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Investigating the role of common 
cis‑regulatory variants in modifying 
penetrance of putatively 
damaging, inherited variants 
in severe neurodevelopmental 
disorders
Emilie M. Wigdor 1*, Kaitlin E. Samocha 2,3,4, Ruth Y. Eberhardt 1, V. Kartik Chundru 1,7, 
Helen V. Firth 5, Caroline F. Wright 6, Matthew E. Hurles 1 & Hilary C. Martin 1*

Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants 
in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common 
variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their 
effects by modifying gene expression, using multi‑cis‑expression quantitative trait loci (cis‑eQTL) 
prediction models. We first performed a transcriptome‑wide association study for NDDs using 6987 
probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found 
one gene, RAB2A, that passed multiple testing correction (p = 6.7 ×  10–7). We then investigated 
whether cis‑eQTLs modify the penetrance of putatively damaging, rare coding variants inherited 
by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that 
unaffected parents transmitting putatively damaging coding variants had higher genetically‑predicted 
expression of the variant‑harboring gene than their child. In probands carrying putatively damaging 
variants in constrained genes, the genetically‑predicted expression of these genes in blood was lower 
than in controls (p = 2.7 ×  10–3). However, results for proband‑control comparisons were inconsistent 
across different sets of genes, variant filters and tissues. We find limited evidence that common cis-
eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.

Neurodevelopmental disorders (NDDs) such as intellectual disability, epilepsy and autism have a large genetic 
 component1. One of the largest studies of NDD patients, the Deciphering Developmental Disorders (DDD) 
 study2,3, consists of 13,451 undiagnosed probands, ~ 85% of whom have at least one abnormality of the nerv-
ous system, who underwent exome sequencing and exon-resolution microarray analysis. Exome-wide burden 
analysis has shown that around 42% of the cases within the cohort are attributable to de novo coding mutations 
in either known or undiscovered developmental disorder (DD)-associated  genes4, with smaller contributions 
from coding variants following other Mendelian inheritance modes such as X-linked (~ 7%)5 and autosomal 
recessive variants (~ 3%)6. To date, around 41% of probands have received a genetic  diagnosis7.

Most parents in the DDD study are unaffected; amongst the 1230 trio probands with an affected father and/
or mother, inherited autosomal dominant causes have been identified in 257 (20.9%), which is 2.6% of the 9859 
trio  probands7. However, there is increasing evidence that incompletely penetrant, inherited, rare coding variants 
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contribute to risk of NDDs. Firstly, burden analyses have demonstrated that probands with autism have an 
increased rate of rare deleterious coding variants compared to neurotypical individuals, particularly in a set of 
~ 3000 ‘constrained’ genes that are intolerant of loss-of-function (LoF) variation in the general  population8, and 
that they over-inherit such variants from unaffected  parents9,10. Indeed, we find similar signals in our undiag-
nosed DDD probands and evidence that these variants contribute to risk in a large fraction of probands (Samocha 
et al. manuscript in preparation). Secondly, a small number (N = 22) of DDD probands have been diagnosed with 
known pathogenic variants in autosomal dominant conditions that were inherited from clinically unaffected 
 parents11. In parallel, there is emerging evidence from population-based cohorts that rare, deleterious coding 
variants in known DD-associated  genes12 or constrained  genes13,14 are associated with reduced cognitive function 
and mental health conditions in the general population. Why these variants are incompletely penetrant represents 
a major gap in our understanding of DDs and these related phenotypes. Stochastic environmental and genetic 
modifiers of penetrance likely exist. We previously showed that genome-wide common variants contribute to 
risk of  NDDs15; we hypopthesize that at least some of these common variants may act by modifying penetrance 
of rare coding variants in these disorders.

Castel et al. previously presented evidence that cis-expression quantitative trait loci (cis-eQTLs) modify 
penetrance of rare coding variants in healthy and disease  cohorts16. Specifically, they found evidence in a healthy 
cohort (N = 620) for a depletion of haplotype configurations that should increase penetrance of pathogenic vari-
ants (implying a role for negative selection), but that cancer patients (N = 615) and autistic individuals (N = 2600) 
were enriched for penetrance-increasing haplotype configurations of pathogenic variants in disease-linked genes. 
Michaud et al. found an example of a similar mechanism in albinism, whereby a common regulatory variant 
modified the penetrance of two common coding variants in TYR 17. We set out to test whether this mechanism is 
contributing to the incomplete penetrance of rare, inherited coding variants in DD-associated and constrained 
genes in the DDD study.

We build on the work of Castel et al.16 in four main ways. Firstly, we apply more stringent filtering of rare 
coding variants to focus on those most likely to be damaging. Secondly, we use a cross-tissue, multiple cis-eQTL 
method  (UTMOST18) to predict gene expression, rather than using a single cis-eQTL per gene. Thirdly, we 
consider genetically-predicted expression in a disease-relevant tissue (cortex) as well as in whole blood, rather 
than taking the most significant cis-eQTL in any tissue for each gene. Finally, we use a within-family design 
which allows us to avoid potential false positive associations due to population stratification, comparing pre-
dicted expression between probands with an inherited rare coding variant to their variant-transmitting parents. 
Our analysis finds limited evidence to support the hypothesis that cis-eQTLs are modifying the penetrance of 
inherited, putatively damaging coding variants in DDs.

