = 1, 2, · · · , L
}

 is a HFLE defined on S, then the mean value of hS is defined as

and the variance of hS is defined as

T h e n ,  t h e  b i n a r y  r e l a t i o n s h i p  b e t w e e n  hiS =
{

sηil

∣

∣

∣
sηil

∈ S, l = 1, 2, · · · , L
}

 a n d 

h
j
S =

{

s
η
j
l

∣

∣

∣
s
η
j
l
∈ S, l = 1, 2, · · · , L

}

 is defined as follows:

(1) If µ(hiS) > µ(h
j
S) , then hiS > h

j
S;

(2) If µ(hiS) = µ(h
j
S) , when ν(hiS) = ν(h

j
S) , then hiS = h

j
S ; when ν(hiS) > ν(h

j
S) , then hiS < h

j
S ; when 

ν(hiS) < ν(h
j
S) , then hiS > h

j
S.

For convenience of calculation, referring  to33, the hS with fewer elements can be expanded by adding element 
sηl = ζ s+ηl ⊕ (1− ζ )s−ηl until meeting the need of calculation, where s+ηl and s−ηl is the largest and smallest element 
in hS respectively, and ζ ∈ [0, 1] is the adjustment parameter. Without loss of generality, ζ = 0.5 is usually taken.

D e f i n i t i o n  5  3 4 :  L e t  S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 b e  a  l i n g u i s t i c  t e r m  s e t , 
hiS =

{

sηil

∣

∣

∣
sηil

∈ S, l = 1, 2, · · · , L
}

 and hjS =
{

s
η
j
l

∣

∣

∣
s
η
j
l
∈ S, l = 1, 2, · · · , L

}

 are two HFLEs defined on S, if

then d(hiS , h
j
S) is called the standard Euclidean distance between hiS and hjS.

Definition 6 34: Let S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 be a linguistic term set, h1S, h
2
S , · · · , h

n
S are n HFLEs 

defined on S. Let HFLPA : �n → � , if

then HFLPA is called the hesitant fuzzy linguistic power average operator, where T(hiS) =
∑n

j=1,j �=i sup(h
i
S , h

j
S) , 

the support function sup(hiS, h
j
S) represents the support degree of hiS and hjS , it satisfies the following three 

conditions:

(1) sup(hiS, h
j
S) ∈ [0, 1];

(2) sup(hiS, h
j
S) = sup(h

j
S, h

i
S);

(3) If d(hiS , h
j
S) < d(hsS , h

t
S) , then sup(hiS, h

j
S) > sup(hsS, h

t
S).

µ(hS) =
1

L

L
∑

l=1

ηl

ν(hS) =
1

L

L
∑

l=1

(ηl − µ(hS))
2

(1)d(hiS , h
j
S) =

√

√

√

√

1

L

L
∑

l=1

(

ηil − η
j
l

2τ

)2

(2)HFLPA(h1S , h
2
S , · · · , h

n
S) = ⊕n

i=1

1+ T(hiS)
∑n

i=1 (1+ T(hiS))
hiS
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Related definitions of 2‑order additive fuzzy measure and Choquet fuzzy integral

Definition 7 2: Let X = {x1, x2, · · · , xn} be a set of attributes, let X∗ = {1, 2, · · · , n} be a set of sub‑
scripts of attributes. P(X) is the power set of X, if the set function g : P(X) → [0, 1] satisfies the 
following two conditions:

(1) g(∅) = 0 , g(X) = 1;
(2) If K ∈ P(X) , T ∈ P(X) , K ⊆ T , then g(K) ≤ g(T) ; then g is called a fuzzy measure on P(X).

Grabisch6 proposed the k-order additive fuzzy measure based on pseudo-Boolean function and Möbius 
transformation. On this basis, the 2-order additive fuzzy measure is then defined as

where mi is the Möbius transformation coefficient of xi ( i = 1, 2, · · · , n ), which is an overall importance; mij is 
the Möbius transformation coefficient of 

{

xi , xj
}

 ( i, j = 1, 2, · · · , n ; i  = j ), which represents the extent of interac-
tion between xi and xj.

Definition 8 13: Let X = {x1, x2, · · · , xn} be a set of attributes, W = {w1,w2, · · · ,wn} is the weight set of X, the 
Möbius transformation coefficients of xi and 

{

xi , xj
}

 are respectively

where P =
∑

i∈X∗

wi +
∑

{i,j}⊂X∗

ξijwiwj is the sum of the importance of all xi and 
{

xi , xj
}

 , ξij is the interaction degree 

between xi and xj , ξij ∈ [−1, 1].

Definition 9 35: Let f be a nonnegative function defined on X, F is a σ-algebra composed of subsets of X (when 
X is finite, F is the power set P(X) of X), g is a fuzzy measure defined on F, then the Choquet fuzzy integral of 
function f on set X for fuzzy measure g is defined as

where Fα =
{

x
∣

∣f (x) ≥ α, x ∈ X
}

 , α ∈ [0,∞] ; 
∫∞
0 g(Fα)dα is the Riemann integral.

When X is a finite set, the elements in X are rearranged as 
{

x(1), x(2), · · · , x(n)
}

 , which makes 
f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(n)) . Let H=(c)

∫

fdg , then the Choquet fuzzy integral has the following simpli-
fied formula:

where X(i) =
{

x(i), x(i+1), · · · , x(n)
}

 , (i) = (1), (2), · · · , (n) ; f (x(0)) = 0.

The proposed method
This section uses the HFLTS to describe and depict the interactivity between attributes, and then proposes a 
2-order additive fuzzy measure identification method based on HFLID. In addition, the correctness of the pro-
posed method is proved theoretically.

Let A = (A1,A2, · · · ,Am) be a finite set of alternatives, and C = (C1,C2, · · · ,Cn) be a set of attributes to 
compare the alternatives, let C∗ = {1, 2, · · · , n} be a set of subscripts of attributes. The weight vector of attributes 
is WC = (w1,w2, · · · ,wn) , where wi ∈ [0, 1] , and 

∑n
i=1 wi = 1 . Let D = (D1,D2, · · · ,Dt) be a set of experts, the 

weight vector of experts is WD = (w1,w2, · · · ,wt) , where wp ∈ [0, 1] , and 
∑t

p=1 wp = 1 . Using the HFLTS, the 
identification process of 2-order additive fuzzy measure based on HFLID is shown in Fig. 1.

