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Predicting the complexity 
and mortality of polytrauma 
patients with machine learning 
models
Meiqi Yu 1,2,8, Shen Wang 3,8, Kai He 1,2, Fei Teng 4, Jin Deng 3, Shuhang Guo 3, Xiaofeng Yin 3,6,7*, 
Qingguo Lu 4* & Wanjun Gu 1,2,5*

We aim to develop machine learning (ML) models for predicting the complexity and mortality of 
polytrauma patients using clinical features, including physician diagnoses and physiological data. We 
conducted a retrospective analysis of a cohort comprising 756 polytrauma patients admitted to the 
intensive care unit (ICU) at Pizhou People’s Hospital Trauma Center, Jiangsu, China between 2020 and 
2022. Clinical parameters encompassed demographics, vital signs, laboratory values, clinical scores 
and physician diagnoses. The two primary outcomes considered were mortality and complexity. 
We developed ML models to predict polytrauma mortality or complexity using four ML algorithms, 
including Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN) and 
eXtreme Gradient Boosting (XGBoost). We assessed the models’ performance and compared the 
optimal ML model against three existing trauma evaluation scores, including Injury Severity Score 
(ISS), Trauma Index (TI) and Glasgow Coma Scale (GCS). In addition, we identified several important 
clinical predictors that made contributions to the prognostic models. The XGBoost-based polytrauma 
mortality prediction model demonstrated a predictive ability with an accuracy of 90% and an F-score 
of 88%, outperforming SVM, RF and ANN models. In comparison to conventional scoring systems, 
the XGBoost model had substantial improvements in predicting the mortality of polytrauma patients. 
External validation yielded strong stability and generalization with an accuracy of up to 91% and 
an AUC of 82%. To predict polytrauma complexity, the XGBoost model maintained its performance 
over other models and scoring systems with good calibration and discrimination abilities. Feature 
importance analysis highlighted several clinical predictors of polytrauma complexity and mortality, 
such as Intracranial hematoma (ICH). Leveraging ML algorithms in polytrauma care can enhance 
the prognostic estimation of polytrauma patients. This approach may have potential value in the 
management of polytrauma patients.
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Trauma represents a leading global cause of mortality, claiming nearly 5.8 million lives annually1. Among dif-
ferent traumatic conditions, polytrauma stands out not only as the most prevalent in ICU but also as the high-
est mortality rate2. Polytrauma arises from simultaneous damage to various organs and systems of the human 
body due to external forces, typically caused by incidents such as traffic accidents, accidental injuries, or natural 
disasters3,4. The primary reasons lie in patients experiencing multiple types of injuries concurrently, including 
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trauma, fractures, and visceral damage5. The consequences of polytrauma may include organ failure, infections, 
hemorrhagic shock, and the need for physical and psychological rehabilitation6. This complexity presents a 
significant challenge in the treatment of polytrauma patients, requiring efficient management in the emergency 
phase, surgical repair of damaged organs and systems, and the implementation of a comprehensive rehabilitation 
plan. To reduce the high mortality and morbidity rates in the post-traumatic course, early “preventive” inter-
ventions are necessary5. Therefore, effective treatment of polytrauma hinges on the early detection and timely 
management of those life-threatening injuries7.

However, the clinical presentation and its severity in polytrauma patients manifest complex variations at ICU 
admission. This complexity poses great challenges for clinicians in precisely evaluating and predicting the prog-
nosis of these patients8. In current practices, clinicians often rely on some injury scales or scoring systems, includ-
ing Injury Severity Score (ISS)9, Trauma Index (TI)10, and Glasgow Coma Scale (GCS)11. These scoring systems 
calculate the risk scores based on some clinical indicators such as injury locations and patients’ consciousness 
levels. While these scoring systems offer some assistance, their criteria predominantly depend on the expertise 
of clinicians, making them susceptible to subjective influences and lacking objective and precise indicators11. 
Moreover, these scoring systems often overlook a wealth of trauma-related clinical physiological data.

