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Performance optimization 
of interleaved boost converter 
with ANN supported adaptable 
stepped‑scaled P&O based MPPT 
for solar powered applications
K. Krishnaram 1*, T. Suresh Padmanabhan 1, Faisal Alsaif 2 & S. Senthilkumar 3

Solar energy is the most promising among many renewable energy sources to meet the increasing 
demand. Photovoltaic (PV) based power generating solutions are expected to gain popularity as 
a power source for different applications, including independent and grid connected loads, due to 
their cleanliness, high performance, and high dependability. The efficacy of photovoltaic systems is 
impacted by several elements, including geographical location, positioning, shadowing effects, and 
local climate conditions. In order to fulfil the demands of loads, an interleaved boost converter is 
utilized, which has a reduced number of filters with less stress on the devices. Solar powered systems 
employ several maximum power point tracking (MPPT) methodologies. However, when there is partial 
shading, many power peaks arise, which complicates the identification of the overall peak. Although 
MPPT approaches are designed to measure and maintain the global maximum power point (GMPP), 
there are still significant oscillations observed around the GMPP with subpar settling time, tracking 
efficiency, and conversion efficiency. In this work, novel hybrid MPPT technique called artificial 
neural network supported adaptable stepped‑scaled perturb and observe (ANN‑ASSPO) method and 
water cycle optimization based perturb and observe (WCO‑PO) have been proposed. Artificial neural 
network (ANN) has been used to determine the best scaling factor in ANN‑ASSPO MPPT. Performance 
is enhanced in ANN‑ASSPO MPPT by using the optimum scaling factor, particularly in situations when 
the irradiance is rapidly changing/partial shading conditions. Similarly, in WCO‑PO MPPT water cycle 
optimization is used to determine the peak power when the PV panel is subjected to partial shading 
conditions. The performances of proposed hybrid MPPT ANN‑ASSPO and WCO‑PO techniques have 
been compared in terms of power generated, output voltage, average settling time and conversion 
efficiency. The MATLAB/Simulink tool is employed to carry out the experiment for this study.

Keywords E-vehicles, Solar system, Interleaved boost converter (ILBC), Maximum power point tracking 
(MPPT), Artificial neural network supported adaptable stepped-scaled perturb and observe (ANN-ASSPO)

The modern, advancing smartphone space seems to have an energy need that is directly proportionate to popula-
tion. To fulfil this requirement, a lot of fuels are required, but since they are depleting and having negative impacts 
on the environment via climate change, ozone depletion, and other factors, we must use renewable resources to 
a greater extent to match requirement and be environmentally friendly. Although there are several renewable 
energy solutions, solar is among the most often  used1. Due to its simple maintenance requirements, capacity 
for productivity, and lack of pollution, PV technology is currently on the  rise2,3. These systems operate on the 
straightforward premise of turning sunlight into electricity using the solar cells’ internal photovoltaic effect. A 
photovoltaic cell consists of a fabricated semiconductor layer PN  junction4. The effectiveness of the PV is influ-
enced by various factors. One of these is geography, or the places they are positioned, the shadowing effect, and 
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the climate there. Other effects are brought on by various PV technical units and the PV array’s inclined  angle5. 
PV cell output voltages are absolutely insufficient for high-powered applications like solar powered electric 
vehicles. Difficult switching converters rarely meet the requirement because of their inadequate effectiveness; as 
a result, soft switching converters were employed as an alternative because of their excellent performance and 
low degree of  loss6,7.