Step 1: Establish a linguistic term set S to characterize the interactivity between Ci and Cj (i ≠ j).
According to the supermodular game  theory36, the interactivity between attributes is defined as follows:

Definition 10 Let Ci and Cj (i ≠ j) have a partial order relation in the attribute set C, and the supremum Ci ∨ Cj 
and infimum Ci ∧ Cj are in C, then C is called a sub-lattice36. Let f be a real-valued function defined on a sub-
lattice C, C ⊆ Rn . For ∀Ci ,Cj ∈ C , when f (Ci ∨ Cj)+ f (Ci ∧ Cj) > f (Ci)+ f (Cj) , f is a supermodular  function36, 
then there is complementarity between Ci and Cj (i ≠ j); when f (Ci ∨ Cj)+ f (Ci ∧ Cj) < f (Ci)+ f (Cj) , 
f is a submodular  function36, then there is repeatability between Ci and Cj (i ≠ j); in particular, when 
f (Ci ∨ Cj)+ f (Ci ∧ Cj) = f (Ci)+ f (Cj) , then there is independence between Ci and Cj (i ≠ j).

(3)
g(K) =

∑

i∈K∗

mi +
∑

{i,j}⊂K∗

mij , ∀K ⊆ X

(4)
{

mi =
wi
/

P
mij =

ξijwiwj
/

P
, i, j = 1, 2, · · · , n ; i �= j

(c)

∫

fdg =

∫ ∞

0
g(Fα)dα

(5)H = (c)

∫

fdg =

n
∑

i=1

[

f (x(i))− f (x(i−1))
]

g(X(i))
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According to Definition 10a linguistic term set S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 is established to char-
acterize the interactivity between Ci and Cj (i ≠ j), where s1, s2, · · · , sτ are the linguistic terms describing com-
plementarity, the larger β is, the stronger the complementarity is; s−τ , s−τ+1, · · · , s−1 are the linguistic terms 
describing repeatability, the smaller β is, the stronger the repeatability is; s0 is then a linguistic term describing 
independence, at this point, β= 0.

Step 2: Calculate the individual evaluation result of the expert Dp ( p = 1, 2, · · · , t ) on the interactivity between 
Ci and Cj (i ≠ j).

Under the linguistic term set S, according to Definition 10, every expert employs the linguistic expressions ll 
generated by the context-free grammar GH (see Definition 2) to evaluate the interactivity between Ci and Cj (i ≠ j) 
( C2

n pairs in total). Through the transformation function EGH : ll → H
ij
S  (see Definition 3), the linguistic expres-

sions ll are further transformed into the HLFTS Hij
S .

Let Hij(p)
S  be the HFLTS of the expert Dp(p = 1, 2, · · · , t) , hij(p)S =

{

s
η
ij(p)
l

∣

∣

∣
s
η
ij(p)
l

∈ S, l = 1, 2, · · · , L
}

 is the 
HFLE in Hij(p)

S  ( C2
n pairs in total), thus, the individual evaluation result hij(p)S  of the expert Dp ( p = 1, 2, · · · , t ) 

on the interactivity between Ci and Cj (i ≠ j) is then given.
Step 3: Calculate the group evaluation result of t experts on the interactivity between Ci and Cj (i ≠ j).
Based on Definition 6, considering the weights of experts, the hesitant fuzzy linguistic weighted power aver-

age operator (HFLWPA) is defined as follows:

Definition 11 Let S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 be a linguistic term set, hij(1)S , h
ij(2)
S , · · · , h

ij(t)
S  are t 

HFLEs defined on S. The weight vector of t HFLEs is (w1,w2, · · · ,wt) , where wp ∈ [0, 1] , and 
∑t

p=1 wp = 1 . Let 
HFLWPA : �t → � , if

then HFLWPA is called the hesitant fuzzy linguistic weighted power average operator (when wp = 1/t , HFLWPA 
degenerates to  HFLPA34), where T(hij(p)S ) =

∑t
q=1,q �=p sup(h

ij(p)
S , h

ij(q)
S ) , the support function sup(hij(p)S , h

ij(q)
S ) 

represents the support degree of hij(p)S  and hij(q)S  , it satisfies the following three conditions:

(1) sup(hij(p)S , h
ij(q)
S ) ∈ [0, 1];

(2) sup(hij(p)S , h
ij(q)
S ) = sup(h

ij(q)
S , h

ij(p)
S );

(3) If d(hij(p)S , h
ij(q)
S ) < d(h

ij(r)
S , h

ij(s)
S ) , then sup(hij(p)S , h

ij(q)
S ) > sup(h

ij(r)
S , h

ij(s)
S ).

In37, Yager defined different support functions, which lead to different degrees of support. In this paper, we 
take the support function as follows: sup(hij(p)S , h

ij(q)
S ) = 1− d(h

ij(p)
S , h

ij(q)
S ) , where d(hij(p)S , h

ij(q)
S ) is the standard 

Euclidean distance between hij(p)S  and hij(q)S .
According to Definition 4, after expanding those hij(p)S  ( p = 1, 2, · · · , t ) with fewer elements, using the HFL-

WPA to aggregate the individual evaluation results of t experts, the group evaluation result of t experts on the 
interactivity between Ci and Cj (i ≠ j) is then obtained as hijS =

{

s
η
ij
l

∣

∣

∣
s
η
ij
l
∈ S, l = 1, 2, · · · , L

}

.
Step 4: Determine the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j).
According to the established linguistic term set S (see step 1), by constructing a piecewise function based on 

Definition 5, the hesitant fuzzy linguistic interaction degree (HFLID) between attributes is defined as follows:

(6)HFLWPA(h
ij(1)
S , h

ij(2)
S , · · · , h

ij(t)
S ) = ⊕t

p=1

wp(1+ T(h
ij(p)
S ))

∑t
p=1 wp(1+ T(h

ij(p)
S ))

h
ij(p)
S

Figure 1.  The identification process of 2-order additive fuzzy measure based on HFLID.
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Definition 12 Let S =
{

sβ |β = −τ , · · · ,−1, 0, 1, · · · , τ
}

 be a linguistic term set characterizing the interactivity 
between Ci and Cj (i ≠ j), hijS =

