
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8595  | https://doi.org/10.1038/s41598-024-58902-1

www.nature.com/scientificreports

Identifying and overcoming 
COVID‑19 vaccination impediments 
using Bayesian data mining 
techniques
Bowen Lei 1, Arvind Mahajan 2 & Bani Mallick 1*

The COVID‑19 pandemic has profoundly reshaped human life. The development of COVID‑19 vaccines 
has offered a semblance of normalcy. However, obstacles to vaccination have led to substantial loss of 
life and economic burdens. In this study, we analyze data from a prominent health insurance provider 
in the United States to uncover the underlying reasons behind the inability, refusal, or hesitancy 
to receive vaccinations. Our research proposes a methodology for pinpointing affected population 
groups and suggests strategies to mitigate vaccination barriers and hesitations. Furthermore, we 
estimate potential cost savings resulting from the implementation of these strategies. To achieve our 
objectives, we employed Bayesian data mining methods to streamline data dimensions and identify 
significant variables (features) influencing vaccination decisions. Comparative analysis reveals that the 
Bayesian method outperforms cutting‑edge alternatives, demonstrating superior performance.

The emergence of COVID-19 has greatly impacted people’s lives since 2020 and will continue to do so. The 
Center for Systems Science and Engineering (CSSE) at Johns Hopkins  University1 reports that there have been 
more than 676 million cases and 6.8 million deaths in the world. To combat COVID-19, there are a number of 
restrictive methods to inhibit the spread of the  virus2–5. These include lockdowns, quarantine, etc. These meth-
ods are widely used in many countries but many studies raise concerns about the costs and side effects of their 
 use6–10, such as loss of gross domestic product (GDP), educational opportunities, increased deaths, higher mental 
health risks, and other societal costs. In addition to these restrictive methods, vaccines are another potent way 
to tackle the  pandemic3,11,12. Higher vaccination rates would bring many benefits. However, the facts show that 
many people are unable or hesitant to get  vaccinated12–19. In our study, impediments to COVID-19 vaccination 
are defined as unwillingness or refusal to receive the COVID-19 vaccine, or inability to receive the COVID-
19 vaccine due to lack of vaccine availability ( CDC provides a definition of vaccination hesitancy measure at 
the following link https:// data. cdc. gov/ stori es/s/ Vacci ne- Hesit ancy- for- COVID- 19/ cnd2- a6zw//#:% 7E: text= 
The\% 20CVA C\% 20mea sures \% \% 2020t he\% 20lev el% 82% 280. 80\% 2D1.0% 29\% 20Con cern. However, this is 
a subset of our impediment measure since CDC hesitancy measure doesn’t consider the lack of availability.) We 
aim to predict vaccine impediment using Bayesian technique and to identify groups of important variables that 
contribute to impediments to vaccination. We then make policy recommendations to address impediments to 
vaccination. The World Health Organization (WHO) has recognized vaccine impediment as one of the top ten 
global health threats, as it can lead to low vaccination rates and the resurgence of preventable diseases. This 
impediment can stem from a variety of reasons.

In this paper, we conducted an analysis of data sourced from a prominent health insurance provider in the 
United States. We briefly present how the vaccine impediment varies across insured populations, including gen-
der, race, income level, and age, as shown in Fig. 1. In terms of gender, similar to results of previous  research20, we 
can see that women and men have almost the same percentage of vaccine impediments, with males having slightly 
higher impediments to vaccination. For different racial groups, Whites and Asians get relatively low impediment 
scores, while Hispanics, Blacks, and Native Americans have higher scores based on the data. A similar pattern 
has been found in existing  works21. For each income level, people tend to be more willing to vaccinate as their 
income increases, from the lower to the upper middle class, which is also found in other  studies22. However, 
the upper class is similar to the lower class, who are hampered in terms of vaccination. For different age groups, 
young and middle-aged people (from 20 to 50 years old) have very similar rates and are more hesitant to be 
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vaccinated. In contrast, older people are more willing to vaccinate and the willingness increases with age (from 
51 years and older). This is consistent with the findings of existing  studies22–24.

Impediments to vaccination are influenced by a variety of factors, and our goal was to gain deeper insights 
into the obstacles preventing individuals from getting vaccinated, identify them at an early stage, and formulate 
data-driven policies to address these challenges. This paper makes significant contributions to the existing litera-
ture in two key aspects. Firstly, it leverages granular and objective data obtained from a major health insurance 
provider, enabling a more in-depth and comprehensive analysis. Secondly, we employ an advanced classification 
model to predict the likelihood of a member being hesitant to receive the vaccine, yielding more accurate results 
compared to other statistical methods. Although we have used COVID-19 vaccination data, most of the results 
will likely be applicable to other epidemic or pandemic vaccination situations.

In this study, we introduce a two-stage methodology. In the first stage, we employ Bayes  factor25,26 for pre-
liminary screening, followed by the application of a Bayesian nonparametric regression technique known as 
Bayesian Multivariate Adaptive Regression Splines (BMARS)27–29 in the second stage. This approach is applied 
to population characteristic data provided by a major health insurance provider, with the aim of identifying 
barriers to vaccination. The pre-screening step enables our approach to effectively handle high-dimensional 
feature spaces by selecting the key features, simplifying the complex problem within the Bayesian framework. 
Additionally, the BMARS regression method allows for the modeling of nonlinear relationships between these 
selected key features and the response variable.