In contrast, ML techniques can process a huge amount of intricate data and perform predictive analyses12. 
In recent years, ML models have been applied in analyzing large clinical data, providing new opportunities in 
addressing some problems of disease diagnosis and treatment13–15. For instance, in the context of sepsis, Islam 
et al.14 developed a ML model that incorporated physiological information to enhance the identification and 
prognosis assessment of sepsis patients. In the battle against COVID-19, Wang et al.15 employed a deep learning 
model to analyze chest CT images, facilitating the prompt screening of suspected COVID-19 cases in fever clin-
ics and expediting diagnosis and isolation measures. Additionally, ML technology holds promise for optimizing 
stroke treatment, such as recommending the most suitable endovascular surgery or drug treatment regimen 
based on individual patient characteristics and imaging data13. These applications demonstrate the potential 
and value of ML models in clinical settings.

With the standardization of clinical trauma data, ML models have gained many attentions in trauma manage-
ment as well16–21. For example, Gorczyca et al.17 employed logistic regression, random forests, gradient boost-
ing machines, and feedforward neural networks to construct an ensemble learning model for risk prediction, 
uncovering complex relationships in trauma data. Hsu et al.18 used artificial neural networks to predict outcomes 
for patients with moderate to severe head injuries, while Eftekhar et al.16 built and compared artificial neural 
network and logistic regression models for predicting mortality after head trauma based on clinical parameters. 
Yu et al.21 and Ma et al.20 applied statistical methods to examine the predictive value of polytrauma severity 
scores in patient outcomes. Lin et al.19 employed univariate and multivariate logistic regression to identify the 
optimal trauma scoring method and explore factors associated with mortality in polytrauma patients. These 
studies have predominantly utilized ML and statistical methods to construct predictive models for trauma 
patient mortality or severity. However, these studies have primarily relied on demographics, trauma scores, and 
physiological indicators as predictive variables, often overlooked clinical physician diagnoses for the outcome 
prediction of trauma patients.

In order to overcome limitations in previous prognostic models of polytrauma, we developed ML models to 
predict the mortality and complexity for polytrauma patients upon hospital admission using several trauma-
related physiological indicators and clinical diagnosis data (Supplementary Figure S1). We benchmarked various 
ML algorithms and identified the best-performing ML model based on its overall performance. We also explored 
the model’s interpretability by analyzing feature importance. Finally, we compared our model with those com-
monly used scoring systems to assess whether our model surpasses traditional scoring systems in performance.

Materials and methods
Data collection
We retrospectively collected clinical data from trauma patients admitted to ICU at Pizhou People’s Hospital 
between January 2020 and December 2022. To avoid misdiagnosis and missed diagnosis, the management 
procedure of polytrauma patients in Pizhou People’s Hospital is to recruit them in the ICU at their first presenta-
tion, undergo necessary examination and monitoring, and then refer to different disciplines according to their 
trauma locations and severity. A total of 996 patients diagnosed with trauma were initially enrolled (Fig. 1). The 
collected characters encompassed demographic information, vital signs, records of surgical procedures during 
hospitalization, laboratory test results, and clinical diagnoses by physicians. 70 features were compiled in total, 
which were listed in Supplementary Table S1. To focus on polytrauma patients, we filtered 796 patients with 
injuries involving two or more anatomical sites and with ICU stays of more than 24 h (Fig. 1). To ensure data 
quality, patients with the missing data or obviously low quality data were excluded, resulting in 756 patients (674 
alive and 82 deceased) for model development. Among them, the male-to-female ratio was 1.53:1, and the aver-
age age was 54.96 years. This study and its protocol were approved by the Ethics Committee of Pizhou People’s 
Hospital. All data used in this study were desensitized, and Informed consent is not required for the use of such 
data. In addition, all analysis were carried out in accordance with the relevant guidelines and regulations, which 
was complied with the ethical requirements of China.