{

s
η
ij
l

∣

∣

∣
s
η
ij
l
∈ S, l = 1, 2, · · · , L

}

 is the group evaluation result of t experts on the 
interactivity between Ci and Cj (i ≠ j). Let S+ =

{

sβ |β = 0, 1, · · · , τ
}

 be a subset of S ( S+ ⊂ S ), when s
η
ij
l
∈ S+ , 

h
ij
S = h

ij

S+ ; let S− =
{

sβ |β = −τ , · · · ,−1, 0
}

 be another subset of S ( S− ⊂ S ), when s
η
ij
l
∈ S− , hijS = h

ij

S− . Let 
h0S = {s0|s0 ∈ S } , h0S+ =

{

s0
∣

∣s0 ∈ S+
}

 , h0S− =
{

s0
∣

∣s0 ∈ S−
}

 , obviously, h0S = h0S+ = h0S− . Based on Definition 5a 
piecewise function is constructed as

where H(ξ̃ij) is called the hesitant fuzzy linguistic interaction degree (HFLID) between Ci and Cj (i ≠ j), obviously, 
H(ξ̃ij) ∈ [−1, 1] . If there is complementarity between Ci and Cj (i ≠ j), then H(ξ̃ij) > 0 , and the larger H(ξ̃ij) , 
the stronger complementarity. If there is repeatability between Ci and Cj (i ≠ j), then H(ξ̃ij) < 0 , and the smaller 
H(ξ̃ij) , the stronger repeatability. If Ci and Cj (i ≠ j) are independent of each other, then H(ξ̃ij) = 0.

Therefore, according to Definition 12, the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j) can be determined.
Step 5: Calculate the Möbius transformation coefficients mi and mij of attributes.
According to the weight vector WC = (w1,w2, · · · ,wn) of attributes and the HFLID H(ξ̃ij) between Ci and 

Cj (i ≠ j), the Möbius transformation coefficients mi and mij of the attributes are calculated by using Eq. (4). The 
calculation formula is as follows:

where P =
∑

i∈C∗

wi +
∑

{i,j}⊂C∗

H(ξ̃ij)wiwj is the sum of the importance of all Ci and 
{

Ci ,Cj

}

 (i ≠ j).

Step 6: Identify the 2-order additive fuzzy measure gK.
According to the Möbius transformation coefficients mi and mij of attributes, the 2-order additive fuzzy 

measure gK are calculated using Eq. (3). The calculation formula is as follows:

Theorem 1: The fuzzy measure identified by steps 1 to 6 is a 2-order additive fuzzy measure.
To prove that the fuzzy measure identified by steps 1 to 6 is a 2-order additive fuzzy measure, it is only neces-

sary to prove that the calculated Möbius transformation coefficients satisfy the following  constraints6:

(1) m(∅) = 0;
(2) mi ≥ 0 , ∀i ∈ C∗;
(3) 

∑

i∈C∗

mi +
∑

{i,j}⊂C∗

mij = 1;

(4) mi +
∑

j∈K∗\{i}

mij ≥ 0 , ∀K ⊂ C.

Proof: (1) m(∅) = 0 , obviously holds.
(2) Because H(ξ̃ij) = H(ξ̃ji) , and 

∑n
i=1 wi = 1 , P can be further written as

Because H(ξ̃ij) ∈ [−1, 1] , and wj ∈ [0, 1] , we have
−wj ≤ H(ξ̃ij)wj ≤ wj , i  = j.
Sum the two sides of the above inequality to j, we obtain

Multiplying both sides of the above inequality by wi , we obtain

Sum the two sides of the above inequality to i, and the following inequality can be given

(7)H(ξ̃ij) =
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Therefore, we have

That is to say

Because P > 0 , and wi ≥ 0 , we can get mi =
wi
/

P ≥ 0.

(3) 
∑

i∈C∗

mi +
∑

{i,j}⊂C∗

mij =
∑

i∈C∗

wi
/

P +
∑

{i,j}⊂C∗

H(ξ̃ij)wiwj

/

P = 1
P

[

∑

i∈C∗

wi +
∑

{i,j}⊂C∗

H(ξ̃ij)wiwj

]

= 1 , obvi-

ously holds.

(4) mi +
∑

j∈K∗\{i}

mij =
wi
P +

∑

j∈K∗\{i}

H(ξ̃ij)wiwj

P = wi
P

[

1+
∑

j∈K∗\{i}

H(ξ̃ij)wj

]

.

Because H(ξ̃ij) ∈ [−1, 1] , and wj ∈ [0, 1] , we have −(1− wi) ≤
∑

j∈K∗\{i}

H(ξ̃ij)wj ≤ 1− wi . Thus, the following 

inequality can be given

Hence, we get mi +
∑

j∈K∗\{i}

mij ≥ 0 , ∀K ⊂ C . Q.E.D.

A MADM process based on the proposed method
According to the 2-order additive fuzzy measure identification method based on HFLID, this section presents 
a MADM process.

Taking the Choquet fuzzy integral as a nonlinear integration operator, the MADM process based on the 
proposed method (see “The proposed method”) is as follows:

Step 1: Construct the normalized decision matrix X̃.
According to the types of attributes (including positive type, negative type, neutral type), the decision matrix 

X is normalized to construct a normalized decision matrix X̃:

where x̃ji is the normalized attribute value of alternative Aj ( j = 1, 2, · · · ,m ) under attribute Ci ( i = 1, 2, · · · , n).
Step 2: Determine the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j).
Given the weight vector WD of experts, the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j) can be determined by step 

1–4 in “The proposed method”.
Step 3: Calculate the Möbius transformation coefficients mi and mij of attributes.
Given the weight vector WC of attributes, according to the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j), the Möbius 

transformation coefficients mi and mij of the attributes are calculated by step 5 in “The proposed method”.
Step 4: Identify the 2-order additive fuzzy measure gK.
According to the Möbius transformation coefficients mi and mij of attributes, the 2-order additive fuzzy 

measure gK can be further identified by step 6 in “The proposed method”.
Step 5: Calculate the Choquet fuzzy integral values and the ranking of alternatives.
By reordering the normalized attribute value x̃ji ( i = 1, 2, · · · , n ) of the alternative Aj ( j = 1, 2, · · · ,m ) from 

small to large, the x̃j(i) can be obtained. Substituting the x̃j(i) and the 2-order additive fuzzy measure gK into 
Eq. (5), the Choquet fuzzy integral value Hj of the alternative Aj can be calculated. Simultaneously, the ranking 
of alternatives can be given, where the larger Hj , the better the alternative Aj.