Therefore, the voltage can be increased to the required level by using a step-up DC converter. However, 
employing a standard step-up or boost converter to achieve large voltage output for high-powered applications 
makes it challenging to preserve greater  performance8,9. Furthermore, solar powered EV requires a converter 
with a high-power rating to meet the preferred voltage characteristic because it includes maximum voltage and 
current ranges. So, the idea of interleaved boost converter (ILBC) is applied. ILBC could be the sole option to 
accomplish design goals in light of the rising frequency of energy-saving standards. Using a power converter will 
make it possible to link the solar farm to the grid network (mainly boost converter). Consequently, a direct DC 
link is established with the PV system. The performance of PV arrays is unaffected, and its main benefits are sim-
plified circuit and cheaper converter expenses. Due to the minimal amount of technology modification required, 
this architecture may be retrofitted to the present solar based power generation  methods10,11. With the existing 
MPPT methods, identification of global peak is difficult with fixed step size. AI techniques have been introduced 
to overcome the problems associated with fixed step size MPPT technique. Fuzzy logic based variable step size 
in incremental conductance gave better performance but not in the settling  time12. The ANN based MPPT gave 
better solutions to the conventional MPPT but still conversion efficiency and tracking efficiency are  poor13,14.

Authors devised a method for tracking the MPP in solar PV systems using Reduced Oscillation P&O 
(ROP&O), aims to minimize the risk of losing track of the MPP direction and to reduce oscillation around the 
MPP when the solar PV network experiences periodic changes in  irradiance15. But the settling time is more. 
Modified variable step size P&O technique aims to achieve the greatest output power from a solar system that is 
connected to a boost  converter16. The approach proposed by the authors successfully improved the time it takes 
to track and reduced the amount of steady state oscillation near the MPP. Recursive bit assignment with neural 
reference adaptive step (RNA) algorithm proposed by the  authors17 are not able to track the global peak effec-
tively. The introduction of ANN based hybrid MPPT methods draws more interest from the  researchers18–26. The 
advantages of employing ANN include the lack of a need for expertise in precise mathematical models, reduced 
processing effort, and the capacity to give a clear remedy to multivariable issues. The controller design, necessary 
input signals, and output signals are three aspects where ANN-based MPPT approaches differ from one another. 
Authors  of18 employed ANN as the regulator to boost the effectiveness of the traditional PID controllers; authors 
 of19,20,24 applied ANN to calculate MPP.

The majority of the  researches23,24 used the irradiance and panels’ temperature as the ANN feed when it comes 
to the needed input signals. But more costly sensors are needed to assess irradiance and panel temperature that 
could raise the system’s total cost. The accuracy and reliability of such detectors are also inadequate. However, 
the authors  of21 employed  Voc and  Isc as the ANN feed, which requires stopping ordinary procedures to measure 
 Voc and  Isc, which results in power loss. The level of “power variation (dP) and voltage variation (dV)” were then 
used as the input by  them22. The “equivalent duty cycle of the MPP (DMPP), the current command value of the 
MPP (IMPP), the voltage command value of the MPP (VMPP), and the power value of the MPP (PMPP)” are all 
examples of typical ANN result in the output signals portion. The concern about partial shading conditions with 
fixed step size conventional MPPT and AI techniques based MPPT brought the researchers to find any poten-
tial answers. A hybrid MPPT which integrate ANN and Conventional MPPT could be the solution to address 
the above said problems. The artificial neural network supported adaptable stepped-scaled PO (ANN-ASSPO) 
approach is suggested in this paper.

The suggested technique makes use of NN to determine the best scaling factor for the present irradiance 
level by feeding it the observed voltage and current values of two successive perturbation locations. In-depth 
simulations are not necessary using the adjustable scaling parameter approach to obtain the optimal scaling fac-
tor. Additionally, it can eliminate the challenging calculations necessary when using state estimate techniques 
for calculation of the irradiation levels. The suggested approach comprises the benefits like easy to use, easy to 
calculate, and performing at its best under rapidly changing solar irradiance conditions. The suggested approach 
is contrasted with WCO-PO MPPT to validate the efficiency of the suggested MPPT method. The outcomes 
of this study show that the robustness and constancy of the suggested method are superior for MPP tracking 
time. Paper’s organization-second section-methodology; third section-simulation results and discussion; fourth 
section-conclusion.

Methodology
The numerical model of PV would be provided in this part. Furthermore, an explanation of the standard PO 
MPPT will then be given, along with some explanations of how the scaling parameter affects MPPT efficiency. 
In this proposed work, standalone PV systems is considered.