Data preprocessing
To enhance data usability, we performed data preprocessing, including data cleaning, transformation and stand-
ardization on the raw dataset. We extracted those text features that are relevant to polytrauma from the primary 
diagnosis at admission, including various clinical diagnoses by physicians. To refine these primary diagnosis 
features, we first removed irrelevant diseases and invalid diagnostic information. Next, we categorized the filtered 
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diagnosis text by different body regions, such as fractures, hematomas, dislocations, and injuries to various body 
parts (e.g., brain, cervical spine, thoracic spine, lumbar spine, joints, etc.). Supplementary Table S2 provides an 
overview of the categorized diagnostic features and their corresponding clinical diagnoses. These location-based 
features were then vectorized. In addition, as the raw dataset contained some missing values, we employed 
Multivariate Imputation by Chained Equations with random forest (MICE Forest)22 to impute these missing 
values. Finally, we standardized and normalized the imputed dataset to facilitate subsequent ML modeling. For 
standardization, StandardScaler23 was used to standardize features by removing the mean and scaling to unit 
variance. For normalization, MinMaxScaler24 was used to transform features by scaling each feature between 0 
and 1. After data preprocessing, a final dataset with 70 clinical parameters was used as the input data of all ML 
models in model development.

Model development
In this study, we constructed two separate ML models using the collected clinical data of polytrauma patients 
(Fig. 2 and Supplementary Figure S2). First, a polytrauma mortality model was developed to predict the deadly 

Figure 1.   Workflow of data collection and processing. First, a total of 996 patients diagnosed with polytrauma 
before or upon admission were initially enrolled. Next, patients with ICU stays of more than 24 h and those 
with injuries involving two or more anatomical sites were included. Then, patients with severe missing data and 
obvious data errors were excluded, leaving 756 patients (674 survivors and 82 deceased) for model construction. 
All 756 patients were used to develop and validate the mortality risk model of polytrauma patients. In order to 
classify the complexity of polytrauma patients, we classified all 674 survived patients into mild, moderate and 
severe groups. Specifically, 375 polytrauma patients with ICU stays of 3 days or less were grouped into the mild 
group, while 129 patients with ICU stays of 8 days or more were grouped into the severe group. This resulted in 
a final dataset of 504 patients for the construction of polytrauma complexity model.
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outcome of polytrauma patients upon hospital admission (Fig. 2). All eligible patients from 2020 to 2022 were 
randomly divided into a discovery cohort (70% of the original dataset) and a validation cohort (30% of the 
original dataset). The discovery cohort was used to train a ML model through supervised classification, while the 
validation cohort was used for external validation. The number of positive samples (deaths) is limited, resulting 
in a survival to death ratio of approximately 9:1 (478 alive, 51 deceased) in the development queue of two death 
risk prediction models. To address this imbalance, we utilized the Synthetic Minority Over-sampling Technique 
(SMOTE) algorithm to oversample the minority class samples in the two model development cohorts25. We 
generated synthetic samples in the feature space of minority class samples to adjust the positive-to-negative 
sample ratio to 2:1 (478 alive, 239 deceased). Subsequently, we used four ML algorithms, including RF, SVM, 
ANN and XGBoost, to build models for predicting mortality upon hospital admission for polytrauma patients. 
We tuned the model hyperparameters by defining a hyperparameter search space and conducting 50 trials within 

Figure 2.   The construction of polytrauma mortality model, including its discovery, validation, performance 
evaluation and its comparison with existing scoring systems. The original dataset was randomly divided into 
a discovery and a validation cohort at a ratio of 7:3. In the discovery cohort, the SMOTE algorithm is used 
for sample balancing, and then models are built using SVM, RF, XGBoost and ANN models. The models are 
trained and tested using tenfold cross-validation to select the optimal model and perform feature importance 
analysis. Next, the predictive generalization and reliability of the model are validated in the validation cohort. 
The superior performance of the model was further validated by comparing its performance with the commonly 
used ISS, TI, and GCS scores in the validation cohort.
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this space to find optimal values. Sampling and pruning algorithms were employed to efficiently determine the 
best parameter combination, ensuring optimal model performance and preventing overfitting. The optimized 
hyperparameter settings for each ML algorithm were listed in Supplementary Table S3. In the discovery cohorts, 
we employed tenfold cross-validation, dividing the data into 10 folds, with each fold serving as the test set while 
the remaining 9 folds as the training set. This process was repeated 10 times for training and testing. After the 
construction of four ML models using the discovery dataset, we also independently evaluated their performance 
using the validation dataset (Fig. 2).