Application Example
This section uses the application example and data  from16 to demonstrate the feasibility and effectiveness of the 
MADM process based on the proposed method.
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Credit assessment index system and sample data
Considering the characteristics of big data  enterprises38, and following the principles of selecting indicators, such 
as scientificalness, objectivity, systematization, functionality, dynamics, relative independence, feasibility (or 
operability), comparability and so on, a credit assessment index system for big data enterprises was constructed, 
it included 6 primary indicators and 16 secondary indicators (see Table 1  in16), where the primary indicators 
included Debt Paying Ability (C1), Operational Capability (C2), Profitability (C3), Growth Capability (C4), Tech-
nological Innovation Capability (C5) and Industry Growth (C6).

We selected the big data listed companies in the Growth Enterprise Market (GEM) in China – Wangsu Science 
& Technology Co., Ltd. (300017), Beijing Lanxum Technology Co., Ltd. (300010), and Wuhan Tianyu Informa-
tion Industry Co., Ltd. (300205) to form a set of alternatives, denoted by A = {A1, A2, A3}, where the alternative 
A1 and A2 belong to the software service industry, and the alternative A3 belongs to the electronic components 
industry. The sample data were the section data of 2016. We obtained a total of 48 original data (see Table 2  in16), 
where the original data of the Number of Invention Patent Applications Announced were from the Tian Yan Cha 
website, the original data of the Network Attention of Industry were from the Baidu Index website, and the rest 
of the original data were from the East Money website.

Process and results of credit assessment
Step 1: Construct the normalized decision matrix.

Using the algorithm given  in39, based on the original data, the weight vector WC of attributes was calculated 
 as16

WC = (0.1702, 0.1708, 0.1810, 0.1208, 0.2261, 0.1312).
Combined with the algorithm given  in40, based on the original data, the normalized decision matrix X̃ was 

further constructed  as16

X̃ =





0.4709 0.8976 0.9151 0.8192 0.8949 0.7789
0.8662 0.6048 0.6148 0.9500 0.7786 0.7789
0.8147 0.7671 0.1140 0.6054 0.2868 0.9156



.

Step 2: Determine the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j).
According to step 1 in “The proposed method”, a linguistic term set S was established to characterize the 

interactivity between Ci and Cj (i ≠ j), where S = {s−4 = repeatability is extremely strong, s−3 = repeatability is very 
strong, s−2 = repeatability is strong, s−1 = repeatability is relatively strong, s0 = independence, s1 = complementarity 
is relatively strong, s2 = complementarity is strong, s3 = complementarity is very strong, s4 = complementarity 
is extremely strong }.

Table 1.  Individual evaluation results of interactivity.

Attributes Ci and Cj (i ≠ j)

Expert 1 Expert 2 Expert 3

ll ∈ Sll h
ij(1)
S ll ∈ Sll h

ij(2)
S ll ∈ Sll h

ij(3)
S

{C1, C2} complementarity is relatively strong {s1} complementarity is relatively strong {s1}
complementarity is between relatively 
strong and strong {s1, s2}

{C1, C3} complementarity is at least strong {s2, s3, s4} complementarity is strong {s2} complementarity is strong {s2}

{C1, C4}
complementarity is between relatively 
strong and strong {s1, s2} complementarity is relatively strong {s1} complementarity is relatively strong {s1}

{C1, C5} complementarity is relatively strong {s1} complementarity is relatively strong {s1}
complementarity is between relatively 
strong and strong {s1, s2}

{C1, C6} complementarity is relatively strong {s1}
complementarity is between inde-
pendence and relatively strong {s0, s1}

complementarity is between inde-
pendence and relatively strong {s0, s1}

{C2, C3}
complementarity is between strong 
and very strong {s2, s3}

complementarity is between strong 
and very strong {s2, s3} complementarity is strong {s2}

{C2, C4}
complementarity is between relatively 
strong and strong {s1, s2}

complementarity is between relatively 
strong and strong {s1, s2}

complementarity is between inde-
pendence and relatively strong {s0, s1}

{C2, C5} complementarity is relatively strong {s1}
complementarity is between relatively 
strong and strong {s1, s2}

complementarity is between relatively 
strong and strong {s1, s2}

{C2, C6} complementarity is relatively strong {s1}
complementarity is between inde-
pendence and relatively strong {s0, s1}

complementarity is between inde-
pendence and relatively strong {s0, s1}

{C3, C4}
complementarity is between strong 
and very strong {s2, s3} complementarity is strong {s2} complementarity is strong {s2}

{C3, C5}
complementarity is between relatively 
strong and strong {s1, s2} complementarity is strong {s2}

complementarity is between relatively 
strong and strong {s1, s2}

{C3, C6}
complementarity is between relatively 
strong and strong {s1, s2} complementarity is relatively strong {s1} complementarity is strong {s2}

{C4, C5}
complementarity is between relatively 
strong and strong {s1, s2}

complementarity is between relatively 
strong and strong {s1, s2} complementarity is strong {s2}

{C4, C6} repeatability is strong {s-2}
repeatability is between strong and 
very strong {s-2, s-3} repeatability is strong {s-2}

{C5, C6} complementarity is relatively strong {s1}
complementarity is between inde-
pendence and relatively strong {s0, s1} complementarity is relatively strong {s1}
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In this paper, three experts were invited to analyze the six attributes in pairs respectively. According to step 
2 in “The proposed method”, under the linguistic term set S, according to Definition 10, every expert employed 
the linguistic expressions ll generated by the context-free grammar GH to evaluate the interactivity between Ci 
and Cj (i ≠ j) ( C2

6 pairs in total). Through the transformation function EGH : ll → H
ij
S  , the linguistic expressions 

ll were further transformed into the HLFTS Hij
S  . Thus, the individual evaluation results hij(p)S  (p = 1, 2, 3) of three 

experts on the interactivity between Ci and Cj (i ≠ j) were then given, as shown in Table 1.
Adopting the cycle mutual evaluation  method41, the weight vector of experts was calculated as 

WD = (0.3976, 0.3012, 0.3012) (see Appendix A  in16 for full calculation principle and process).
According to step 3 in “The proposed method”, after expanding those hij(p)S  (p = 1, 2, 3) with fewer elements 

(see Table 2), using the HFLWPA to aggregate the individual evaluation results of three experts, the group 
evaluation result of three experts on the interactivity between Ci and Cj (i ≠ j) was then obtained (see Table 2). 
According to step 4 in “The proposed method”, with Eq. (7), the HFLID H(ξ̃ij) between Ci and Cj (i ≠ j) was 
calculated, as shown in Table 2.