Characteristics of solar PV
The solar cell concept employed in this work is depicted in Fig. 1. Equation (1) indicates the link among both 
“output voltage and current”.

(1)IT = Ig(S,T)− Is(T)

(

e
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KATN − 1
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where  IT = Load current;  VT = Output voltage;  Ig(S,T) = Photoelectric current for S and T;  Is(T) = Reverse saturation 
current for particular panel’s temperature; q = Electron charge (1.602 ×  10−19C); S = Irradiance level; T = Panel’s 
temperature; N = No. of series-connected cells; K = Boltzmann constant (1.38065 ×  10−23 J/K); A = Ideality factor 
of diode;  RS = Series resistance;  RP = Shunt resistance.

Additionally,  Ig(S, T) and  Is(T) could be stated as Eqs. (2) and (3), respectively.

C0 = Temperature coefficient;  ISC = Short circuit current; αISC = Temperature coefficient of Isc ;  Eg = Energy gap.
After establishing the link among both “output voltage and current”, the power output may be calculated by 

V × I. P–V curve and actual slope ratio for the PV panels are shown in Fig. 2 for various irradiation levels. The 
differentiation of power to voltage ( dP

/

dV ) is used to determine the P–V curve’s slope.

Interleaved boost converter (IBC) circuit
Since solar cells get limited conversion efficiency, increasing the system performance generally is a crucial design 
concern for PV systems. Employing highly efficient converters combined with MPPT can help with this to some 
extent. Such converters must meet two basic requirements: (a) the input current must have no fluctuation, and (b) 
the performance must be good even at reduced solar intensities. The intermediate converter chops the produced 
dc voltage and regulates the load’s mean dc voltage. Additionally, the converter regularly balances the load’s input 
feature to the PV generator’s output feature to get the most power. There have been numerous proposals for 
intermediate converters with MPPTs for solar panels. At lower-intensity radiations, simple converters like buck 
and boost converters get to interrupted current mode, which results in inappropriate power device usage and 
greater conduction losses because of additional current fluctuation. Two phase interleaved DC–DC converter in 
PV systems has been suggested to lessen input current ripple and to solve the issue of interrupted input current 
(Fig. 3). The resultant input and output waves have reduced ripple magnitude value. Interleaved functioning also 
requires less maintenance, improves dependability, and is fault-tolerant. The proposed MPPT is applied to PV 
systems to extract MPP at all radiations.

Modes of operation:
(i) Mode I:

(2)Ig(S,T) =
S

100
×

(

Isc + αIsc · (T− T0)
)

(3)IS(T) = C0 · T3 · e
(

− Eg
KT

)

Figure 1.  Equivalent circuit model of the solar cell.

Figure 2.  (a) PV characteristic and (b) slope of PV characteristic.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8115  | https://doi.org/10.1038/s41598-024-58852-8

www.nature.com/scientificreports/

At position t = 0; the switch  S1 is turned on by the gate pulse. The inductor current  IL1 start rise linearly. During 
this period the switch  S2 present in another phase is not gated or not conducting. Therefore, the energy stored 
previously in the inductor  L2 passed to the load. The inductors present in two phases namely inductor  L1 and 
 L2.  L1 starts charging and inductor  L2 starts discharge to the load through diode. This phase continued till the 
switch  S1 is in on state. The mode I operation is shown in Fig. 4.

(ii) Mode II:
At position t =  t1; the switch  S2 is turned on and  S1 is turned off. The energy stored in the inductor  L1 is trans-

ferred to the load through diode. Whereas the inductor  L2 starts charging. Therefore, the inductor current  IL2 
starts increasing linearly. During this period  S1 is in off condition. This phase continued till the switch  S2 is in 
on state. The mode II operation is shown in Fig. 5.

The output voltage equation of interleaved boost converter is

where Vo & Vin are output and input voltages and D is duty ratio.
Figure 6 shows the Simulink diagram of two-phase interleaved boost converter with R load.

(4)Vo =
Vin

(1− D)

Figure 3.  Circuit of 2 phase ILBC.

Figure 4.  ILBC—Mode I.