Besides the mortality prediction model, we developed a prognostic model that predicts the complexity of 
polytrauma patients using the collected dataset as well (Supplementary Figure S2). To estimate the complexity of 
polytrauma patients, we used the staying time in ICU as the measurement and classified all 674 survived patients 
into mild, moderate and severe groups (Supplementary Figure S2). In this cohort, the male to female ratio was 
1.76:1, and the average age was 54.53 years. Specifically, 375 polytrauma patients with ICU stays of 3 days or less 
were grouped into the mild group, while 129 patients with ICU stays of 8 days or more were grouped into the 
severe group. This resulted in a final dataset of 504 patients for complexity model construction (Supplementary 
Figure S2). Similarly, this cohort was further separated into a discovery dataset (361 patients in total, including 
267 mild patients and 85 severe patients) and validation dataset (152 patients in total, including 108 mild patients 
and 44 severe patients) to develop and validate the prognostic model of polytrauma complexity upon hospital 
admission (Supplementary Figure S2). For the imbalance in the classification of mild and severe patients in the 
discovery dataset, we also used SMOTE to adjust the patient ratio from 3:1 (267 alive, 85 deceased) to 2:1 (267 
alive, 133 deceased). In addition, we evaluated the performance of this complexity model and compared its 
performance with existing scoring systems (Supplementary Figure S2). Similarly, the optimized hyperparameter 
settings for each ML model are listed in Supplementary Table S4.

ML algorithms
We used four different ML methods in developing the models, including RF, SVM, ANN and XGBoost. These 
methods had different underlying algorithms in training the model. The SVM model uses all the inputted clini-
cal features and finds a hyperplane (Decision Boundary) that maximizes the gap between the two categories for 
classifying new instances26. By adjusting parameters to adapt to different data and problems, it maps the input 
data from low-dimensional space to high-dimensional space, making the data more linearly separable in high-
dimensional space, and predicting the final classification. In the random forest model, all clinical features are 
used as the input data for the model. After a series of processing such as data preprocessing and standardization, 
these data form a set of feature vectors. The model trains on these features, and by constructing multiple decision 
trees and voting or averaging their prediction results, it obtains the final predicted classification result27. Each 
decision tree is trained on different parts of a dataset, which can reduce the variance of the model and improve 
the robustness and accuracy of the model. Similarly, XGBoost also uses all clinical features as input, processing 
them into a set of feature vectors. It is based on the gradient boosting framework, and by gradually adding new 
decision trees during the iterative process, it improves the predictive performance of the model28. In each round 
of iteration, XGBoost builds a new weak learner by focusing on the residuals of the previous round model, i.e., 
the difference between the predicted value and the actual value, thus capturing the complex relationships in the 
data more effectively. This process helps the model gradually reduce the error on the training data and improve 
generalization ability. The output result is made by training multiple weak learners and combining their pre-
diction results to make the final prediction of the category situation. In contrast, the ANN is a deep learning 
model inspired by the structure of the human brain29. Our ANN model uses a multilayer perceptron classifier 
(MLPClassifier). The input of the model is all clinical features, which are passed to the neural network through 
the input layer. The neurons in the hidden layer learn the mapping relationship from input to output by adjust-
ing the connection weights between nodes, such as the structure of the death prediction model is composed of 
a layer containing 10 neurons. The ReLU function is used as the activation function of the hidden layer, which 
introduces non-linearity and helps the model capture the complex relationships in the data. L2 regularization is 
introduced, and the alpha parameter is adjusted to control the strength of regularization, to penalize the square 
sum of the model’s weights, and prevent overfitting. The output layer uses the Sigmoid function as the activation 
function, mapping the output to between 0 and 1, predicting the death classification and complexity classification 
situation. The parameter settings of the polytrauma mortality risk or complexity model can be retrieved from 
Supplementary Tables S3 and S4, respectively.

Model evaluation
To evaluate the performance of the constructed ML models, we calculated the metrics of each model in the 
discovery and validation datasets, respectively (Fig. 2 and Supplementary Figure S2). The performance metrics 
include Accuracy, Recall, F-score and the AUC​ value (see Supplementary Text for the details). The performance 
of each model in the discovery cohort was assessed by averaging the metrics at each round of tenfold validation. 
To evaluate the model’s performance against three commonly used scoring systems, we also compared the per-
formance metrics of ML models with those of ISS, TI and GCS. In addition, we performed the feature analysis 
to elucidate the features that contributed mostly to the outcome prediction in the model.