Results
Datasets
Individuals from the DDD study were exome-sequenced and genotyped on three different SNP arrays, with some 
individuals genotyped on more than one array (Supplementary Fig. 1). In this work, we used two different array 
datasets from DDD (see Methods). Analyses on individual NDD probands were based on the dataset used in 
Niemi et al.15, comprising 6987 unrelated NDD cases from DDD with ancestry similar to the 1000  Genomes19,20 
Great British samples (henceforth referred to as ‘GBR ancestries’) and 9270 ancestry-matched controls from the 
UK Household Longitudinal Study (UKHLS)21. These had been genotyped on the Illumina CoreExome chip and 
imputed to the Haplotype Reference Consortium (HRC)  panel22. Analyses based on trios used a dataset of 1700 
undiagnosed NDD probands with unaffected parents (of which 1352 probands were also in the aforementioned 
CoreExome dataset), all with GBR ancestries, genotyped on either the Illumina OmniExpress chip or the Illumina 
Global Screening Array and imputed to  TOPMed23–25.

Predicting genetically‑determined gene expression
To predict the genetically-determined component of gene expression, we used  UTMOST18, a cross-tissue multi-
eQTL method that jointly models multiple tissues when estimating the SNP weights. This has been shown to 
increase imputation accuracy, particularly for tissues with small sample sizes in the training data, and to generate 
effective imputation models for an average of 120% more genes than single-tissue  methods18. We used  UTMOST18 
weights generated from GTEx v6p training  data26 for two tissues: cortex and whole blood. We chose cortex 
because it is implicated in various cognitive functions relevant to global developmental delay and intellectual 
 disability27,28. We also used weights based on GTEx v6p whole blood (N = 338 vs. N = 96 for cortex) in an attempt 
to balance statistical power with likely physiological relevance to NDDs. While brain tissues may be the most 
relevant to NDDs, work by Qi et al. has shown a gain of power in gene discovery for brain-related phenotypes 
using blood cis-eQTL data on larger sample  sizes29. We restricted our analyses to genes with cross-validation 
adjusted p value < 0.05: 11,103 genes for whole blood, and 11,338 in cortex, with an overlap of 9476 genes. To 
see if our results differed by method used to predict gene expression, we also predicted gene expression in cortex 
and whole blood using two other methods:  PrediXcan30 and  JTI31. The number of overlapping genes with pre-
dicted expression using each method in both tissues can be found in Supplementary Figs. 2 (whole blood) and 
3 (cortex). Predicted gene expression was highly correlated among these three methods (Supplementary Fig. 4).

Testing the effect of genetically‑predicted gene expression on NDD risk
We first tested whether genetically-predicted expression of any given gene was associated with being an NDD 
case, regardless of the presence of rare variants, to assess whether cis-eQTLs play a role in risk of NDDs when 
considering average predicted expression. We conducted a transcriptome-wide association study (TWAS) com-
paring 6987 unrelated NDD cases with GBR ancestries with 9270 ancestry-matched UKHLS controls. TWAS 
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have been widely used to try to prioritize likely causal genes underlying complex disease  risk32. While the GWAS 
for NDDs in DDD did not identify any genome-wide significant  SNPs15, a TWAS is generally better powered 
than a  GWAS33,34. In our TWAS for NDDs using predicted gene expression from whole blood using UTMOST, 
we identified one gene passing Bonferroni correction (p = 6.7 ×  10–7), RAB2A (Fig. 1). Predicted expression of 
RAB2A was also significantly (p = 4.88 ×  10–7) associated with NDD case status in cortex, a more phenotypi-
cally relevant tissue, using  JTI31 (Supplementary Fig. 5), although not when using UTMOST (Fig. 1). This gene 
encodes a protein belonging to the Rab family which is required for protein transport from the endoplasmic 
reticulum (ER) to the Golgi  complex35. Mutations in multiple other genes in the Rab family are known to cause 
 NDDs36–39. No other genes pass Bonferroni correction (Fig. 1). While RAB2A is an interesting candidate for 
involvement in NDDs, it requires replication in another cohort, and would be more compelling if coding vari-
ants in RAB2A were associated with NDDs. Broadly, TWAS results were similar using  JTI33 (Supplementary 
Fig. 5) and  PrediXcan42 (Supplementary Fig. 6), with no additional genome-wide significant genes identified. 
A comparison of the p values from TWAS using the three different methods for predicting gene expression can 
be found in Supplementary Fig. 7. Summary statistics for both TWAS can be found in Supplementary Data 
Tables S1 (cortex) and S2 (whole blood).