Figure 5.  ILBC—Mode II.
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Principle and motivation for MPPT
Figure 7 shows how incoming temperature and irradiation level, as well as the operating voltage (V) and/or value 
of the load, affect the power generated by PV systems. The appropriate operating level for a solar array to achieve 
optimum performance is denoted as MPP. In these situations, the MPPT technique can assist in considerably 
increasing the power yield of a photovoltaic system by modifying control parameters (load/V) in a manner that 
guarantees the V will constantly be essentially similar to the optimal V (VMPP). The usage of MPPT is crucial 
in the solar powered applications because it provides a way to increase power and efficiency despite quickly 
changing input factors (irradiation level and temperature) based on by the movement of the vehicle and the 
smooth curves of the PV arrays. Without the requirement for solar panels to be enlarged, which would result in 
unreasonably increased the system cost and reduced performance, MPPT aids in ensuring large power supply.

Water cycle approach
The Water Cycle Approach (WCA) concept was drawn from nature and also was depending upon the empirical 
evidence of the water cycle as well as how streams and rivers naturally migrate towards the sea. Here is a simple 
explanation of how rivers form and how water flows from mountains to the sea to better comprehend this. A 
river/stream is formed whenever water moves from one point to a different while moving downhill. This move-
ment of water creates a slope. This implies that the vast number of rivers have their beginnings up in the hills 
because there is no longer snow where previous glaciers have melted. “Rivers” flow downhill consistently. “Rain 
and certain other streams” collect water as they descend and eventually end up in the ocean. During this process 
portion of water of streams or rivers get evaporated. These evaporated water form clouds and return to the ground 
as rain. These rains create new streams which flow to river or sea. This is a cyclic process. Here sea is assumed as 
global MPP, streams and rivers are called as local MPP. This WCA approach is used to optimize the PV  MPPT25.

Here  Ci = function cost.

(5)Ci = Costi = PFC = N× Vcell × IFC

Figure 6.  Two phase interleaved boost converter.

Figure 7.  Disparity of MPP with varying levels of temperature and irradiance. (a) PV curve under various 
irradiance with constant temprature. (b) PV curve under various irradiance with various tempratures.
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Rain and evaporation processes come to a stop when

dmax regulates the strength of search close to the sea (best solution).
The “raining procedure” is applied while the “evaporation process” is finished. As per it starts to rain, fresh 

droplets start to produce streams in several places. Fig. 8 portrays the proposed WCO-PO methodology. Equa-
tion (7) is employed to point out the fresh positions of the freshly created streams.

ANN‑supported adaptable stepped‑scaled PO (ANN‑ASSPO)
The precision and monitoring speed requirements are what decide the step size that MPPT methods generally 
deploy. However, increasing the step length to ramp up monitoring results in a loss in precision, which in turn 
leads to relatively poor effectiveness, and conversely. An adaptable stepped approach for the ANN-ASSPO MPPT 

(6)|Xsea − Xriver| < dmax

(7)Xnewstream = Xsea +
√
0.1× randn(1, Nvar)

Figure 8.  Flowchart of WCO-PO MPPT.
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is presented forth in this research with the goal of finding a quick, efficient solution to increase tracking preci-
sion and address the problems with conventional MPPT methods. In accordance with the PV array’s operating 
point, the step size is updated automatically. The step size is updated automatically to the operating point when 
there is a step change in solar irradiance. The step size is increased while the operational point is omitted to MPP, 
allowing for quick tracking. The MPPT is accomplished in e-vehicle uses by linking IBC between the PV system 
and loads. The PV system operating point is used to effectively regulate the IBC’s duty cycle relying on a Phase 
Shift Pulse Width Modulation (PSPWM), which simplifies the control method. The adaptable step size strategy 
used to solve the aforementioned problem is illustrated as follows:

The effectiveness of the MPPT algorithm is modified during the construction process, and N is the scaling 
parameter. The MPPT incorporates the following features by default:

The step size must be raised in the first case when the value of �P
�I > 0 is small, as it will reduce the amount 

of the phase shift that will be generated. As a result, more PV current will pass through the high-frequency con-
verter, increasing the power that is generated. The third instance, unfortunately, will be the complete reverse. The 
phase shift remains unchanged if the PV array is operating at the MPP, the value of �P

�I = 0 . This study proposed 
a more efficient adaptable stepped PO MPPT technique to determine the most adequate scaling factor for the 
present operating settings, in order to guarantee that the adaptable stepped PO MPPT has the effective tracking 
performance with maximum accuracy and power failure under various irradiance levels. The structure and use 
of ANN are also detailed here. In this research, ANN is used to determine the Finest Scaling Parameter (FSP).