In the following sections, we first describe our Bayes-factor-based pre-screening and BMARS-based clas-
sification modeling (B-BMARS) method and introduce the vaccine impediment dataset to identify vaccination 
impediments. We then compare the results of B-BMARS with other popular baseline methods and analyze which 
variables play a key role in impeding getting vaccinated. Next, based on the modeling results, we present analyses 
and policy implications from the business perspective. We also describe other alternative baseline forecasting 
methods in the Supplementary Information.

Methods
We propose a novel two-stage method to accurately and efficiently analyze people’s impediments to receiving 
the COVID-19 vaccine with proper selections of interpretable variables and their interactions. The first stage, 
pre-screening, is based on the Bayes factor, a widely used Bayesian method to quickly check the correlation 
between variables and response. Thus, we can effectively filter out apparently irrelevant variables and avoid 

(a) Vaccine impediment ratio for each gender group. (b) Vaccine impediment ratio for each race group.

(c) Vaccine impediment ratio for each income level. (d) Vaccine impediment ratio for each age group.

Figure 1.  Vaccine impediment grouped by variables (a) gender, (b) race, (c) income level, and (d) age.
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unnecessary computational burdens and modeling challenges. In the second stage of BMARS-based classifica-
tion, the unknown function is fitted by product-based spline basis functions, which can automatically fine-tune 
the selection of key variables and their interactions.

Stage I: Bayes‑factor‑based pre‑screening
In our COVID-19 vaccination data analysis, the dimension of potential key variables is usually too high to use 
Bayesian nonparametric models directly. Therefore, it is necessary to reduce the dimensionality of the variable 
space. We propose to take advantage of the model comparison ability of the Bayes factor and use it as a screening 
step to reduce the dimensions. Since our goal is to predict vaccine impediments, it becomes a binary classifica-
tion problem. Therefore, we chose a method widely used for classification tasks, the Probit model, in which the 
conditional probability of one of the two possible attitudes toward the vaccine is equal to a linear combination 
of the underlying variables, transformed by the cumulative distribution function of the standard  Gaussian30,31. 
For classification tasks, a widely used approach is to combine the regression model with a probit model using 
auxiliary variables. Specifically, in the classification framework, we use z to denote the observed response, which 
is a binary variable and y as the auxiliary variable. We assume the binary z to be 1 if y > 0 and 0 otherwise. For 
the probabilistic model, it is defined as p(z = 1|y) = �(y) where � is the standard Gaussian cumulative distri-
bution function and y is defined as y ∼ N (βx + β0, σ

2) where x is the p∗ dimensional explanatory variables 
(covariates), β is the vector of regression parameters and σ 2 is the error variance.

High-dimensional data analysis is always a daunting task. When the dimension p∗ is high, we run into a 
problem called “the curse of dimensionality”32. Though the high dimensional variables usually provide more 
information, they also lead to higher computational costs. The convergence of optimization algorithms or Bayes-
ian sampling in a space of high dimensions is usually very slow. Also, it can harm the estimation accuracy, which 
is due to the difficult search in a space of high dimensions. Therefore, an effective and accurate variable selection 
is essential in high-dimensional modeling.

Pre-screening is a popular way to quickly filter out unimportant variables, making variable selection more 
efficient in a much lower-dimension space using a simpler model (like linear model), especially for ultrahigh-
dimensional cases. In pre-screening methods, it is usually assumed that if one variable is important when predict-
ing the response, it will be marginally associated with the response. Different measurements of the association 
are studied using, for example, p-value32–34. However, the pre-screening technique have not been fully explored 
in the Bayesian paradigm.

We use an off-the-shelf Bayesian method, Bayes  factor35,36, for pre-screening. More specifically, the Bayes fac-
tor is a Bayesian alternative to classical hypothesis testing, which plays an important role in the model comparison 
and selection process. Essentially, the Bayes factor serves as a measure of how strongly data support a specific 
model compared to another. The Bayes factor is defined as a ratio of the marginal likelihood of two candidate 
models, typically regarded as a null and an alternative hypothesis. The general formula is as below.

where D denotes the available data and M1 and M2 denote two potential models. A larger value of this ratio 
indicates more support for M1 , and vice versa.

More specifically, to check the effect of the jth variable xj with the corresponding regression parameter βj , we 
calculate the Bayes factor ( BFj ) via Probit regression model as below

where hypothesis H1 assumes that y ∼ N (βjxj + β0, σ
2
j ) , hypothesis H0 assumes that y ∼ N (β0, σ

2) , prior for 
βj is Gaussian distribution p(βj) ∼ N (0,α) , and use conjugate prior for the variances.

To compute the intractable marginal likelihood p(z|H1) (integrated over β ), we choose to use Laplace 
 Approximation37–39. Specifically, under H1 , the posterior distribution of βj is

Suppose β∗
j  is a maximum of f, we can calculate the negative Hessian at β∗

j

Then, the approximate posterior can be written as Q(βj) = N (βj|β
∗
j ,A

−1) . Thus, we can approximate the mar-
ginal likelihood

Bayes factor =
p(D|M1)

p(D|M2)
=

p(M1|D)p(M2)

p(M2|D)p(M1)

BFj =
p(z|H1)

p(z|H0)
,

(1)p(βj|D) ∝ p(D|βj)p(βj) = f (βj),

(2)log f (βj) = log p(D|βj)| log p(βj) =

N
∑

i=1

log�(ziβjxij)−
1

2
β2
j .