The TWAS was intended to assess whether cis-eQTLs play a role in risk of NDDs when considering aver-
age predicted expression for cases versus controls. We next hypothesized that a small subset of NDD probands 
might be explained by having an unusual configuration of cis-eQTLs for a gene such that it was expressed at an 
extremely low level (for a LoF mechanism gene) or an extremely high level (for a gain-of-function mechanism 
gene). Thus, we tested DD-associated genes in the Developmental Disorder Genotype–Phenotype database 
(DDG2P)40 to see whether undiagnosed NDD probands were enriched for extreme genetically-predicted gene 
expression compared to controls (± 3 standard deviations from the mean for controls), using a Fisher’s exact test. 
None of the genes passed Bonferroni correction (p > 0.05/1321 DD-associated protein-coding genes = 3.8 ×  10–5 
in cortex; p > 0.05/1202 = 4.2 ×  10–5 in whole blood).

Testing whether cis‑QTLs modify penetrance of rare coding variants in NDDs
We next used the genetically-predicted expression values from NDD probands to test whether cis-eQTLs modify 
the penetrance of putatively damaging, heterozygous, rare coding variants that had been inherited by these 
probands from their unaffected parents (hereafter: ‘putatively damaging variants’). We focused on rare, inherited 
heterozygous variants (single nucleotide variants (SNVs) and insertions and deletions (indels); minor allele fre-
quency (MAF) < 1.0 ×  10–5 in  gnomAD8, and ≤ 1.0 ×  10–4 in DDD) predicted to be damaging, in three categories: 
(1) protein-truncating variants (PTVs) and missense variants (with missense badness, PolyPhen-2, and constraint 
(MPC) ≥  241) in constrained genes (probability of LoF intolerance (pLI) > 0.9)42, (2) PTVs or missense variants in 
dominant DDG2P genes with a LoF mechanism, and (3) PTVs or missense variants in recessive DDG2P genes 
with a LoF mechanism. We focused on constrained genes and DD-associated genes with a LoF mechanism 
because the effect of PTVs and missense variants in such genes is more interpretable (i.e. we assume they result 
in LoF), whereas identifying which missense variants have an activating or gain-of-function effect in genes for 
which this is the pathogenic mechanism is more difficult. For the first two categories (constrained genes and 
dominant DD-associated genes), we hypothesized that the penetrance of the putatively damaging variant is 
increased by low expression of the other wild-type haplotype (Fig. 2A). For the third category (recessive DD-
associated genes), we hypothesized that lower expression of the non-variant-carrying haplotype constitutes a 
‘second hit’ to the gene, such that, combined with the putatively damaging variant on the other haplotype, gene 
activity is reduced to a level that is below the pathogenic threshold (Fig. 2A).

Figure 1.  Gene-based p values from a TWAS comparing genetically-predicted gene expression between 6987 
NDD cases and 9270 UKHLS controls. The cis-eQTL weights are from GTEx v6p cortex (N = 11,338 genes) 
and whole blood (N = 11,103 genes). Black dotted line represents the significance threshold after Bonferroni 
correction [p = 0.05/(11,338 + 11,103)].
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We began with a within-family test on 1700 undiagnosed NDD trios to assess whether unaffected parents 
transmitting a putatively damaging variant were protected by higher genetically-predicted expression of the gene 
compared to their affected child. Specifically, we ran a one-sided paired t-test to compare genetically-predicted 
gene expression in cortex and whole blood between unaffected parents transmitting a putatively damaging variant 
and their affected children, with the hypothesis that transmitting parents had higher genetically-predicted expres-
sion of the relevant gene. This within-family test controls for population stratification, and allows for a direct 
comparison of predicted expression of the wild-type haplotype while controlling for both the same putatively 
damaging variant, and the haplotype wherein it lies (the shared haplotype). We saw no significant difference in 
genetically-predicted expression between putatively damaging variant-transmitting parents and their children 
(Fig. 2B). We repeated this analysis with a more lenient MAF threshold (MAF < 0.1%) and also saw no significant 
difference in genetically-predicted expression (Supplementary Fig. 8). Further, we conducted sensitivity analysis 
using two other gene expression prediction methods  (PrediXcan30 and  JTI31) (Supplementary Fig. 9). Results 
from  PrediXcan30 (in blood) supported our hypothesis that parents would have higher predicted gene expression 
than their children when testing dominant and recessive DD genes containing putatively damaging PTVs, but 
this result was only nominally significant and did not pass multiple testing correction (p < 0.05) (Supplementary 
Fig. 9). Counter to our expectation, we observed higher predicted expression in children compared to parents 
in constrained genes containing putatively damaging PTVs, using both  PrediXcan30 (nominally significant in 
a two-sided test; p = 0.026 in blood) and  JTI31 (two-sided p = 1.62 ×  10–4 in blood, two-sided p = 1.25 ×  10–3 in 
cortex) (Supplementary Fig. 9). Similarly, when considering both PTVs and missense variants in constrained 
genes, we observed higher predicted expression in children compared to parents using  PrediXcan30 (two-sided 
p = 0.0022 in blood) and  JTI31 (nominally significant; two-sided p = 0.038 in blood) (Supplementary Fig. 9). As 
these results were inconsistent between the gene sets considered and methods used for gene expression predic-
tion, we did not find them persuasive in either direction.