This study’s suggested method first employs ANN to determine the FSP that ought to be employed given the 
current values of irradiance, and then employs an adaptable stepped PO MPPT approach to detect the MPP. 
The FSP estimating method used by ANN will be described in this part, along with the process for conducting 
adaptable stepped PO MPPT using the calculated FSP. A standard ANN conceptual model consists of many 
neurons, as shown in Fig. 9. NN generates mathematical models by replicating the data analysis of biological 
NN. This allows NN to replicate behaviour of a system, which are complex and difficult to model. Equation (12) 
indicates the relationship among both input and output of a neuron; the result is obtained by “multiplying the 
input by weight (W) and sums”, which is then converted via an “activation function”. Term "NN training" refers 
to the process of altering weights and bias to produce the desired results. An ANN produces preliminary set 
of weights among + 1 and − 1 arbitrarily throughout training. The W’s purpose is comparable to the impact of 
synapsis; when the W is greater, the linked neuron may activate more frequently, and the effect on the network 
is more noticeable; on the other hand, if the weights are lower, the effect on the NN is less noticeable.

The “activation function” is represented in Eq. (13). The study’s training process seems to be the “Levenberg–Mar-
quardt” approach.

(8)D∗(k) = D(k)− N .
�P

�I

(9)
�P

�I
> 0 PV operating point at the life of theMPP.

(10)
�P

�I
= 0 PV operating point at MPP.

(11)
�P

�I
=< 0 PV operating point at the right of theMPP.

(12)Y =
∑

WiXi − b

Figure 9.  ANN model for FSP calculation.
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The back-propagation NN used in this research has 3 layers: an input layer (IL), a hidden layer (HL), and an 
output layer (OL) shown in Fig. 10. The amount of IL’s input neurons varies depending on the complexity of the 
problems being addressed. The IL and OL are separated by a layer of neurons called the HL, which serves as a 
representation of the nonlinear relationship between the two. There’s presently no ordinary procedure to iden-
tify the HL’s setting; a superior set-point is typically achieved via many experiments. Instead, HL’s setting must 
be determined depending upon the problems’ difficulty. The backpropagation algorithm used in this method 
initiated with random weights. The output is calculated when the input data are fed to the network during the 
forward path. Once the error is calculated, network weights will be adjusted according to the error calculated 
in the backward path. The network is fed with measured PV power, voltage and current as inputs and scaling 
factor (N) is an output which will be calculated by the network. The error in the output will be calculated from 
obtained scaling factor and target scaling factor to identify the global peak in PV characteristics. The aim is to 
adjust the weights using gradient descent algorithm to reduce the scaling factor error to identify the global peak 
until the network learns the training data. PV’s power, voltage and current are inputs to this network. The finest 
scaling parameter N is available in the output layer. This scaling parameter is used in P&O method to generate 
maximum power even under partial shading conditions. Fig. 9 depicts the ANN architecture for FSP calculation. 
Here, the output is FSP. Fig. 11 illustrates the ANN-ASSPO MPPT’s procedure. The benefits of the traditional PO 
MPPT are “High tracking speed, high precision, low tracking loss, and etc.” An ANN-ASSPO MPPT algorithm 
was presented in this study because the constant scaling factor causes its performance to considerably drop 
whenever the irradiation level varies.

Ethical approval
This paper does not contain any studies with human participants or animals performed by any of the authors.