(3)A = −∇∇ log f (β∗
j ) =

N
∑

i=1

[vi(si + vi)x
2
ij] + 1, vi =

N (si|0, 1)

�(si)
, si = ziβjxij .
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A larger value of BFj suggests our preference for the hypothesis H1 to the hypothesis H0 , implying a potential 
key role of xj when predicting z . Then after calculating {BFj , j = 1, · · · , p} , we can choose the top ranked vari-
ables with respect to BFj . Say we select p explantory variables out of p∗ variables. Next, we use these p selected 
variables x for the Bayesian nonparametric classification model.

Stage II: BMARS‑based classification modeling
In stage 2, we use a flexible nonlinear method to relate the response z with the selected explanatory variables 
from step 1. More specifically, we use Bayesian multivariate adaptive regression splines (BMARS)27,28 which is a 
Bayesian version of a flexible non-parametric regression and classification method named  MARS40. We extend the 
previously defined linear probit model for nonlinear modeling using product spline basis functions. We use the 
probit model defined in the previous section, for the ith observation p(zi = 1|yi) = �(yi), (i = 1, · · · , n) . Next 
we use BMARS to relate the auxilary variables y with the explanatory variables x through a regression model. In 
BMARS, for regression tasks, the product-based spline basis functions are not only used to model the unknown 
function f, but also automatically select the nonlinear interactions among the variables. The mapping function 
between the selected variables xi ∈ R

p and the auxiliary variable yi as below

where m is the number of basis functions and αj denotes the coefficient for the basic function Bj which is designed 
as

where the sqj ∈ {−1, 1} , the v(q, j) denotes the index of the variables and the set {v(q, j); q = 1, · · · ,Qj} are not 
repeated, the tqj refers to the partition location, (·)+ = max(0, ·) , and Qj is the polynomial degree of the basic 
function Bj and also indicates the number of variables involved in Bj.

For probit model, the posterior distribution is not available in explicit form so we use Markov Chain Monte 
Carlo (MCMC) algorithm to simulate from the posterior distribution. As the dimension of the model m is 
unknown, we use the reversible jump Metropolis-Hastings  algorithm41. More specifically, the model param-
eters we are interested in within the Bayesian framework of  BMARS27 are assumed to include the number of 
basis functions m, as well as their degree of interaction Qj , their coefficients αj , their associated split points 
tqj , and the sign indicators sqj . We can use θ (m) = {B1, · · · ,Bm} where Bj to denote the model parameters 
(Qj ,αj , t1j , · · · , tQj ,j , s1j , · · · , sQj ,j) for each basis function Bj . Then, the hierarchical model can be written as

and the joint posterior for parameters m and θ (m) can be written in the following factorized form

In this algorithm, we update the model randomly using one of three steps, including (a) changing a node posi-
tion, (b) creating a basis function, or (c) deleting a basis function, and then correcting the proposed new sample 
by the Metropolis-Hastings  step42,43. Under this sampling scheme, samples based on significant variables are 
more likely to be accepted, which enables automatic feature selection by the algorithm and is important for us 
to make policy implications.

Data description
To understand vaccine impediments, we analyze a dataset obtained from one of the major health insurance 
providers in the United States. Since the dataset comes from the insured population, our analysis of impedi-
ments to vaccination and potential policy implications focuses on the insured population. More specifically, the 
dataset includes a total of 974,842 observations, each presenting information about one member of the insurance 
provider, with 1 binary response and 368 variables. About 69% of the variables are numeric and the remaining 
31% are categorical. We note that we use synthetic data based on real data, which maintains all relationships 
within the dataset but is not specific to any individual insured person. This minimizes the risks associated with 
privacy to share protected data.

Response measures
The data records whether an insurance member is vaccinated or not. We assume that if a member is not vacci-
nated, then that member has some sort of impediment to vaccination. We use a broad definition of impediments 
that includes various reasons such as not believing in the efficacy of the vaccine, barriers like lack of resources, 
inability, or ideological/political reasons, etc.

(4)p(D|H1) ≈

N
�

i=1

�

p(z|βj)Q(βj)dβj =

N
�

i=1

�





ziβjxij
�

xijA−1xij + 1



.

(5)yi = f (xi)+ εi , f̂ (xi) =

m
∑

j=1

αjBj(xi), εi
i.i.d
∼N (0, σ 2),

(6)Bj(xi) =

{

1, j = 1,
∏Qj

q=1[sqj · (xi,v(q,j) − tqj)]+, j ∈ {2, 3, · · · ,m}

(7)p(m, θ (m), y) = p(m)p(θ (m)|m)p(y|m, θ (m)),

(8)p(m, θ (m)|y) = p(m|y)p(θ (m)|m, y).
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Variables
The data document a number of characteristics of insured members that are potential variables influencing their 
willingness and availability to receive vaccines. These variables can be categorized into eight groups of charac-
teristics, including medical claims, pharmacy claims, laboratory claims, demographics, credit data, condition-
related data, centers for Medicare & Medicaid services (CMS) features (original reasons for entry into Medicare), 
and other characteristics. In total, there are 253 numerical variables and 115 categorical variables. The detailed 
descriptions of each group are provided in Table 1.

Data pre‑processing
Before modeling the data, we use some pre-processing steps to make the data structure compatible with the 
model. First, for convenience, we transform each categorical variable into several dummy variables. Thus, when 
the data are put into the model, there are 898 variables. Second, to fairly compare the different models, we bal-
ance the two types of samples by using a sample of 10,000 vaccinated clients and a sample of 10,000 unvaccinated 
clients as training data. Similarly, we sample a balanced test data including 2,000 clients.