Importantly, we have low power to detect experiment-wide significant differences in predicted gene expres-
sion between variant-transmitting parents and their children at current sample sizes (Table S6). Assuming the 
true effect is at the upper end of the 95% confidence intervals shown in Fig. 2B, our power to detect a significant 
effect ranges from 2% to 48%. Assuming these same effect sizes, future studies would require 2–53 fold more 
parent–child pairs (depending on variant/gene set) to detect a significant positive difference in predicted expres-
sion between variant-transmitting parents and their children with 80% power.

We next compared genetically-predicted expression between NDD probands carrying a putatively damaging 
variant in a given gene with the predicted expression for the same gene in 9720 UKHLS controls. Specifically, we 
calculated the percentile ranks of genetically-predicted gene expression values, per gene, in both cortex and whole 
blood, across undiagnosed NDD probands with putatively damaging variants in the gene and UKHLS controls. 
We then aggregated these percentile ranks across genes and ran a one-sided Wilcoxon rank test to compare the 
average ranking of variant-carrying probands with controls. We hypothesized that the probands’ ranked pre-
dicted expression values would be lower than in controls. We found that genetically-predicted expression from 

Figure 2.  Comparison of predicted gene expression between unaffected variant-transmitting parents and their 
undiagnosed children with an NDD. (A) Schematic figure depicting how cis-eQTLs may modify the penetrance 
of a putatively damaging variant transmitted from an unaffected parent to their undiagnosed child in a gene 
with a LoF mechanism. The haplotype with the ‘+’ symbol has higher predicted expression based on its cis-
eQTLs, whereas the one with the ‘−’ symbol has lower predicted expression. (B) Mean difference (parent–child) 
in predicted gene expression between parents transmitting putatively damaging variants and their children 
with an undiagnosed NDD, with lines indicating 95% confidence intervals. N denotes the number of unique 
child-parent pairs. Predicted gene expression can be interpreted as the inverse quantile-normalised number of 
reads per kilobase of transcript per million mapped reads (RPKM). The three panels show results for putatively 
damaging variants in three different sets of genes: dominant DD-associated genes with a LoF mechanism (left), 
recessive DD-associated genes with a LoF mechanism (middle) or constrained genes (pLI > 0.9) (right). Red and 
blue dots represent results from genetically-predicted gene expression imputed from whole blood and cortex, 
respectively. We show estimates considering only PTVs, as well as PTVs and missense variants (with MPC ≥ 2) 
together.
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whole blood of constrained genes harboring putatively damaging variants is lower in variant-carrying probands 
than in controls (PTVs: p = 1.0 ×  10–4; PTVs + missense: p = 2.7 ×  10–3, which pass Bonferroni correction for 12 
tests) (top right panel of Fig. 3; Table 1). We also found nominally significant evidence to suggest that, in cortex, 
genetically-predicted expression of recessive (p = 0.03) DD-associated genes harboring putatively damaging 
PTVs is lower in variant-carrying probands than controls (bottom middle panel of Fig. 3; Table 1). Similarly, we 
found nominally significant evidence (p = 0.04) to suggest that, in whole blood, genetically-predicted expres-
sion of dominant DD-associated genes harboring putatively damaging PTVs and/or missense variants is lower 
in variant-carrying probands than controls (top left panel of Fig. 3; Table 1). These findings are consistent with 
our hypothesis that the haplotype with the wild-type allele may be expressed at a lower level, thus increasing the 
penetrance of putatively damaging variants in undiagnosed NDD cases compared to controls. However, results 
were inconsistent across the two tissues and gene sets tested. Furthermore, this analysis does not take into account 
whether any controls carry a rare, potentially damaging variant in the same gene as the cases (since sequence 
data are not available for controls), and is thus less robust than the within-family analysis mentioned above. We 
repeated this analysis with a more lenient MAF threshold (MAF < 0.1%) and found similarly inconsistent results 
(Supplementary Fig. 10).

A limitation of these analyses is that, while these variants were filtered to be rare and predicted to be damaging 
by in silico predictors, many of the variants are likely not damaging, or only have mild effects. Thus, we investi-
gated differences in predicted gene expression for specific cases in which the proband had a diagnostic variant 
that was inherited from an unaffected parent, and consequently incompletely penetrant. We focused on a set of 

Figure 3.  Violin and box plots of percentile-ranked genetically-predicted expression values of genes harboring 
putatively damaging variants in undiagnosed NDD cases, compared to controls. Vertical lines of the box plot 
indicate the range and horizontal lines indicate the lower quartile, median and upper quartile. The p-value is 
from a one-sided Wilcoxon test assessing whether cases are lower than controls. The Bonferroni multiple testing 
threshold is 0.05/12 = 4.2 ×  10–3.

Table 1.  Results of one-sided Wilcoxon rank test for percentile-ranked predicted expression of genes 
harboring putatively damaging variants in undiagnosed NDD probands compared to controls. The sample 
size for each test is the (number of probands with a putatively damaging variant) + [number of unique genes in 
which a proband has a putatively damaging variant  ×  N controls (9270)].