Model benchmark
We implemented four ML algorithms (SVM, RF, XGBoost and ANN) using Python (version 3.7) and scikit-learn 
(version 1.0.2). The sample balance was achieved by employing the oversampling method in imblearn30. Model 
parameters for each model were automatically optimized by Optuna31. Model evaluation, model comparison, 
and visualization of the feature importance were conducted using the matplotlib library (version 3.5.3).
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Results
Mortality risk prediction model
The development and validation of the mortality risk prediction model
First, we developed a mortality risk prediction model for 756 selected polytrauma patients using four ML algo-
rithms, including SVM, RF, XGBoost and ANN. We utilized ten-fold cross-validation to assess the performance 
of each model (Fig. 3A). The XGBoost model showed the best overall predictive performance among the four ML 
models. While its AUC​ value (0.80) was slightly lower than that of the SVM (0.804) and RF (0.82) models, it had 
higher overall performance (Accuracy = 0.91, Recall = 0.60, and F-score = 0.88) than that of SVM (Accuracy = 0.89, 
Recall = 0.5, and F-score = 0.84) and RF (Accuracy = 0.90, Recall = 0.57, and F-score = 0.86) models. Although the 
ANN model showed a slightly higher Recall value (0.65) than that of other models, its AUC​ value (0.74) was much 
smaller. Therefore, we chose the XGBoost model as the polytrauma mortality risk prediction model for further 
analysis. In the validation dataset, we confirmed the good performance of this XGBoost polytrauma mortality 
prediction model (Fig. 3B). The Accuracy value and F-score was 0.89 and 0.88 respectively, while the recall value 
was 0.68. Additionally, the AUC​ had a value at 0.82. These results indicated the XGBoost model’s good gener-
alization and reliability in an independent validation dataset, suggesting its potential in clinical applications.

Comparison of the optimal mortality risk prediction model with common scoring systems
We also evaluated the performance of XGBoost polytrauma mortality prediction model against current clinical 
measurements by comparing the performance metrics of the XGBoost model with three commonly used scoring 
systems, including ISS, TI and GCS (Fig. 3B). We observed that the XGBoost polytrauma mortality prediction 
model significantly outperformed TI and GCS on all four metrics (Fig. 3B). Although the recall rate of ISS was 
higher than the XGBoost model, its Accuracy, F-score and AUC​ were lower (Fig. 3B). Therefore, the traditional 
scoring systems may have limited ability in predicting the mortality risk of polytrauma patients. In contrast, the 
XGBoost model has higher accuracy and balance in predicting the mortality risk of polytrauma patients. This 
suggests that the XGBoost model may distinguish dead and alive polytrauma patients early, while covering a 
higher proportion of the dead patients.

Polytrauma complexity prediction model
The development and validation of the complexity prediction model
Next, we developed a complexity risk prediction model to predict the complexity upon hospital admission using 
four ML algorithms (Supplementary Figure S2), and calculated the performance metrics for four polytrauma 
complexity prediction models (Fig. 4A). Among them, the RF model (Accuracy = 0.8, AUC​ = 0.81) exhibited 
slightly higher Accuracy and AUC​ compared to the XGBoost model (Accuracy = 0.8, AUC​ = 0.78), though its 
Recall value and F-score ranked the lowest among the four models. Although the AUC​ value (0.79) of the SVM 
model is slightly higher than that of the XGBoost model, the other performances (Accuracy = 0.79, Recall = 0.67, 
F-score = 0.77) are much lower than the XGBoost model. The ANN model’s performance (Accuracy = 0.77, 
Recall = 0.67, F-score = 0.76, AUC​ = 0.76) are far lower than the XGBoost model. Therefore, the XGBoost model, 
which can learn meaningful signals from complex features, showed the best overall predictive performance 