Results
Classification analysis: accuracy
In this section, in terms of accuracy, we compare our two-stage method (B-BMARS) with several widely-used 
classification models, including extreme gradient boosting (XGBoost)44, Gaussian process classification (GP)45, 
random forest (RF)46, and multilayer-perceptrons-based deep neural network (DNN)47, which have all demon-
strated good performance in various applications. We use 0.5 as the threshold to calculate the accuracy, which 
is widely used for binary classification. For the overall analysis with different thresholds, we further use the area 
under curve (AUC)  values48 for comparison (shown in the next Section). Specifically for our B-BMARS, in the 
first stage, we use Bayes factor to quickly examine the potential predictive power of each variable on the response. 
Then, in the second stage, we use B-BMARS to fit the unknown function between the key variables and the 
responses in a more refined manner. A detailed description can be found in the “Methods” section.

In the first stage of pre-screening, we experiment by keeping different numbers of the top variables where 
the pre-screening dimension pscr = 50 which is a proper value found empirically. We also compare the scenario 
without using pre-screening which corresponds to using all the 898 variables. However, using all the 898 vari-
ables is not practical with limited computational resources. Table 2 shows the accuracy among pre-screening 
dimension pscr = 50 and without the pre-screening step. Our proposed B-BMARS gives the highest accuracy 
0.614 and beats other popular baseline alternatives. Random Forest’s best result is close to our B-BMARS result 
but always below it.

We also visualize accuracy comparisons under pre-screening pscr = 50 and scenario without pre-screening 
step in Fig. 2a and b. The slash bars represent our B-BMARS, and the star bars represent XGBoost, GP, RF, and 
DNN from left to right, respectively. As we can see, the green bars are the highest in Fig. 2a, and also comparable 
to the highest blue columns in Fig. 2b. This indicates that our B-BMARS can maintain the performance for dif-
ferent scenarios. However, other baselines are relatively more sensitive to different settings. Additionally, we can 
see that RF achieves the best performance when pscr = 898 , which leads to a high computational burden and is 
not practical with limited computational resources.

Table 1.  Variable group description. Potential variables for insured members are defined as those that can 
influence a member’s willingness and availability to be vaccinated, which can be categorized into eight groups 
of characteristics.

Feature group Description

Medical claims
This category of data includes utilization by categories, such as inpatient, emergency, and outpatient, to 
name a few. In addition, authorization and costs by condition, as well as inpatient claims data, can be 
found here.

Pharmacy claims
This category of data includes costs of prescriptions, brands covered, generic prescriptions, mailed or 
non-mailed prescriptions, maintenance prescriptions, generic product identifier (GPI) level prescription 
usage, etc.

Laboratory claims
This category of data includes abnormal laboratory outcome indicators, as well as more subdivided 
abnormal laboratory outcome indicators by category such as cholesterol, estimated glomerular filtration 
Rate (eGFR), Hemoglobin, etc.

Demographics This category of data includes gender, race, age, geography, census, income level, education level, house-
hold composition, homeowner status, etc.

Credit data of insured members
This category of data includes the percentage of all mortgage account balances in bankcard accounts 
(accounts that are severely depreciated), the number of all mortgage accounts (120 days past due or in 
repossession), and the percentage of high mortgage balances, etc.

Condition-related data
This category of data includes the count of claims by Charlson Comorbidity Index, CMS Diagnosis Code 
Categories, the percentage of claims associated with multiple chronic conditions (MCC), Diagnosis Code 
Categories, etc.

CMS features This category of data includes disability, CMS risk score, CMS total payment amount, etc.

Other features This category of data includes home health discharge, healthcare effectiveness data and information set 
(HEDIS) features, out-of-network provider costs, revenue code features, behavioral segmentation, etc.
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Classification analysis using AUC values
Apart from the accuracy, we also choose AUC  values49 to measure model performance, where higher AUC values 
indicate a better classifier. The baselines considered are aligned with the previous accuracy comparison. Table 3 
shows the best AUC value among different pre-screening dimensions of each model. Our proposed B-BMARS 
gives the highest AUC value 0.651, followed by RF.

Similar to accuracy comparison, we also show detailed AUC value comparisons under pre-screening pscr = 50 
and scenario without pre-screening step in Fig. 3a and b. The slash bars represent our B-BMARS, and the star 
bars represent XGBoost, GP, RF, and DNN from left to right, respectively. As shown in the figures, the green 
bars are the highest in Fig. 2a, and also comparable to the highest blue columns in Fig. 2b. This indicates that the 
classification rule from our B-BMARS is consistently one of the best classification rules in different pre-screening 
dimensions pscr . However, other popular baselines have more fluctuations in different scenarios, with a drop in 
AUC values when resources are limited and pre-screening has to be used.

Variable selection
B-BMARS is effective in selecting the most important variables. We find that there are four main categories of 
variables playing a key role in influencing the vaccine impediments of insured members, i.e., low household 
assets, high health risks, highly uninsured areas, and physician-related information. As shown in Table 4, we list 
ten interesting and important variables selected by our B-BMARS, along with their detailed descriptions and 
the categories to which they belong.