Tissue Variant type Gene type N genes N cases with variant Mean case rank Mean control rank P value

Blood PTV dominant DD 43 85 57.82 50.00 0.99

Blood PTV + missense dominant DD 156 1055 48.68 50.00 0.04

Cortex PTV dominant DD 50 90 45.85 50.00 0.08

Cortex PTV + missense dominant DD 186 1168 49.54 50.00 0.26

Blood PTV recessive DD 297 469 48.40 50.00 0.10

Blood PTV + missense recessive DD 590 1895 50.38 50.00 0.80

Cortex PTV recessive DD 316 501 47.72 50.00 0.03

Cortex PTV + missense recessive DD 627 1950 50.11 50.00 0.61

Blood PTV constrained 386 901 46.79 50.00 1.0 ×  10–4

Blood PTV + missense constrained 731 1242 48.11 50.00 2.7 ×  10–3

Cortex PTV constrained 440 951 49.61 50.00 0.32

Cortex PTV + missense constrained 839 1327 49.85 50.00 0.41
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twenty-two variants in DDG2P genes that were known to be pathogenic based on their ClinVar annotation and 
that were deemed pathogenic/likely pathogenic by the proband’s clinician, despite having been inherited from 
an unaffected  parent11. We postulated that this set of variants is the most likely to show evidence of this mode of 
modified penetrance. In Table 2, we show the results for the five variants that fell in genes with a predicted loss-
of-function consequence and whose expression was predicted by  UTMOST18 with FDR-adjusted p value < 0.05 
in blood and/or cortex. For three of these variants, our hypothesis was supported by the results based on the 
one tissue for which predicted expression was available (RORA, plus two variants in EBF3). However, there were 
two variants (those in ANKRD11 and NF1) for which results were inconsistent between genetically-predicted 
gene expression values from cortex versus from whole blood. This is either because one or more cis-eQTLs have 
different predicted directions of effect in the two tissues, or different cis-eQTLs are used to predict expression 
in the two tissues, or some combination of the two. Thus, even in this small set of variants for which we most 
expected to see some signal of this mode of modified penetrance, the evidence for it is inconsistent.

Discussion
In this work, we evaluated whether levels of gene expression predicted based on common variants modulated 
NDD risk and penetrance of rare, inherited damaging variants in a large sample of probands from the DDD 
study. In a TWAS comparing NDD cases with controls, we found one gene passing multiple testing correction in 
whole blood, RAB2A. We are cautious in interpreting this result for several reasons: there is no additional sup-
porting evidence in the literature, it has not yet been replicated in an independent sample, and TWAS hits may 
not reflect the true causal  gene32,44. In evaluating the role of cis-eQTL-mediated gene expression in modifying 
penetrance of rare, inherited, damaging variants, our within-family test found no consistent evidence of this, 
with results differing depending on which method was used for predicting gene expression, and which gene 
set was used (Supplementary Fig. 9). Results from a case/control analysis were likewise equivocal, supporting 
our hypothesis for some gene set-tissue-variant type combinations but not others (Table 1). Analysis of a small 
set of known pathogenic, incompletely penetrant variants also failed to provide consistent evidence that their 
penetrance was being modified by cis-eQTLs (Table 2).

There are several limitations to our analysis. A major one is that, in an attempt to boost power, we aggregated 
evidence across rare variants in many genes, many of which are likely not deleterious. We used stricter filtering 
of rare coding variants than Castel et al.16, focusing on a set that is over-transmitted from unaffected parents to 
probands in DDD (Samocha et al. manuscript in preparation). For example, we used a more stringent MAF filter 
of < 0.001% in  gnomAD8 rather than MAF < 1%. Castel et al. considered all missense variants with CADD > 15 
and, at least for part of their analysis, assumed that penetrance would be increased by higher expression of the 
variant-containing haplotype. This is not what one would expect if the variant results in loss-of-function, and 
hence, we restricted to variants that seemed more likely to have a LoF consequence (PTVs or missense variants in 
genes constrained against LoF variation and/or with a known LoF disease-causing mechanism), and considered 
predicted expression of the other haplotype. Despite our more stringent filtering, many of the rare variants we 
included still likely do not result in true LoF, which undoubtedly reduces our power.

Another limitation is that our set of NDD probands is phenotypically heterogeneous; 88% of recruited DDD 
probands also had abnormalities in at least one other organ  system15. This makes it challenging to choose an 
appropriate tissue in which to predict gene expression, since this may differ between probands. Furthermore, 
eQTLs can be cell-, state- and time-dependent32,45–51. The more relevant cell type and developmental stage to 
consider is even more difficult to pinpoint, and likely will differ between probands. Genetically-predicted expres-
sion models using single-cell data instead of bulk RNA-seq data may also improve results, however identifying 
relevant cell types for such a heterogeneous phenotype would be difficult. It may be that selecting cis-eQTLs 
ascertained in fetal brain would be more physiologically relevant for neurodevelopmental disorders than those 
from adult brain.