Figure 3.   The performance metrics of the mortality prediction models. (A) The mean value and the standard 
deviation of the performance indicators, including Accuracy, Recall, F-score and AUC​, of four ML models 
(SVM, RF, XGBoost and ANN) using ten-fold cross-validation was shown as the bar chart. (B) The performance 
indicators of the optimal ML model for predicting the mortality risk in the validation cohort were compared 
against the commonly used severity scores, including ISS, TI and GCS. (C) The top 15 features that contribute 
to the polytrauma mortality model classification were shown. HGB, Hemoglobin; TRF, Thoracic rib fracture; 
SH, Superficial hematoma; RBC, Red blood cell count; TVH, Thoracic visceral hematoma; BAS%, Basophil 
percentage; HR, Heart rate; HCT, Hematocrit; MCHC, Mean corpuscular hemoglobin concentration; BAS#, 
Basophil count; MPV, Mean platelet volume; Tca, Total calcium; MONO%, Monocyte percentage.
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among the four models in predicting polytrauma complexity. In the validation dataset, the XGBoost model 
showed good predictive performance for polytrauma complexity as well, with the Accuracy, Recall, F-score and 
AUC​ values at 0.82, 0.75, 0.82 and 0.83, respectively (Fig. 4B). The consistent performance on the external valida-
tion dataset confirmed the XGBoost model’s generalization ability in predicting the complexity of polytrauma 
patients.

Comparison of optimal complexity prediction model with common scoring systems
In addition, we compared our XGBoost polytrauma complexity model with three commonly used scoring sys-
tems (ISS, TI, GCS) in predicting the patient’s complexity after hospital admission using the validation dataset 
(Fig. 4B). The performance metrics of the XGBoost model were higher than all the three existing severity scores, 
including ISS (Accuracy = 0.76, Recall = 0.72, F-score = 0.76), TI (Accuracy = 0.71, Recall = 0.5, F-score = 0.59), and 
GCS (Accuracy = 0.69, Recall = 0.48, F-score = 0.58). Moreover, the AUC​ value of our XGBoost model was higher 
than those of the ISS (0.72), TI (0.5) and GCS (0.48). These results suggest that the XGBoost model had better 
predictive performance than the currently used clinical severity scores in predicting the complexity of polytrauma 
patients as well.

Feature importance analysis
To understand the reason why the ML models have better performance than existing scoring systems (Figs. 3B 
and 4B), we performed the feature importance analysis for both XGBoost prognostic models (Figs. 3C and 4C). 
We first explored the features influencing the mortality risk of polytrauma patients and ranked them based on 
their contribution to the model (Fig. 3C). The key predictive factors for polytrauma mortality are closely aligned 
with those used in commonly used scoring systems. For example, thoracic rib fracture (TRF), thoracic visceral 
hematoma (TVH) and superficial hematoma (SH) are among the top-ranked influencing factors. These features 
are all factors related to the extent and complexity of the injury site. Additionally, we identified several factors 
like gender, heart rate (HR), and various blood test indicators. Notably, blood test indicators ranked at the top 
among the 15 most influential features, underscoring their significance in improving prediction accuracy and 
reliability (Fig. 3C). These indicators are usually not taken into account by traditional scoring systems.

Similarly, we performed the feature importance analysis for our XGBoost disease complexity model as well, 
and explored the top 15 ranked contributing features (Fig. 4C). Among them, facial bone fracture (FBF) and 
blood loss emerged as the top factors influencing the polytrauma complexity, followed by articular fractures, and 
visceral injuries. This highlighted their significance in predicting the trauma complexity. Additionally, several 
laboratory tests, such as uric acid (UA), specific Gravity (SG), aspartate aminotransferase (AST), eosinophil 
percentage (EOS%), mean corpuscular hemoglobin concentration (MCHC) and systolic blood pressure (SBP), 
played an important role in predicting the disease complexity. These features reflect some aspects of metabolism, 
liver and kidney function and blood status that are important in polytrauma outcomes, although they may be 
often ignored in all three traditional scoring systems.