Table 2.  Accuracy comparison with baseline methods under pre-screening dimensionpscr = 50and without 
pre-screening step. We compare our B-BMARS with extreme gradient boosting (XGBoost), Gaussian process 
classification (GP), random forest (RF), and multilayer-perceptrons-based deep neural network (DNN). Our 
B-BMARS generally improves or maintains accuracy compared to other baseline methods. The largest value in 
each scenario is in bold.

Model B-BMARS XGBoost GP RF DNN

pscr = 50 0.614 0.586 0.561 0.593 0.531

No Pre-screen 0.605 0.602 0.530 0.612 0.552

(a) Accuracy comparison, pscr = 50. (b) Accuracy comparison, no pre-screening.

Figure 2.  Visualization of accuracy comparison with baseline methods under pre-screening dimension 
pscr = 50 and without pre-screening step. We compare our B-BMARS with extreme gradient boosting 
(XGBoost), Gaussian process classification (GP), random forest (RF), and multilayer-perceptrons-based deep 
neural network (DNN). Our B-BMARS generally improves or maintains accuracy compared to other baseline 
methods.

Table 3.  The AUC value comparison with baseline methods under pre-screening dimensionpscr = 50and 
without pre-screening step. We compare our B-BMARS with extreme gradient boosting (XGBoost), Gaussian 
process classification (GP), random forest (RF), and multilayer-perceptrons-based deep neural network 
(DNN). Our B-BMARS generally improves or maintains AUC value compared to other baseline methods. The 
largest value in each scenario is in bold.

Model B-BMARS XGBoost GP RF DNN

pscr = 50 0.651 0.633 0.625 0.630 0.546

No Pre-screen 0.643 0.642 0.501 0.648 0.611
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When trying to determine people’s willingness or ability to take the COVID-19 vaccine, it is helpful to look 
at their household asset status, and we find that people with low household assets will be hesitant to receive the 
vaccine, which is in line with existing research  findings50. For example, among the significant variables listed, 
Supplemental Nutrition Assistance Program (SNAP) benefits per capita is  selected20, which reflects whether 
people generally have a stable source of food and thus reflects their household asset status. It is also important 
to check the number of non-mortgage accounts that are more than 60 days past  due51. If many non-mortgage 
accounts are chronically past due, it is likely that household assets are low. In addition, we can see that per capita 
income in Table 4 in the last 12 months is one of the key variables, which gives a direct indication of people’s 
economic situation.

Health risk is another important variable of COVID-19 vaccination propensity prediction, and people are 
more reluctant to get vaccinated if they already have a high health  risk52,53. For example, the trend in the num-
ber of prescriptions per month is noteworthy. It represents a change in people’s health status and can indicate 
whether they are at high health risk. In addition, we need to look at the number of monthly prescriptions related 
to heart disease-heart failure medications, which also shows how often people are taking their medications and 
revealing their health status.

In addition to the categories mentioned above, the availability of better healthcare coverage in the area also 
affects people’s proclivity to get vaccinated, and populations living in highly uninsured areas are more unlikely to 
receive COVID-19  vaccination54. As listed in the key variables, the net monthly payments for behavioral health 
claims related to skilled nursing inpatient facilities have a significant impact. Also, trends in monthly prescription 
costs associated with vaccine drugs reflect health care coverage and indicate people’s attitudes to vaccinations, 

(a) AUC value comparison, pscr = 50. (b) AUC value comparison, no pre-screening.

Figure 3.  Visualization of the AUC value comparison with baseline methods under pre-screening dimension 
pscr = 50 and without pre-screening step. We compare our B-BMARS with extreme gradient boosting 
(XGBoost), Gaussian process classification (GP), random forest (RF), and multilayer-perceptrons-based deep 
neural network (DNN). Our B-BMARS generally improves or maintains AUC value compared to other baseline 
methods.

Table 4.  The important variables selected by B-BMARS from potential variables for insured members of 
a major health insurance provider explaining vaccination impediment with the pre-screening dimension 
pscr = 50.

Variable Description Category

Prescription Number Trend Trend of the number of prescriptions per month in the past three months versus the third to sixth month prior to 
the score date. High health risk

SNAP Benefits Supplemental Nutrition Assistance Program (SNAP) benefits per capita. Low household assets

Pass-due Non-mortgage Loan The number of non-mortgage loan accounts that are more than 60 days past due. Low household assets

Cardiology Prescription Number Number of monthly prescriptions related to cardiology-heart failure drugs in the past year (based on insurance 
drug classification). High health risk

Behavioral Health Payment Net monthly payments for behavioral health claims related to skilled nursing inpatient facilities for the past ninth 
to twelfth month prior to the scoring date. Highly uninsured areas

Generic Prescription Number Trend Trend in the number of monthly prescriptions for generic drugs at the generic product identifier 6 (GPI6) level in 
the past third to sixth months compared to the sixth to ninth months prior to the rating date. High health risk

Per Capita Income Per capita income in the past 12 months 2014-2018. Low household assets

Vaccine Prescription Cost Trend Trends in monthly prescription costs associated with vaccine drugs in the past sixth through ninth months com-
pared to the ninth through twelfth months prior to the score date (based on GPI2 subgroups). Highly uninsured areas

Missing Insurance Percentage Clinical Care - Percentage of adults under age 65 without health insurance. Highly uninsured areas

Physician Evaluations and Claims Percentage of physician evaluations and claims management related to outpatient visits in the past year. Use of doctors’ info
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and the percentage of adults under age 65 without health insurance in the corresponding area is selected. The 
higher the percentage, the worse the health care coverage is.