A fundamental problem is that common cis-eQTLs only explain about 10% of the genetic variance in real 
gene  expression32, which limits their predictive accuracy. For example, using a single tissue method,  PrediXcan30, 
the average Pearson correlation between predicted gene expression and real gene expression across tissues is 
around 0.1430.  UTMOST18 modestly improves average imputation r2 across tissues over  PrediXcan30 by 36.8%18. 
Moreover, genes associated with Mendelian diseases are likely depleted for common cis-eQTLs42,52–56. Future 

Table 2.  Comparison of genetically-predicted gene expression in cortex and whole blood between variant-
transmitting parents and their children, for a set of known pathogenic variants from ClinVar that were deemed 
pathogenic/likely pathogenic in the proband by their clinician, despite being inherited from an unaffected 
 parent11. These genes are listed in  DECIPHER43 as causing DDs via a  LoF43 mechanism. In the two rightmost 
columns, NA indicates that the gene’s expression was not sufficiently well predicted in that tissue to be 
considered.

Gene
Location (GRCh37) 
(chr:pos:ref:alt) Gene consequence Variant consequence Child versus parent (Blood)

Child versus parent 
(Cortex)

EBF3 chr10:131665510:G:A Loss-of-function NM_001005463.3:p.Arg303* Child lower NA

EBF3 chr10:131665510:G:A Loss-of-function NM_001005463.3:p.Arg303* Child lower NA

RORA chr15:60789728:G:A Loss-of-function NM_134260.2:p.Arg533* Child lower NA

ANKRD11 chr16:89348863:G:A Loss-of-function NM_001256182.2:p.Arg1363* Child higher Child lower

NF1 chr17:29560229:T:C Loss-of-function NM_001042492.3:p.Trp1236Arg Child higher Child lower
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studies could potentially incorporate methods that use rare  eQTLs54, trans-eQTLs, and epigenetic  information57 
to predict gene expression. Alternatively, they could measure gene expression directly using RNA sequencing, 
to assess whether expression patterns (whatever their causes) are modifying penetrance of rare variants. To 
have sufficient power, such studies would either need to be very large or targeted at individuals with putatively 
pathogenic transmitted variants.

In conclusion, we did not find strong evidence to support the hypothesis that common cis-eQTL-mediated 
gene expression modifies NDD risk or penetrance of rare coding variants in NDDs. Despite addressing this in 
one of the largest available datasets of NDD probands, our power was still limited by the phenotypic heteroge-
neity of the cohort, uncertainty about which variants have true effects, and the low accuracy of gene expression 
prediction models. Future studies should consider this hypothesis in larger datasets with direct measurements of 
expression and genome sequencing data to evaluate rare variants that could alter gene expression. They should 
also consider alternative explanations for this apparent incomplete penetrance of rare inherited variants, such 
as a modifying role of polygenic  background58, epistasis, stochastic effects, alternative splicing, changing effects 
of these rare variants with age, or environmental factors.

Methods
Preparation of DDD cases and UKHLS controls on the CoreExome chip
We focused the case–control analyses (Figs. 1, 3, Table 1) on the DDD and UKHLS data that were used in Niemi 
et al.15. These included 6987 unrelated NDD cases from DDD with GBR ancestries (defined based on their 
clustering around the 1000 Genomes Great British samples) and 9720 ancestry-matched controls from UKHLS. 
These samples were genotyped on the Illumina HumanCoreExome  chip15. Pre-imputation quality control of these 
genotype data and imputation to the HRC panel are described in Niemi et al.15. Post-imputation, genotype data 
were filtered to SNPs with an imputation  r2 ≥ 0.8 and MAF > 1%.

Preparation of genotype data from DDD trios
The analyses in Fig. 2 and Table 2 are based on a set of DDD trios that had been genotyped on either the Illumina 
Infinium Global Screening Array (GSA) or the Illumina OmniChipExpress chip. The preparation of those data 
is detailed below, with a summary of the filtering steps in Supplementary Fig. 11.

Quality control and imputation of the GSA data
9850 DDD samples were genotyped on the GSA at King’s College London in March 2020. Samples were geno-
typed in a pilot batch (N = 1152), and a second, larger batch (N = 8698). Tables S1 and S2 show the results of the 
quality control steps applied to samples and SNPs before and after merging the batches, respectively.

Samples were checked for concordance with whole-exome sequencing (WES) data previously generated and 
cleaned on all DDD individuals, described in previous  publications2; discordant samples were removed, as were 
sample swaps and duplicate samples. Individuals with ≥ 5% SNPs missing genotyped data were removed. After 
examining the heterozygosity rate per individual versus the proportion of missing genotypes per  individual59, 
we removed individuals with a heterozygosity rate below 0.158 and above 0.17. Trios for which the offspring 
had > 200 Mendelian errors (~ 0.03% error rate) were removed.

Palindromic, duplicated and multiallelic markers were removed, as well as indels. Markers with either a call 
rate < 5%, a MAF < 1%, or with significant deviation from Hardy–Weinberg Equilibrium (p < 1.0 ×  10–6) were 
also removed. Markers with a significantly different non-missing rate (p < 1.0 ×  10–50) or marked allele frequency 
difference between the pilot batch and second batch of GSA data were removed. SNPs with Mendelian errors 
in > 1% of trios were removed. This left 9534 individuals and 474,926 genotyped SNPs before imputation.

After this SNP-level QC, we identified individuals of GBR ancestries. (See Supplementary Fig. 12 and Sup-
plementary Methods for further detail). This left 8879 individuals.