Figure 4.   The performance metrics of the complexity prediction models for polytrauma patients upon ICU 
admission. (A) The bar chart of the mean and standard deviation of the performance metrics (Accuracy, Recall, 
F-score, AUC​) for predicting the complexity of polytrauma patients upon ICU admission using four machine 
learning models (SVM, RF, XGBoost, ANN) in the discovery cohort was shown. (B) The performance indicators 
of the optimal model for predicting ICU admission complexity in the validation cohort was compared against 
the commonly used scores, including ISS, TI, GCS. (C) The top 15 features that contribute to the predictive 
model of the complexity of polytrauma patients upon ICU admission were shown. FBF, Facial bone fracture; 
BL, Blood loss; FBEJ, Fracture below elbow joint; APVI, Abdominopelvic visceral injury; SBP, Systolic blood 
pressure; UA, Uric Acid; SG, Specific Gravity; HR, Heart Rate; TRF, Thoracic rib fracture; ICH, Intracranial 
hematoma; EOS%, Eosinophil percentage; MCHC, Mean corpuscular hemoglobin concentration; AST, 
Aspartate aminotransferase; Fracture above elbow joint (FAEJ).
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Discussion
In this study, we developed two ML models to predict the mortality risk and complexity of polytrauma patients 
after hospital admission using clinical diagnoses and physiological parameters. We collected real-world data 
from a cohort of 756 polytrauma patients for training and validating these two ML models, and evaluated 
their performances. Our results suggested that XGBoost models are optimal ML models in predicting both the 
mortality risk and complexity of polytrauma patients (Figs. 3A and 4A), which had good performance in the 
training dataset and kept good capabilities in the separated validation dataset (Figs. 3B and 4B). Furthermore, 
our ML models outperformed several traditional scoring systems (Figs. 3B and 4B), underscored the advantage 
of XGBoost models in mining data with complex features, effectively capturing data relationships, and improving 
the assessment accuracy of polytrauma mortality and complexity.

In current clinical practices, several scores were used to estimate the severity of trauma patients. First, the TI 
evaluates the severity of trauma using five direct clinical parameters, including injury location, injury type, circu-
lation, respiration and consciousness10. This allows the prognostic prediction of trauma patients at the prehospital 
stage. Second, the ISS is a score used for rapidly assessing the severity of injuries in patients. It involves dividing 
the patient’s body into six different regions: head and neck, trunk (including neck, chest, and abdomen), face, 
limbs, external genitalia, and pelvis. Each region is then assigned a score based on the Abbreviated Injury Scale 
(AIS)32. These scores are then weighted and combined to generate an overall score. The ISS is primarily utilized 
in trauma centers to aid healthcare professionals in quickly assessing the severity and urgency of injuries in 
patients, enabling appropriate treatment measures to be taken. The proportion of patients completing ISS scores 
within 30 min has become an important quality control index for trauma centers in China. Third, the GCS score 
is used to assess the level of consciousness in patients11. It primarily evaluates a patient’s level of consciousness 
through assessing their eye response, verbal response, and motor response. The GCS is mainly applied in trauma 
centers to evaluate the severity of brain function injuries. In the process of polytrauma patients, GCS score can 
not only directly reflect the degree of craniocerebral injury, but also serve as an indirect indicator to reflect the 
severity of patients with multiple injuries. Although these three scores had some differences in their calcula-
tion and clinical application, the parameters used for calculation of all three scores were easy to get at the first 
presentation of trauma patients. In our models, we used a variety of clinical information as the input features in 
predicting polytrauma severity, including several physiological parameters and laboratory test results. Exploring 
the contribution of features to polytrauma mortality and complexity prediction, we observed some factors had 
significant roles in both models, including gender, fractures, visceral injury and ICH (Figs. 3C and 4C). These 
may be the major factors that are correlated to trauma complexity and mortality. Our results highlighted the 
influential factor of some physiological and biochemical indicators in trauma complexity and severity, such as 
the gender and hemoglobin levels. This is consistent to the suggestions made in several previsou studies33–35. For 
example, Staudenmayer et al.33 observed the important roles of gender and HR in trauma outcomes. Da Costa 
et al.34 and Napolitano et al.35 also found significant implications of RBC and hemoglobin in trauma. Therefore, 
introducing these indicators in the ML prognostic models should increase their performance in predicting the 
mortality and complexity of polytrauma patients. This may partially explain why our ML models had better per-
formance than ISS, TI and GCS in predicting the severity or complexity of polytrauma patients (Figs. 3B and 4B).