Last but not least, there is a need to consider whether individuals trust their physicians and the public health 
 system55,56; if individuals are not willing to use their physicians as their primary source of medical information, 
they are unlikely to be  vaccinated57. For instance, we can get some information about people’s beliefs from the per-
centage of physician evaluations and claims management related to outpatient visits in the past year. A relatively 
high percentage score means that people are more likely to use their public health system and trust their doctors.

Non‑linear basic function selection
To provide more interpretation of the selected variables, we plot a nonlinear basis function curve including the 
selected variables. We take two important variables, namely the trend of the number of prescriptions and per 
capita income, as examples. As depicted in Fig. 4a, the propensity to vaccinate begins to decline with increasing 
prescriptions when a small number of prescriptions is reached, indicating high health risks. In Fig. 4b, people 
first become more willing to vaccinate and then gradually become less willing to vaccinate as their per capita 
income increases, consistent with what we observed in our data overview.

Interaction selection
B-BMARS is not only effective in selecting the most important variables but also in identifying variables that have 
significant interactions. As shown in Table 5, we list five important variable interactions selected by B-BMARS 
to predict COVID-19 vaccination propensity. Prescription count for cardiology is the most important and has 
many interactions with other  variables58. Other variables are composed of health-related variables and financial 
conditions. Therefore, it is necessary to consider both the information related to the number of prescriptions 
and other important variables.

(a) Basic function including trend of the number of prescriptions. (b) Basic function including per capita income.

Figure 4.  Curves of the non-linear basic functions selected by B-BMARS (a) trend of the number of 
prescriptions (Prescription Number Trend), and (b) per capita income (Per Capita Income).

Table 5.  The important variable interactions selected by B-BMARS from potential variables for insured 
members of a major health insurance provider explaining vaccination impediment with the pre-screening 
dimension pscr = 50.

Variable 1 Description 1 Variable 2 Description 2

Cardiology Prescription Number
Number of monthly prescriptions related to 
cardiology-heart failure drugs in the past year (based 
on insurance drug classification).

Tier 1 Prescription Number Number of prescriptions related to Tier 1 drugs per 
month in the three months prior to the score date.

Cardiology Prescription Number
Number of monthly prescriptions related to 
cardiology-heart failure drugs in the past year (based 
on insurance drug classification).

Prescription Number Trend
Trend in the number of prescriptions per month for 
the past three months compared to the number of 
prescriptions for the third through sixth months prior 
to the scoring date.

Cardiology Prescription Number
Number of monthly prescriptions related to 
cardiology-heart failure drugs in the past year (based 
on insurance drug classification).

Pass-due Non-mortgage Loan The number of non-mortgage loan accounts that are 
more than 60 days past due.

Cardiology Prescription Number
Number of monthly prescriptions related to 
cardiology-heart failure drugs in the past year (based 
on insurance drug classification).

Generic Prescription Trend
Trend in monthly prescription costs associated with 
generic drugs over the past three months compared 
to the third through sixth months prior to the scoring 
date.

Cardiology Prescription Number
Number of monthly prescriptions related to 
cardiology-heart failure drugs in the past year (based 
on insurance drug classification).

Generic Prescription Number
Number of prescriptions related to anticonvulsant 
drugs per month (based on generic product identi-
fier-2 grouping) for months six through nine prior to 
the scoring date.
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Business analysis and policy implication
Reducing vaccination impediments is important to slow the emergence of new virus variants. This will reduce 
the burden on patients and public health resources and will reduce costs incurred by insurance and healthcare 
providers. Thus, it is critical to develop targeted strategies to improve the ability to get vaccinated and reduce 
hesitancy. Vaccine impediment is a complex decision-making process influenced by a variety of contextual, 
individual and group, and vaccine-specific variables, including communication, socioeconomics, geographic 
barriers, vaccination experience, risk perception, and vaccination program design.

From our analysis in Section Variable Selection and Interaction Selection, it is clear that people with low 
assets, high health risks, low medical coverage, and distrust of doctors and the public health system are mostly 
reluctant to get vaccinated. Moreover, according to our analysis, these characteristics interact with each other. 
For example, people with low assets or low medical coverage have higher health risks. For these members, there 
are greater barriers than for other members. They may have fewer resources, more difficulty reaching vaccination 
sites, and less information about the nature of the pandemic.

We define the cause of COVID-19 vaccination impediments in these groups as due to physical barriers, psy-
chological barriers, and health barriers. Physical barriers can be explained by having less access to the vaccine. 
Members with disabilities are likely to suffer from a lack of mobility. Psychological barriers can be explained by 
misunderstanding and mistrust. Members with few assets, low income, and high debt may live in communities 
where mistrust is prevalent or have fewer resources to obtain accurate information about the vaccine. Health 
barriers can be explained by high health risks, such as chronic diseases. The members may be older, living inse-
curely, or in poor health and worried about the side effects of vaccination.

Physical barrier
Potential policy implications to overcome challenges to access vaccination. People tend not to get vaccinated 
if it is difficult and cumbersome to obtain the vaccination. Difficulties often arise from limited mobility due to 
disability or age, availability of time, transportation, and low supply of vaccinations.

• Implication 1: For people with limited mobility due to disability or age, we do not recommend that they visit 
a medical facility for vaccination, where there may be a high risk of cross-infection. We recommend that the 
health care provider provide home care services to help them get vaccinated at home.