Simulated results and discussion
The suggested ANN-ASSPO MPPT’s power extracting abilities and consistency are compared with WCO-PO 
in an effort to assess its ability to function in comparison to SPEVs. With the MATLAB/Simulink application, 
the modelling of a SPEV is performed with an ANN and ASSPO under various climatic circumstances have 
been crucial to the motion of a SPEV, i.e., with rapid variations in temperature and irradiance levels. Tables 1 
and 2 shows the simulation parameters of IBC and electrical characteristics of PV panel from Applied Materials 
respectively. Table 3 shows the irradiance and temperature variations assumed during simulations. The imple-
mentation of ANN-ASSPO based MPPT with two phase interleaved boost converter has been realized under 
MATLAB environment. The circuit implemented in MATLAB has been shown in Fig. 12.

Case‑1: Rapid rise in irradiance level
Firstly, the effectiveness of the proposed ANN-ASSPO and existing MPPT techniques was compared for a 
constant temperature of 25 °C and an instant rise in irradiation between 100 and 1100 W/m2 with t = 25 s. As 
indicated in Fig. 13, we find that the captured power grew along with the sharp rise in irradiation. We observe 
a highly abrupt overshoot of the power level in WCO-PO MPPT case. The power indication for the WCO-PO 
MPPT grows quickly, lowers suddenly, and afterwards gradually builds to a peak point that appears to be con-
stant. Zoomed in, we notice that the WCO-PO MPPT produced waveform is essentially unsteady and fluctuates 
around a mean. In the application of the WCO-PO MPPT, identical overshoots are produced for the voltage 
levels. This not only result in less energy getting collected, but also it causes frequent, repeated electric shifts to 
the components, possibly limiting their lifetime. We observe that the suggested MPPT performs significantly 
better. Firstly, the steady state output is quite stable for voltage and power. In addition, we see that contrasted to 

(13)y(n) =
en − e−n

en + e−n
= Tansig(n)

Figure 10.  Artificial neural network architecture.
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Figure 11.  Flow of ANN-ASSPO MPPT.

Table 1.  Two phase ILBC simulation parameters.

Parameters Values

D 50%

fSW 20 kHz

R 10 Ω

L1, L2 120 µH

C 300

Table 2.  PV’s specifications.

Voc = open circuit voltage 280 V

Isc = short circuit current 2.6 A

Pmax = maximum power 458 W

IMPP = operating current 2.16 A

VMPP = operating voltage 216 V

Temperature constant of Voc  − (0.401) %/°C

Temperature constant of Isc (0.104) %/°C
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the WCO-PO MPPT with reduced overshoot, the reaction time to identify MPP and accomplish peak power 
extraction is lower. The values of output power variation, output voltage variation, duty ratio changes and average 
settling time under Case-1 are given in Table 4.

Case‑2: Rapid reduction in irradiance
In this scenario as seen in Fig. 14, we contrast the suggested MPPT’s effectiveness with that of the existing 
WCO-PO MPPT with a constant temperature of 25 degree Celsius and a nearly instantaneous fall in irradiation 
between 1000 and 400 W/m2 during t = 25 s. Comparable results are noted for the suggested MPPT’s reduced 
time responsiveness for power stabilizing and identifying the peak power. The difference in performance among 
the two systems is, however, lower than it was in the earlier case of the sharp rise in irradiation. The main benefit 
of the suggested MPPT in this situation is during stable operation with increased voltage and power reliability 
and decreased overshoot. Under Case-2, the output power, output voltage, duty ratio variation and average set-
tling time are given in Table 5.

Case‑3: Rapid rise in temperature level
It is crucial to research how the two controllers react to temperature fluctuations since temperature has a harmful 
effect on how effective PV systems perform. At a constant irradiation of 1000 W/m2, an instantaneous tempera-
ture rise between 10 and 50 °C would be applied to both MPPT techniques (as seen in Fig. 15). With a faster 
reaction time, reduced overshoot, and far less fluctuation in steady-state condition, the suggested MPPT’s abilities 
are obviously more noticeable. The output power, output voltage, duty ratio changes and average settling time 
when temperature rise between 10 and 50 °C are given in Table 6.