Taking H(ξ̃12) as an example, its calculation process was as follows:
(1) Using Eq. (1), the standard Euclidean distance among hij(p)S  (p = 1, 2, 3) was calculated as
d(h

12(1)
S , h

12(2)
S ) = 0 , d(h12(1)S , h

12(3)
S ) = 0.0807 , d(h12(2)S , h

12(3)
S ) = 0.0807.

According to Definition 11, their corresponding support degree was also obtained as
sup(h

12(1)
S , h

12(2)
S ) = 1 , sup(h12(1)S , h

12(3)
S ) = 0.9193 , sup(h12(2)S , h

12(3)
S ) = 0.9193.

Thus, we can get
T(h

12(1)
S ) = 1.9193 , T(h12(2)S ) = 1.9193 , T(h12(3)S ) = 1.8386.

(2) Using Eq. (6), the group evaluation result of three experts on the interactivity between C1 and C2 was 
calculated as

h12S = {s1, s1.1471, s1.2941}.
(3) With Eq. (7), the HFLID H(ξ̃12) between C1 and C2 was then calculated as

H(ξ̃12) = d(h12S+ , h
0
S+) =

√

1
3

(

(

1
4

)2
+

(

1.1471
4

)2
+

(

1.2941
4

)2
)

= 0.2883.

Step 3: Calculate the Möbius transformation coefficients mi and mij of attributes.
Based on the weight vector WC of attributes and Table 2, using Eq. (8), the Möbius transformation coefficients 

mi and mij of attributes were calculated, as shown in Table 3, where P = 1.1378 . Taking m12 as an example, we 
had m12 = (0.2883× 0.1702× 0.1708)/1.1378 = 0.0074.

Step 4: Identify the 2-order additive fuzzy measure gK.
Based on Table 3, using Eq. (9), the 2-order additive fuzzy measure gK was calculated, as shown in Table 4. 

Taking g{1,2} as an example, we had g{1,2} = 0.1496+ 0.1501+ 0.0074 = 0.3071.
Step 5: Calculate the Choquet fuzzy integral values and the ranking of alternatives.
Take the alternative A1 as an example.
According to step 3 in “A MADM process based on the proposed method”, reordering the normalized attribute 

value x̃1i ( i = 1, 2, · · · , 6 ) of alternative A1 from small to large, we can get x̃11 < x̃16 < x̃14 < x̃15 < x̃12 < x̃13 , 
which can be denoted by

x̃1(1) < x̃1(2) < x̃1(3) < x̃1(4) < x̃1(5) < x̃1(6).
Substituting the x̃1(i) and the 2-order additive fuzzy measure gK into Eq. (5), the Choquet fuzzy integral value 

of the alternative A1 was calculated as

H1 = (0.4709− 0.0000)× 1.0000+ (0.7789− 0.4709)× 0.8079+ (0.8192− 0.7789)× 0.6829

Table 2.  Hesitant fuzzy linguistic interaction degrees between attributes.

Attributes Ci and Cj (i ≠ j)

Individual Evaluation Results of Interactivity (Expanded) Group Evaluation Results of 
Interactivity

Hesitant Fuzzy Linguistic 
Interaction DegreesExpert 1 Expert 2 Expert 3

{C1, C2} {s1, s1, s1} {s1, s1, s1} {s1, s1.5, s2} {s1, s1.1471, s1.2941} 0.2883

{C1, C3} {s2, s3, s4} {s2, s2, s2} {s2, s2, s2} {s2, s2.3860, s2.7721} 0.6017

{C1, C4} {s1, s1.5, s2} {s1, s1, s1} {s1, s1, s1} {s1, s1.1966, s1.3933} 0.3018

{C1, C5} {s1, s1, s1} {s1, s1, s1} {s1, s1.5, s2} {s1, s1.1471, s1.2941} 0.2883

{C1, C6} {s1, s1, s1} {s0, s0.5, s1} {s0, s0.5, s1} {s0.3933, s0.6966, s1} 0.1848

{C2, C3} {s2, s2.5, s3} {s2, s2.5, s3} {s2, s2, s2} {s2, s2.3529, s2.7059} 0.5926

{C2, C4} {s1, s1.5, s2} {s1, s1.5, s2} {s0, s0.5, s1} {s0.7093, s1.2093, s1.7093} 0.3191

{C2, C5} {s1, s1, s1} {s1, s1.5, s2} {s1, s1.5, s2} {s1, s1.3034, s1.6067} 0.3317

{C2, C6} {s1, s1, s1} {s0, s0.5, s1} {s0, s0.5, s1} {s0.3933, s0.6966, s1} 0.1848

{C3, C4} {s2, s1.5, s3} {s2, s2, s2} {s2, s2, s2} {s2, s2.1966, s2.3933} 0.5506

{C3, C5} {s1, s1.5, s2} {s2, s2, s2} {s1, s1.5, s2} {s1.2941, s1.6471, s2} 0.4180

{C3, C6} {s1, s1.5, s2} {s1, s1, s1} {s2, s2, s2} {s1.2981, s1.5000, s1.7019} 0.3773

{C4, C5} {s1, s1.5, s2} {s1, s1.5, s2} {s2, s2, s2} {s1.2941, s1.6471, s2} 0.4180

{C4, C6} {s-2, s-2, s-2} {s-2, s-2.5, s-3} {s-2, s-2, s-2} {s-2, s-2.1471, s-2.2941} -0.5376

{C5, C6} {s1, s1, s1} {s0, s0.5, s1} {s1, s1, s1} {s0.7059, s0.8529, s1} 0.2153
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+(0.8949− 0.8192)× 0.5503+ (0.8976− 0.8949)× 0.3253+ (0.9151− 0.8976)× 0.1591 = 0.7926.
Similarly, we can also obtain H2 = 0.7643 and H3 = 0.5138.
Since H1 > H2 > H3 , then the ranking of alternatives was A1 ≻ A2 ≻ A3.
That is to say, the credit status of the alternative A1 was relatively good, and the credit status of the alternative 

A3 was relatively poor.