Imputation was carried out using the TOPMed imputation server. After removing variants with imputation 
r2 ≥ 0.8, 35,901,148 autosomal SNPs remained.

Preparation of DDD trios genotyped on the Omni chip
Niemi et al.15 also made use of a set of 3504 individuals from DDD who had been genotyped on the Illu-
mina OmniChipExpress chip. The pre-imputation quality control of these genotype data has been described 
 previously15. The prior study used the Haplotype Reference Consortium (64,976 low-coverage genomes) as 
an imputation panel. We re-imputed the post-QC genotype data using the TOPMed reference panel (97,256 
high-coverage genomes) and imputation server, which uses Eagle2 for phasing and  minimac424 for genotype 
 imputation23–25,60. We removed SNPs with imputation r2 < 0.8, leaving 36,904,864 SNPs.

Merging and checking ancestry of the DDD trios genotyped on the Omni and GSA chips
We merged the data from the GSA and Omni chips (11,227 individuals) and verified that the individuals were 
well-matched for ancestry (Supplementary Fig. 13). See Supplementary Methods for further details. This merged 
dataset contained 3344 trios of which all three individuals were inferred to have GBR ancestries.

Subsetting DDD trios for analyses
We then removed trios in which probands or parents were related to individuals in other trios up to three 
degrees of relatedness. To identify related individuals across trios, we ran the –genome command in PLINK 
v1.961. Pairs of individuals with π̂≤ 0.2 were considered unrelated. After filtering, we retained a set of 3170 
unrelated trios with GBR ancestries. Among these, 2422 probands were considered undiagnosed (see section 
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below on ‘Identifying undiagnosed probands’), and 2002 had unaffected parents. Finally, of those, 1700 had a 
neurodevelopmental disorder, defined as having one of the following HPO  terms62: abnormal metabolic brain 
imaging by MRS (HP:0012705), abnormal brain positron emission tomography (HP:0012657), abnormal synaptic 
transmission (HP:0012535), abnormal nervous system electrophysiology (HP:0001311), behavioural abnormal-
ity (HP:0000708), seizures (HP:0001250), encephalopathy (HP:001298), abnormality of higher mental function 
(HP:0011446), neurodevelopmental abnormality (HP:0012759), abnormality of the nervous system morphology 
(HP:0012639). This filtering process is depicted in Supplementary Fig. 11.

Identifying undiagnosed probands
The DDD exome analysis team identified potentially clinically relevant variants from the WES and arrayCGH 
data as described in Wright et al.3. The clinical filtering procedure focuses on identifying rare damaging vari-
ants in a set of genes known to cause developmental disorders (DDG2P) (https:// www. decip herge nomics. org/ 
ddd/ ddgen es), that fit an appropriate inheritance mode. Variants that pass clinical filtering are uploaded to 
 DECIPHER43, where the probands’ clinicians classify them as either ‘definitely pathogenic’, ‘likely pathogenic’, 
‘uncertain’, ‘likely benign’ or ‘benign’. We downloaded all DDD variants from  DECIPHER43, on July 30, 2021. 
Of these, 23.5% had not yet been classified by clinicians. Thus, to better differentiate between diagnosed and 
undiagnosed probands, we estimated positive predictive values (PPV) for different classes of variants and used 
this to identify probands for whom the variants that passed clinical filtering seemed likely to contain the true 
diagnosis. We estimated positive predictive values as the proportion of variants in that class (e.g. de novo PTV 
in dominant gene with a loss-of-function mechanism) that clinicians had rated as ‘pathogenic’ or ‘likely patho-
genic’. The classes of variants considered and their positive predictive values are shown in Supplementary Table 3.

We defined ‘undiagnosed probands’ as those that did not fulfill at least one of the following criteria:

 (i) The proband was amongst the diagnosed set in a thorough reanalysis of the first 1133  trios63,
 (ii) The proband had at least one variant (or pair of compound heterozygous variants) rated as pathogenic’ 

or ‘likely pathogenic’ by a clinician,
 (iii) The proband had at least one variant (or pair of compound heterozygous variants) in a class with a high 

or medium PPV (i.e. PPV > 50%; see Supplementary Table 3) that passed clinical filtering but had not 
yet been rated by clinicians,

 (iv) The proband had a de novo PTV in a gene with a pLI > 0.942.

Predicting gene expression
We used SNP weights from  UTMOST18 to genetically predict gene expression based on the imputed genotype 
dosage files.  UTMOST18 is a cross-tissue gene expression imputation  model18. Genetically-predicted expression 
was only generated for genes which had a cross-validation FDR-adjusted p value < 0.05 in the dataset used to 
build the models. We used cis-eQTL SNP weights generated from two datasets: GTEx v6p brain cortex and whole 
blood. For sensitivity analyses, we used SNP weights estimated from the same tissues using two other gene expres-
sion imputation models:  PrediXcan30 and  JTI31. Genetically-predicted expression using these methods was only 
generated for genes with a Pearson correlation between predicted and observed expression of r > 0.1 and p < 0.05.