Case‑4: Rapid reduction in temperature level
As seen in Fig. 16, the same results as indicated above are observed in which the temperature quickly drops 
from 60 to 50 °C with a constant irradiation of 1000 W/m2, but with improved time of responsiveness, minimal 
overshoot, and less fluctuations in the stable condition. For any solar powered applications, when rapid fluctua-
tions in temperature and irradiation are constant, this condition provides a valuable benefit in time and energy. 

Table 3.  Various cases with irradiance and temperature levels.

Cases W/m2 °C

Case-1: Rapid rise in irradiance 100–1100 25

Case-2: Rapid reduction in irradiance 1000–400 25

Case-3: Rapid rise in temperature 1000 10–50

Case-4: Rapid reduction in temperature 1000 60–50

Figure 12.  Solar fed two phase IBC with BLDC drive.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8115  | https://doi.org/10.1038/s41598-024-58852-8

www.nature.com/scientificreports/

The values of output power changes, output voltage changes, duty ratio changes and average settling time under 
Case-4 are given in Table 7.

From Fig. 17, it can be observed that the ANN-ASSPO achieves the highest power output. The output voltage 
of PV panel is more in ANN-ASSPO MPPT than WCO-PO MPPT which was shown in the Fig. 18. The settling 
time is very less in ANN-ASSPO MPPT than WCO-PO MPPT in three cases except case II. When there is sudden 
decrease in irradiance from 1000 to 400 W/m2, ANN-ASSPO MPPT takes more time to settle. The variations in 
settling time of both MPPT techniques in all four cases are shown in Fig. 19. The values of PV’s output power, 
output voltage, duty ratio and conversion efficiencies of ANN-ASSPO MPPT and WCO-PO MPPT are shown 
in Table 8.

Figure 13.  Case-1 results of ANN-ASSPO & WCO-PO MPPT methods.

Table 4.  Performance of ANN-ASSPO & WCO-PO MPPT when irradiance changes from 100 to 1100 W/m2.

@25°C PV’s power output (W) PV’s output voltage (V) Duty ratio Avg. settling time (s)

MPPT 100 W/m2 1100 W/m2 100 W/m2 1100 W/m2 100 W/m2 1100 W/m2 100 W/m2 1100 W/m2

ANN-ASSPO 51.57 511.76 146.49 158.78 0.22 0.72 3.76 2.28

WCO-PO 49.85 506.83 144.48 154.37 0.21 0.72 17.59 24.48
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Conclusion
This work proposed a novel ANN-supported adaptable stepped-scaled PO (ANN-ASSPO) MPPT approach for 
optimizing the performance of PV system based standalone applications. The suggested NN was used to acquire 
the FSP and enhance the efficiency of the ASSPO MPPT approach. The problem with WCO-PO MPPT has been 
highlighted, and the suggested solution was used to overcome it. The MATLAB/SIMULINK toolset was used to 
produce the research’s findings. The simulation findings demonstrate the viability and efficacy of the suggested 
approach. The simulations revealed that rapidly adjusting factors that affect power output were necessary to 
obtain the most notable disparities. Additionally, the suggested ANN-ASSPO has reduced oscillations around 
global peak because of adaptable stepped scale with average conversion efficiency of 99.80% and average settling 
time of 2.06 s. Therefore, ANN-ASSPO based MPPT outperforms the WCO-PO MPPT in all above-mentioned 
terms. Power fluctuation reduction benefits greatly from the ANN-ASSPO MPPT’s due to its stability.

Figure 14.  Case-2 results of ANN-ASSPO & WCO-PO MPPT methods.

Table 5.  Performance of ANN-ASSPO & WCO-PO MPPT when irradiance changes from 1000 to 400 W/m2.

@25°C PV’s power output (W) PV’s output voltage (V) Duty ratio Avg. settling time (s)

MPPT 1000 W/m2 400 W/m2 1000 W/m2 400 W/m2 1000 W/m2 400 W/m2 1000 W/m2 400 W/m2

ANN-ASSPO 457.67 185.95 153.88 151.56 0.71 0.45 1.52 4.08

WCO-PO 455.57 183.48 152.76 149.87 0.71 0.45 16.06 15.3
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Figure 15.  Case-3 results of ANN-ASSPO & WCO-PO MPPT methods.