• Implication 2: For people with limited time, lack of transportation, and selected constraints, access to vac-
cines is limited for these and other reasons like poor financial status. The health care provider can provide 
them with travel assistance, such as language instruction and transportation help. The provider can also 
arrange some special activities including vaccination camps near their homes to help them get vaccinated.

• Implication 3: For people in areas with low vaccine supply, it is more difficult for them to get vaccinated, 
even if they want to. Therefore, it is necessary to increase vaccine supply and reduce geographical inequali-
ties. We recommend that the health care provider work with pharmacies to open more vaccination sites and 
productively send notifications to residents when vaccines are available.

Psychological barrier
Potential policy implications to overcome misunderstanding and mistrust of vaccine. People tend not to get 
vaccinated if they have misconceptions about the vaccine and think it will be harmful to them. The source of 
these misconceptions can be family, friends, social media, or social norms. Or they ignore the need for vaccina-
tion because they are currently in good health.

• Implication 1: We recommend the health care provider get involved in community events and health activi-
ties to build stronger relationships with insured members. Then, it can select community leaders as vaccine 
ambassadors to deliver messages that allow vaccine recipients to share their reasons for vaccination, which 
will encourage people to reframe how they think about vaccines and build trust in the public health system.

• Implication 2: For people who do not understand the necessity of vaccination, they may not be motivated 
enough to get vaccinated because they are in good health. We recommend emphasizing the age-independent 
health benefits and importance of vaccination, providing them instructional videos or organizing lectures.

Health barrier
Potential policy implications to overcome high health risk. People are more concerned about the side effects 
of vaccines if they are at high health risk. Specifically, they were concerned that the side effects of the vaccine 
would exacerbate their existing health problems.

• Implication 1: We recommend obtaining more information about their health to understand if the vaccine 
can negatively interact with their current medications and existing problems. They should be educated if the 
vaccine is indeed safe for them.

• Implication 2: We recommend using telemedicine to track their health after vaccination. This can prevent 
any unexpected health problems and make them feel more confident in the public health system.

Expected benefit analysis
In this section, we use an example to analyze the expected benefits of utilizing our methodology and the resulting 
policy implications to address vaccine impediments. We have actual data from a major U.S. healthcare provider. 
It is a publicly listed company that is committed to maximizing benefits for its stakeholders, particularly its 
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shareholders. Given the data available to us, and utilizing publicly available data from other sources, we would 
like to estimate the preventable costs and incremental costs associated with our proposal to determine the impact 
on the savings of the healthcare provider.

More specifically, we use an all-vaccination rate (VRate) of 19.55% as of March 31st, 2021, which is derived 
by dividing the number of U.S. all-vaccinated persons by the U.S. population. The number of U.S. all-vaccinated 
persons is 64,852,669 from the Centers for Disease Control and Prevention’s (CDC) COVID data  tracker59, and 
the U.S. population is 331,791,631 according to the United States Census Bureau’s U.S. and World Population 
 Clock60. In addition, we use a number of Medicare Advantage members of one of the major health insurance 
providers in the United States (N) of 4,600,000 in 2020. Therefore, we can approximate the number of impedi-
mented members as Nu = (1-VRate)·N=3,700,700.

We then calculate the amount of preventable costs based on our B-BMARS method by encouraging more 
members to get vaccinated. From Centers for Medicare and Medicaid Services (CMS)  report61, we obtain the 
average cost of medical services for COVID-19 hospitalizations and the number of medicare hospitalizations 
due to COVID-19 per 100,000 patients, which are $24,000 and 1,825, respectively. We also get the effectiveness 
of full vaccination in preventing hospitalization. According to the CDC’s August 2021 presentation in Morbid-
ity and Mortality Weekly  Report62, the effectiveness in adults 75 years or older is 91% for Pfizer-BioNTech, 96% 
for Moderna, and 85% for Janssen COVID-19 vaccines(CDC). Therefore, we choose 85% to approximate the 
lower bound of savings. Using our B-BMARS (as shown in Table 2), we are able to successfully identify 61.4% 
of impedimented members ( Rs ). Based on this information, we calculate the preventable costs for patients not 
vaccinated with COVID-19 via Equation (9). Specifically, the Hospital/100, 000 calculates the percentage of 
people who receive Medicare hospitalizations. We multiply this by Rs and Ratio to represent the approximate 
proportion of people spared hospitalization by vaccination. We then multiply this by Nu to get the approximate 
number of hospitalizations prevented by vaccination. Finally, we multiply this by Fee , which is the cost of patients 
preventable through vaccination. The results are shown in Table 6, and we successfully prevent more than 845 
million dollars in costs.

In addition, we approximate the extra cost of the incremental vaccination. We collect relevant information 
from Centers for Medicare and Medicaid Services (CMS)63. Specifically, for those without disabilities, the cost 
of the vaccination is $80 per person, assuming 2 doses of each vaccine and a single dose cost to Medicare of 
$40. For those with disabilities, the cost of the home vaccination has increased to $150 per person because of 
an additional $35 per dose. In our dataset, the percentage of people with disabilities is 25%. Therefore, we can 
estimate the cost of having impedimented members vaccinated following Equation (10). Specifically, we mul-
tiply the ratios (1− Rd) and Rd by Nu to give the approximate numbers of people without and with disabilities, 
respectively. Next, we multiply these two numbers by Rs to get a rough estimate of the number of people in each 
impedimented group that we can successfully identify. This is then multiplied by the corresponding costs Costnd 
and Costd , respectively. Finally, we add the estimated costs of the two groups to arrive at the final total extra cost. 
The result is $221,542,406 as shown in Table 7.