Comparative analysis
For comparison, we invited the above three experts to use the scoring  method13, the diamond pairwise com-
parisons (DPC)  method9 and the intuitionistic fuzzy sets (IFSs)  method16 to determine the interaction degrees 
between attributes, respectively. Given the weight vector WD = (0.3976, 0.3012, 0.3012) of experts, the scoring 
interaction  degrees13, the DPC interaction  degrees9 and the intuitionistic fuzzy interaction  degrees16 between 
attributes were further obtained, as shown in Table 5.

Furthermore, we replaced the HFLIDs (see Table 2) in step 2 of “Process and results of credit assessment” 
with the scoring interaction degrees (see Table 5). Ceteris paribus, the Choquet fuzzy integral values of alterna-
tives were calculated as

H ′
1 = 0.7946 , H ′

2 = 0.7686 , H ′
3 = 0.5244.

Since H ′
1 > H ′

2 > H ′
3 , then the ranking of alternatives was A1 ≻ A2 ≻ A3.

Similarly, we also replaced the HFLIDs (see Table 2) in step 2 of “Process and results of credit assessment" 
with the DPC interaction degrees (see Table 5). Ceteris paribus, the Choquet fuzzy integral values of alternatives 
were calculated as

H ′′
1 = 0.7931 , H ′′

2 = 0.7670 , H ′′
3 = 0.5211.

Since H ′′
1 > H ′′

2 > H ′′
3  , then the ranking of alternatives was A1 ≻ A2 ≻ A3.

In addition, we also replaced the HFLIDs (see Table 2) in step 2 of “Process and results of credit assessment” 
with the intuitionistic fuzzy interaction degrees (see Table 5). Ceteris paribus, the Choquet fuzzy integral values 
of alternatives were calculated as

H ′′′
1 = 0.7927 , H ′′′

2 = 0.7652 , H ′′′
3 = 0.5157.

Since H ′′′
1 > H ′′′

2 > H ′′′
3  , then the ranking of alternatives was A1 ≻ A2 ≻ A3.

Table 3.  Calculation results of Möbius transformation coefficients.

Möbius Transformation 
Coefficients Coefficient Values

Möbius Transformation 
Coefficients Coefficient Values

Möbius Transformation 
Coefficients Coefficient Values

m1 0.1496 m13 0.0163 m26 0.0037

m2 0.1501 m14 0.0055 m34 0.0106

m3 0.1591 m15 0.0098 m35 0.0150

m4 0.1062 m16 0.0036 m36 0.0079

m5 0.1987 m23 0.0161 m45 0.0100

m6 0.1153 m24 0.0058 m46 -0.0075

m12 0.0074 m25 0.0113 m56 0.0056

Table 4.  Calculation results of 2-order additive fuzzy measures.

K gK K gK K gK K gK

{ø} 0.0000 {3, 4} 0.2758 {2, 3, 4} 0.4478 {1, 3, 4, 5} 0.6807

{1} 0.1496 {3, 5} 0.3728 {2, 3, 5} 0.5503 {1, 3, 4, 6} 0.5665

{2} 0.1501 {3, 6} 0.2823 {2, 3, 6} 0.4522 {1, 3, 5, 6} 0.6809

{3} 0.1591 {4, 5} 0.3149 {2, 4, 5} 0.4821 {1, 4, 5, 6} 0.5968

{4} 0.1062 {4, 6} 0.2140 {2, 4, 6} 0.3736 {2, 3, 4, 5} 0.6829

{5} 0.1987 {5, 6} 0.3196 {2, 5, 6} 0.4847 {2, 3, 4, 6} 0.5672

{6} 0.1153 {1, 2, 3} 0.4985 {3, 4, 5} 0.4996 {2, 3, 5, 6} 0.6828

{1, 2} 0.3071 {1, 2, 4} 0.4245 {3, 4, 6} 0.3915 {2, 4, 5, 6} 0.5992

{1, 3} 0.3250 {1, 2, 5} 0.5268 {3, 5, 6} 0.5016 {3, 4, 5, 6} 0.6209

{1, 4} 0.2612 {1, 2, 6} 0.4297 {4, 5, 6} 0.4284 {1, 2, 3, 4, 5} 0.8713

{1, 5} 0.3581 {1, 3, 4} 0.4472 {1, 2, 3, 4} 0.6265 {1, 2, 3, 4, 6} 0.7496

{1, 6} 0.2685 {1, 3, 5} 0.5485 {1, 2, 3, 5} 0.7333 {1, 2, 3, 5, 6} 0.8694

{2, 3} 0.3253 {1, 3, 6} 0.4518 {1, 2, 3, 6} 0.6291 {1, 2, 4, 5, 6} 0.7750

{2, 4} 0.2621 {1, 4, 5} 0.4797 {1, 2, 4, 5} 0.6542 {1, 3, 4, 5, 6} 0.8056

{2, 5} 0.3601 {1, 4, 6} 0.3727 {1, 2, 4, 6} 0.5396 {2, 3, 4, 5, 6} 0.8079

{2, 6} 0.2691 {1, 5, 6} 0.4826 {1, 2, 5, 6} 0.6551 {1, 2, 3, 4, 5, 6} 1.0000
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For simplicity, we referred to the MADM process based on the HFLIDs as Method 1 (our method), referred 
to the MADM process based on the scoring interaction degrees as Method 2, referred to the MADM process 
based on the DPC interaction degrees as Method 3, and referred to the MADM process based on the intuitionistic 
fuzzy interaction degrees as Method 4. The Choquet fuzzy integral values of alternatives of Method 1, Method 
2, Method 3 and Method 4 were shown in Table 6.