Table 6.  Performance of ANN-ASSPO & WCO-PO MPPT when temperature changes from 10 to 50 °C.

@1000 W/m2
PV’s power 
output (W)

PV’s output 
voltage (V) Duty ratio

Avg. settling 
time (s)

MPPT 10°C 50°C 10°C 50°C 10°C 50°C 10°C 50°C

ANN-ASSPO 483.48 424.37 156.66 133.33 0.67 0.71 2.4 1.6

WCO-PO 479.57 421.49 154.25 130.12 0.64 0.68 14.8 2.8
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Figure 16.  Case-4 results of ANN-ASSPO & WCO-PO MPPT methods.

Table 7.  Performance of ANN-ASSPO & WCO-PO MPPT when temperature changes from 60 to 50 °C.

@1000 W/m2
PV’s power 
output (W)

PV’s output 
voltage (V) Duty ratio

Avg. settling 
time (s)

MPPT 60°C 50°C 60°C 50°C 60°C 50°C 60°C 50°C

ANN-ASSPO 415.49 448.36 138.32 145.99 0.75 0.70 4.0 1.2

WCO-PO 413.52 445.78 135.76 142.86 0.74 0.70 14.6 4.6

Case 1 Case 2 Case 3 Case 4

ANN-ASSPO 460.19 -271.72 -59.11 32.87

WCO-PO 456.98 -272.09 -58.08 32.26
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Figure 17.  Variation of Output Power in all four cases.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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Case 1 Case 2 Case 3 Case 4

ANN-ASSPO 12.29 -2.32 -23.33 7.67

WCO-PO 9.89 -2.89 -24.13 7.1
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Figure 18.  Variation of Output Voltage in all four cases.

Case 1 Case 2 Case 3 Case 4

ANN-ASSPO -1.48 2.56 -0.8 -2.8

WCO-PO 6.89 -0.76 -12 -10
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Figure 19.  Variation of settling time in all four cases.

Table 8.  Overall performance of ANN-ASSPO & WCO-PO MPPT in all four cases.

MPPT

PV’s power output (W) PV’s output voltage (V) Duty ratio Avg. settling time (s) Conversion efficiency

100 W/m2 1100 W/m2 100 W/m2 1100 W/m2 100 W/m2 1100 W/m2 100 W/m2 1100 W/m2 100 W/m2 1100 W/m2

Case I @25°C

ANN-ASSPO 51.57 511.8 146.49 158.8 0.22 0.72 3.76 2.28 11.3 99.61

WCO-PO 49.85 506.8 144.48 154.4 0.21 0.72 17.59 24.5 10.9 98.64

1000 W/m2 400 W/m2 1000 W/m2 400 W/m2 1000 W/m2 400 W/m2 1000 W/m2 400 W/m2 1000 W/m2 400 W/m2

Case II @25°C

ANN-ASSPO 457.67 186 153.88 151.6 0.71 0.45 1.52 4.08 99.9 40.6

WCO-PO 455.57 183.5 152.76 149.9 0.71 0.45 16.06 15.3 99.5 40.06

10°C 50°C 10°C 50°C 10°C 50°C 10°C 50°C 10°C 50°C

Case III @1000 W/m2

ANN-ASSPO 483.48 424.4 156.66 133.3 0.67 0.71 2.4 1.6 99.9 92.66

WCO-PO 479.57 421.5 154.25 130.1 0.64 0.68 14.8 2.8 99.1 92.03

60°C 50°C 60°C 50°C 60°C 50°C 60°C 50°C 60°C 50°C

Case IV @1000 W/m2

ANN-ASSPO 415.49 448.4 138.32 146 0.75 0.7 4 1.2 90.7 97.9

WCO-PO 413.52 445.8 135.76 142.9 0.74 0.7 14.6 4.6 90.3 97.33
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