Based on all the above calculations, using Equation (11), we obtain a total savings of more than $624 million 
by addressing impediments to vaccination for the insured population. Specifically, we subtracted the total extra 
cost of vaccination from the total preventable costs due to vaccination to derive the total savings. We do not have 
a firm estimate of the marginal cost of implementing our policy recommendations. However, we are informed 
that it will be a small fraction of the $624 million savings calculated here. At a minimum, this number provides 
health insurance and healthcare providing organization guidance in developing a budget for implementing our 
policy recommendations. This example demonstrates how our methods can be transformed to a monetary value.

(9)Prevent-Cost = (Hospital/100, 000) · Rs · Ratio · Nu · Fee

(10)Extra-Cost = (1− Rd) · Rs ·Nu · Costnd + Rd · Rs ·Nu · Costd

(11)Save = Prevent-Cost− Extra-Cost

Table 6.  Summary of the average medicare fee for COVID-19 hospitalizations, the medicare COVID-
19 hospitalizations per 100K persons, the successful identification rate of impedimented members, the 
effectiveness of full vaccination in preventing hospitalization, and the calculated preventable costs for 
patients not vaccinated with COVID-19. We can prevent 846 million dollars in costs by eliminating vaccine 
impediments.

Name Abbreviation Value

Average medicare fee-for-service COVID-19 hospitalizations Fee $24,000

Medicare COVID-19 hospitalizations per 100,000 Hospital 1,825

Successful identification rate of impedimented members Rs 0.614

Effectiveness of full vaccination in preventing hospitalization Ratio 0.850

Preventable costs for patients not receiving COVID-19 vaccine Prevent-Cost $845,951,155
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Conclusion
In this paper, we propose a flexible Bayesian method for predicting COVID-19 vaccination impediment scores 
under a Bayesian paradigm. Based on the accuracy of the results, we conclude that our proposed forecasting 
method performed better than the existing cutting-edge methods. The key findings of this study are:

• The proposed method, B-BMARS performed better than XGBoost, Gaussian Process, and Random Forest 
in terms of classification accuracy.

• Several important groups of variables are identified which could be the reasons for vaccine impediment, e.g., 
health risk and healthcare coverage.

• We identified four main categories of variables playing a key role in influencing the attitude of the public 
towards vaccines, including low household assets, high health risks, highly uninsured areas, and infrequent 
use of physician information.

• Interactions among some of these variables may play a crucial role in vaccine impediment, e.g. combining 
low medical coverage and low assets have more prediction power for vaccination impediment.

• We define the cause of COVID-19 vaccination impediments in these groups as due to physical barriers, psy-
chological barriers, and health barriers. We then provide policy recommendations to reduce barriers from 
the perspective of each of these three barriers.

• Physical barriers can be explained by having less access to the vaccine, e.g., limited mobility, limited time, 
lack of transportation, and low vaccine supply. To overcome such barriers, we recommend that health care 
providers offer home care services, travel assistance, and arrange for special events, including vaccination 
camps.

• Psychological barriers refer to misconceptions or neglect of vaccines and can come from family, friends, 
social media, social norms, or good health. To overcome these barriers, we recommend that health care 
providers engage in community events and wellness activities, build stronger relationships and trust with 
insured members, and provide them with instructional videos or organize lectures that emphasize the health 
benefits and importance of vaccination.

• Health barriers are people’s existing health problems that make them more worried about the side effects 
of vaccines. To overcome such barriers, we recommend that health care providers obtain more information 
about people’s health, provide more specific advice to each individual, and use telemedicine to track their 
health after vaccination.

• We estimated the dollar benefit based on actual data and publicly available information resulting from our 
potential policy implications.

To the best of our knowledge, this is the first research that uses these flexible methods to analyze the data and 
arrive at conclusions that will have a significant impact on corporate decision making. Our findings have broad 
implications for solving complex problems with large datasets that require forecasting. Finally, our framework 
can have a direct impact on corporate and public policy related to future pandemics.

For future research, it is of great importance to expand the study to uninsured members and barriers in other 
countries. Equally important is how other types of data (e.g., image and text data), if available, can be incorpo-
rated to further improve predictive accuracy, better address vaccine barriers, and provide additional benefits. 
Additionally, we plan to enhance the scalability of the algorithm by employing parallel Markov Chain Monte 
Carlo (MCMC) within a simulated annealing  framework64. This approach aims to enable the implementation 
of the algorithm in a single stage.

Data availability
The data files of the customer’s vaccine intentions and characteristics are available upon reasonable request from 
Prof. Mahajan (amahajan@mays.tamu.edu).

Received: 23 November 2023; Accepted: 4 April 2024

Table 7.  Summary of the vaccination cost per person without disabilities, the home vaccination cost per 
person with disabilities, the percentage of people with disabilities in our dataset, the successful identification 
rate of impedimented members, the calculated total extra cost for vaccination, and the calculated savings by 
eliminating vaccine impediments. We can achieve savings of more than $624 million by eliminating vaccine 
impediments.

Name Abbreviation Value

Vaccination cost per person without disabilities Costnd $80

Home vaccination cost per person with disabilities Costd $150

Percentage of people with disabilities in our dataset Rd 0.25

Successful identification rate of impedimented members Rs 0.614

Total extra cost for vaccination Extra-Cost $221,542,406

Total savings Save $624,408,749
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