We further investigated the discrimination of Method 1 for alternatives, as well as Method 2, Method 3 and 
Method 4. Adopting the algorithm of discrimination given in 42 (see Appendix A for full calculation principle), 
the discrimination of Method 1 for alternatives was calculated as

ρ= 0.7926−0.7643
0.7926 + 0.7926−0.5138

0.7926 + 0.7643−0.5138
0.7643 = 0.7153.

Similarly, the discrimination of Method 2 for alternatives was calculated as
ρ′= 0.7946−0.7686

0.7946 + 0.7946−0.5244
0.7946 + 0.7686−0.5244

0.7686 = 0.6903.
Similarly, the discrimination of Method 3 for alternatives was calculated as
ρ′′ = 0.7931−0.7670

0.7931 + 0.7931−0.5211
0.7931 + 0.7670−0.5211

0.7670 = 0.6965.
Similarly, the discrimination of Method 4 for alternatives was calculated as
ρ′′′ = 0.7927−0.7652

0.7927 + 0.7927−0.5157
0.7927 + 0.7652−0.5157

0.7652 = 0.7102.
The discrimination of Method 1, Method 2, Method 3 and Method 4 for alternatives was shown in Table 6.
As shown in Table 6, although the ranking results of Method 2, Method 3 and Method 4 are consistent with 

that of Method 1, the discrimination of Method 1 for alternatives is higher than that of Method 2, Method 3 and 
Method 4, which means that the decision-making effect of Method 1 is better than that of Method 2, Method 
3 and Method 4.

Discussion
From the results and analysis of the previous section, we observed that Method 1 was able to obtain the higher 
discrimination value than Method 2, Method 3 and Method 4 (Method 1 was 0.7153, Method 2 was 0.6903, 
Method 3 was 0.6965 and Method 4 was 0.7102), and the slightly lower Choquet fuzzy integral mean value 
than Method 2, Method 3 and Method 4 (Method 1 was 0.6902, Method 2 was 0.6959, Method 3 was 0.6938 
and Method 4 was 0.6912), where the Choquet fuzzy integral mean values of the four methods are calculated 
as follows:

H = 0.7926+0.7643+0.5138
3 = 0.6902 ; H ′ = 0.7946+0.7686+0.5244

3 = 0.6959 ; H ′′ = 0.7931+0.7670+0.5211
3 = 0.6938 ; 

H
′′′
= 0.7927+0.7652+0.5157

3 = 0.6912.
where H  , H ′ , H ′′ and H ′′′ represents the mean value of H , H ′ , H ′′ and H ′′′ , respectively.
Compared with Method 2, Method 3 and Method 4, Method 1 can obtain the higher discrimination value. 

Since the variance of interaction degrees determined by Method 1 (its value was equal to 0.0673) was higher than 

Table 5.  The interaction degrees between attributes.

Attributes Ci and Cj (i ≠ j) Scoring Interaction Degrees DPC Interaction Degrees Intuitionistic Fuzzy Interaction Degrees

{C1, C2} 0.2301 0.2801 0.2851

{C1, C3} 0.4205 0.4705 0.5815

{C1, C4} 0.2301 0.2801 0.2851

{C1, C5} 0.2301 0.2801 0.2851

{C1, C6} 0.1398 0.1747 0.1503

{C2, C3} 0.4205 0.4705 0.5815

{C2, C4} 0.2301 0.2801 0.2851

{C2, C5} 0.2301 0.2801 0.2851

{C2, C6} 0.1398 0.1747 0.1503

{C3, C4} 0.3602 0.4102 0.5206

{C3, C5} 0.2602 0.3102 0.3611

{C3, C6} 0.2602 0.3102 0.3611

{C4, C5} 0.2602 0.3102 0.3611

{C4, C6} -0.4205 -0.4705 -0.5659

{C5, C6} 0.1398 0.1747 0.1503

Table 6.  The Choquet fuzzy integral values of alternatives and discrimination.

Method Choquet fuzzy integral values of A1 Choquet fuzzy integral values of A2 Choquet fuzzy integral values of A3 Discrimination

Method 1 0.7926 0.7643 0.5138 0.7153

Method 2 0.7946 0.7686 0.5244 0.6903

Method 3 0.7931 0.7670 0.5211 0.6965

Method 4 0.7927 0.7652 0.5157 0.7102
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that of Method 2 (its value was equal to 0.0355), Method 3 (its value was equal to 0.0449) and Method 4 (its value 
was equal to 0.0684). According to Eq. (4), the variances of mi and mij increase with the increase of the variance 
of interaction degrees. From Eq. (3) and Eq. (5), we can further see that the variance of g(K) and the variance of 
H also increase correspondingly. Thus, according to the algorithm of discrimination 42, the discrimination value 
becomes larger. This transmission mechanism is as follows:

where σ 2
ξij

 , σ 2
mi

 , σ 2
mij

 , σ 2
g(K) and σ 2

H represents the variance of ξij , mi , mij , g(K) and H , respectively.
Compared with Method 2, Method 3 and Method 4, Method 1 can obtain the slightly lower Choquet fuzzy 

integral mean value. Since the average value of interaction degrees determined by Method 1 (its value was equal 
to 0.3023) was higher than that of Method 2 (its value was equal to 0.2087), Method 3 (its value was equal to 
0.2490) and Method 4 (its value was equal to 0.2718). According to Eq. (4), when the average value of interac-
tion degrees increases, the mean value of P increases, meanwhile, the mean value of mi decreases and the mean 
value of mij increases. However, because |mi| ≫