Several existing ML models have been developed to predict the mortality of trauma patients19,36. For example, 
Li et al.37 constructed an early warning score by multivariate logistic regression analysis on screened important 
features. Their study aims to apply the developed models for early screening of high-risk patients, establish 
an early warning system for mortality risk stratification, and subsequently implement early interventions to 
improve prognosis. Their mortality model showed a high AUC​ value at 0.941 in a smaller dataset (307 cases, 
45 deaths), although they did not show its performance in an independent validation dataset. In another study, 
Zhang et al.36 developed mortality prediction models for traumatic shock patients using several ML algorithms, 
including decision trees, logistic regression and random forest, in a cohort of 281 patients. They constructed a 
random forest model as the optimal prognostic model, achieving an AUC​ value at 0.856. However, the model 
only achieved an AUC value of 0.741 in the independent validation dataset, indicating that its generalization 
ability needs to be improved. Both of these mortality risk model studies are primarily aimed at early screening of 
high-risk emergency trauma patients, establishing early warning of mortality risk for patients, and subsequently 
implementing early interventions to improve prognosis. Similarly, ML models have been developed to predict 
the disease severity for trauma patients as well38,39. For example, Van Rein et al.38 utilized eight predictors chosen 
based on clinical reasoning to develop and validate a prediction model for prehospital trauma triage, which can 
allocate patients to different trauma centers based on predicted severity. Instead, Staziaki et al.39 developed a 
SVM model to predict ICU admission and extended stay of length for torso trauma patients using clinical and 
imaging data. In contrast, our model is specifically designed for polytrauma patients, which are presumably the 
major type of severe trauma. Our models can predict both the mortality and the complexity for polytrauma 
patients when they are admitting to hospital. This may assist doctors in evaluating the mortality and severity 
of polytrauma patients at their early presentation, and then help them make suitable clinical intervention or 
coordinate the patient’s referral.

Although our ML models had good performance in predicting the severity and mortality of polytrauma 
patients, our study had some limitations. First, the training and validation datasets were collected from a single 
medical center, which may restrict the external validity of the model. Additionally, this single center study might 
also limit our choice of machine learning algorithms, thereby affecting the performance and generalizability of the 
model. Second, our study was a retrospective analysis using existing hospital records. This may introduce some 
biases due to the variability in the timing of laboratory tests and the vital signs of polytrauma patients. Third, the 
sample size of our cohort is relatively small from a machine learning perspective. This may limit the generaliza-
tion ability of our model, facing challenges such as overfitting and difficulty in capturing complex relationships. 
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To cope with these challenges, we adopted a cross-validation strategy by splitting the dataset multiple times, 
training and evaluating the model on different training and validation sets. This may help to reduce the risk of 
overfitting, improve the stability of the model performance evaluation, and help us to understand the model’s 
generalization performance. At the same time, cross-validation may overcome the biases of sample selection. In 
sum, although we have made every effort to avoid the potential shortcomings and our model performs well on the 
current dataset, its performance may decline on a larger or more diverse dataset. To overcome these limitations, 
future work should aim to expand the patient cohort in scale and scope to enhance the model’s universality and 
stability. A larger and multi-center prospective study is required to validate the performance of the prognostic 
models of polytrauma patients. Additional trauma outcome-relevant features, such as genetic, immunological 
and psychological factors, may help to improve model sophistication and accuracy. Some other ML models, such 
as deep learning and reinforcement learning algorithms, can be explored to enhance the model flexibility and 
performance. Furthermore, the randomized controlled trial (RCT) has been widely used as a research design for 
investigations of the clinical effectiveness of new medical interventions40–42. Randomized studies are conducted 
by randomly assigning experimental subjects or conditions, to control other variables that may affect the results, 
and to evaluate the effects of a certain intervention or treatment. A future RCT analysis may be performed to 
estimate the benefits of the clinical application of our ML models of polytrauma mortality and complexity.

In conclusion, the prognostic models we proposed here may offer physicians early prediction of the mortality 
and complexity of polytrauma patients, which has some potential values in aiding the clinical management of 
polytrauma patients.

Data availability
The clinical data that support the findings of our study were collected from the Pizhou People’s Hospital. Restric-
tions apply to the availability of these data, which were used for the current study. Therefore, the original data are 
not publicly available. However, data are available from the authors upon reasonable request and with permission 
of the Ethics Committee of Pizhou People’s Hospital. The corresponding author can be contacted for guidance 
concerning the data request.
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