Transcriptome‑wide association study (TWAS) for NDDs
We ran two TWASs using predicted gene expression with weights derived from the GTEx v6p brain cortex 
(N = 96) and GTEx v6p whole blood (N = 338). We predicted gene expression using estimated SNP weights from 
 UTMOST18, then ran logistic regression of predicted expression for each gene on case status (N = 6987 cases, 
N = 9270 controls), controlling for the first 10 genotype PCs. We set a Bonferroni significance threshold of p 
value < 2.23 ×  10–6 for the two TWAS (0.05/(11,338 genes in cortex + 11,103 genes in whole blood)).

Quality control of whole‑exome sequencing data
A brief overview of the quality control carried out on the DDD whole-exome sequencing data can be found in 
Supplementary Table 5. We focused on SNVs and indels. Coding consequences are defined by the worst annota-
tion across transcripts using the Variant Effect  Predictor64.

When multiple indels are found nearby in the same individual, this frequently indicates a complex mutational 
event. Properly resolving these complex mutational events would require haplotype-aware annotation, which 
was beyond the scope of this work. Consequently, we removed instances in which a sample had more than one 
indel in a given gene. This filter removed fewer than 4% of all indels with a MAF < 1% in our dataset.

Investigating role of genetically‑predicted gene expression in modifying penetrance of rare 
variants
Amongst the undiagnosed, NDD probands of GBR ancestries with unaffected parents, we identified those with 
at least one rare (MAF < 0.001% in  gnomAD8 and < 0.01% in DDD, inherited, heterozygous variant that was 
either (1) a PTV or missense variant in a dominant DDG2P gene with a LoF mechanism, (2) a PTV or mis-
sense variant in a recessive DDG2P gene with a LoF mechanism or (3) a PTV or missense variant (MPC ≥ 2) in 
a constrained gene (pLI > 0.9). We used the DDG2P list downloaded on August 20, 2020, and focused on genes 
that were confirmed/probable DD genes.

In the first analysis (Fig. 2), we compared genetically-predicted expression between probands with a putatively 
damaging variant in one of the aforementioned categories with their transmitting parent. Specifically, we tested 
(using a one-sided paired t-test) whether undiagnosed NDD cases carrying a variant in a given class had lower 

https://www.deciphergenomics.org/ddd/ddgenes
https://www.deciphergenomics.org/ddd/ddgenes
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predicted gene expression than their parent who transmitted the variant. We only compared gene expression 
for one proband with one parent for one gene with a putatively damaging variant. If a proband inherited more 
than one putatively damaging variant, either from the same or both parents, a unique proband-parent-gene 
combination was selected at random with an equal probability of selection.

We conducted a power analysis to assess our ability to detect these effects using a one-sided paired t-test, con-
sidering both a nominal significance level (p < 0.05) and a Bonferroni-corrected threshold (p < 0.0042) (Table S6). 
Additionally, we determined the required sample size to achieve 80% power for detecting effects at both nominal 
and Bonferroni-corrected significance levels, based on current point estimates and upper bounds of the 95% 
confidence interval for effect sizes (Table S6). We used the pwr.t.test function from the “pwr” package in R (based 
on Cohen et al.65).

In the second analysis (Fig. 3; Table 1), we calculated the percentile ranks of genetically-predicted gene 
expression values, per gene, in both cortex and whole blood, across undiagnosed NDD probands with putatively 
damaging variants in the gene and UKHLS controls. For each gene, we extracted the rank of genetically-predicted 
expression for cases carrying a variant in a given class, as well as the controls’ ranks. We then aggregated the 
ranks across genes and conducted a one-sided Wilcoxon rank test to test whether these ranks were lower in the 
variant-carrying cases compared to controls.

Identifying undiagnosed probands with outlier expression in DDG2P genes
For each DDG2P gene, we identified undiagnosed NDD probands that had predicted gene expression at least 
three standard deviations above or below the mean predicted gene expression in controls from brain cortex or 
whole blood. We then conducted a Fisher’s exact test to test whether the number of cases with extreme levels of 
predicted gene expression was significantly different from that in controls.

Ethical approval
The DDD study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South 
Research Ethics Committee and GEN/284/12, granted by the Republic of Ireland Research Ethics Committee). 
The University of Essex Ethics Committee has approved all data collection on Understanding Society main study, 
COVID-19 surveys and innovation panel waves, including asking consent for all data linkages except to health 
records. Approval for the collection of biosocial data by trained nurses in Waves 2 and 3 of the main survey was 
obtained from the National Research Ethics Service (Understanding Society – UK Household Longitudinal 
Study: A Biosocial Component, Oxfordshire A REC, Reference: 10/H0604/2).

Data availability
The DDD data are available in the European Genome-Phenome Archive (EGA). These include the exome 
sequence data (EGAD00001004389), phenotypic and family descriptions (EGAD00001004388), CoreExome array 
data (EGAD00010001598, EGAD00010001600, EGAD00010001604) and Global Screening Array data (first batch 
raw data: EGAD00010002567, second batch raw data, EGAD00010002569 and QCed data: EGAD00010002568). 
The UKHLS genotype data are also available on EGA (EGAS00001001232).
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