∣

∣mij

∣

∣ , from Eq. (3), we can further see that the mean value of 
g(K) also decreases correspondingly. Thus, according to Eq. (5), the mean value of H becomes smaller. This 
transmission mechanism is as follows:

where ξ ij , P , mi , mij and g(K) represents the average value of ξij , P , mi , mij and g(K) , respectively.
Both the variance and the average value of interaction degrees determined by Method 1 were higher than 

that of Method 2, Method 3 and Method 4, the fundamental reasons are as follows: 1) The Method 1 defines the 
interactivity between attributes by using the supermodular game theory, so that the interaction between attrib-
utes is easier to explain and understand. According to this definition, the linguistic term set S is established to 
characterize the interactivity between attributes. The experts then employ the linguistic expressions generated by 
the context-free grammar to qualitatively describe the interactivity between attributes under the linguistic term 
set S, which makes the evaluation of the interactivity between attributes closer to reality. 2) In Method 1, through 
the conversion function, the linguistic expressions are transformed into the HFLTSs. The individual evaluation 
results of all experts are further aggregated by using the defined HFLWPA. The HFLID between attributes is then 
defined and calculated, thereby better preserving, and characterizing the experts’ evaluation information. 3) In 
Method 2, the experts use scoring method to determine the interaction degree between attributes according to 
experience and preference. The Method 3 uses diamond diagram to help decision makers intuitively determine 
the relative importance and interaction coefficient between attributes. These two methods lack both the theo-
retical definition of the interactivity between attributes and the fuzziness and hesitation of decision-making. In 
addition, the Method 4 uses the intuitionistic fuzzy sets (IFSs) to describe and depict the interactivity between 
attributes, however, the IFSs cannot reflect the hesitation of expert decision-making.

Conclusion
The marginal contributions of this paper may be as follows: 1) The interactivity between attributes is defined by 
the supermodular game theory. According to this definition, a linguistic term set is established to characterize 
the interactivity between attributes. Under the linguistic term set, the experts employ the linguistic expressions 
generated by the context-free grammar to qualitatively describe the interactivity between attributes. 2) Through 
the conversion function, the linguistic expressions are transformed into HFLTSs. The individual evaluation results 
of all experts are further aggregated with the defined hesitant fuzzy linguistic weighted power average opera-
tor (HFLWPA). 3) Based on the standard Euclidean distance formula of the hesitant fuzzy linguistic elements 
(HFLEs), the hesitant fuzzy linguistic interaction degree (HFLID) between attributes is defined and calculated 
by constructing a piecewise function. As a result, a 2-order additive fuzzy measure identification method based 
on HFLID is proposed.

The advantages of this paper may be as follows: 1) The proposed method gives the definition of interactivity 
between attributes by using the supermodular game theory, which makes the interaction between attributes easy 
to explain and understand. 2) According to this definition, a linguistic term set is established to characterize the 
interactivity between attributes. Under the linguistic term set, the proposed method allows the experts to quali-
tatively describe the interactivity between attributes by using linguistic expressions generated by the context-free 
grammar, when they are hesitant among multiple possible linguistic information, which reflects both fuzziness 
and hesitation of decision-making and makes the evaluation of the interactivity between attributes closer to 
reality. 3) Through the conversion function, the linguistic expressions are transformed into the HFLTSs. The 
individual evaluation results of all experts are further aggregated by using the defined HFLWPA, which not only 
considers the weights of experts, but also considers the mutual support degree of opinions of experts, thereby 
ensuring the rationality of decision-making. 4) The proposed method uses the standard Euclidean distance 
formula of HFLEs to define and calculate the HFLID between attributes, so the transformation from qualitative 
description to quantitative characterization is finally realized, thereby better preserving, and characterizing the 
experts’ evaluation information.

This work proposed a 2-order additive fuzzy measure identification method based on HFLID. Obviously, on 
the one hand, compared with the objective methods describing and depicting the interactivity between attributes 
(as in 7,17–21 and 22), the proposed method has subjectivity. On the other hand, compared with the subjective 
methods describing and depicting the interactivity between attributes (as in 9–15 and 16), the proposed method 
can reflect both fuzziness and hesitation.

σ 2
ξij

↑⇒ σ 2
mi
, σ 2

mij
↑⇒ σ 2

g(K) ↑⇒ σ 2
H ↑⇒ ρ ↑

ξ ij ↑⇒ P ↑⇒ mi ⇓,mij ↑⇒ g(K) ↓⇒ H ↓
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By using the HFLTS, this work successfully reflects both fuzziness and hesitation in evaluating the interac-
tivity between attributes in the identification process of 2-order additive fuzzy measure. The proposed method 
can be widely applied to multi-attribute decision-making problems such as credit evaluation, ESG evaluation, 
competitiveness evaluation, and technological innovation capability evaluation, which has high practical applica-
tion value and broad application prospects.

The number of samples and experts used in the application example (see “Application Example”) is small, 
which weakens the persuasiveness of the analysis results and the stability of the interactivity evaluation. In the 
future, the number of samples and experts should be increased. Furthermore, the established linguistic term set 
S contains only nine linguistic terms, which is relatively extensive. Therefore, it is necessary to add the linguistic 
terms in S to improve the scientificity of decision-making in the future. At the same time, the credit assessment 
index system for big data enterprises (see Table 1  in16) includes only six primary indicators, it is easier to calculate 
the 2-order additive fuzzy measure. For example, experts only need to evaluate the interactivity of C2

6 = 15 pairs 
of attributes and the 2-order additive fuzzy measure only need to determine 6× (6+ 1)

/

2 = 21 parameters. 
However, when there are many primary indicators, the amount and complexity of calculation will increase 
significantly. Therefore, it is necessary to design calculation programs to complete calculations in the future. In 
addition, Method 1 should be compared with other methods except Method 2, Method 3 and Method 4, such as 
the proportional scaling  method11, multicriteria correlation preference information  method12, qualitative cross-
impact analysis  method15, etc. This is one of the shortcomings of this work and needs to be improved in the future.

Data availability
Most of the data generated or analyzed during this study are included in the manuscript, and the rest data are 
promptly available to readers without undue qualifications. The datasets used and/or analyzed during the current 
study are available from the corresponding author on reasonable request.

Appendix A
In “Comparative analysis”, the discrimination of the MADM method for alternatives was calculated by using the 
algorithm of  discrimination42. Its calculation principle is as follows:

Suppose a decision model or algorithm evaluate the alternatives with decision coefficient α, the decision coef-
ficient for alternative Ai is αi , the decision coefficient for alternative Aj is αj , and αi > αj , then the discrimination 
of the decision model or algorithm for alternatives Ai and Aj is defined as

Obviously, the larger the discrimination ρij is, the better the decision-making effect of the decision model or 
algorithm for alternatives Ai and Aj is.
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