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Enhancing fracture diagnosis 
in pelvic X‑rays by deep 
convolutional neural network 
with synthesized images 
from 3D‑CT
Rashedur Rahman 1*, Naomi Yagi 2, Keigo Hayashi 3, Akihiro Maruo 3, Hirotsugu Muratsu 3 & 
Syoji Kobashi 1

Pelvic fractures pose significant challenges in medical diagnosis due to the complex structure of the 
pelvic bones. Timely diagnosis of pelvic fractures is critical to reduce complications and mortality 
rates. While computed tomography (CT) is highly accurate in detecting pelvic fractures, the initial 
diagnostic procedure usually involves pelvic X‑rays (PXR). In recent years, many deep learning‑based 
methods have been developed utilizing ImageNet‑based transfer learning for diagnosing hip and 
pelvic fractures. However, the ImageNet dataset contains natural RGB images which are different than 
PXR. In this study, we proposed a two‑step transfer learning approach that improved the diagnosis of 
pelvic fractures in PXR images. The first step involved training a deep convolutional neural network 
(DCNN) using synthesized PXR images derived from 3D‑CT by digitally reconstructed radiographs 
(DRR). In the second step, the classification layers of the DCNN were fine‑tuned using acquired PXR 
images. The performance of the proposed method was compared with the conventional ImageNet‑
based transfer learning method. Experimental results demonstrated that the proposed DRR‑based 
method, using 20 synthesized PXR images for each CT, achieved superior performance with the area 
under the receiver operating characteristic curves (AUROCs) of 0.9327 and 0.8014 for visible and 
invisible fractures, respectively. The ImageNet‑based method yields AUROCs of 0.8908 and 0.7308 for 
visible and invisible fractures, respectively.

Pelvic fractures, encompassing both hip fractures and pelvic ring fractures, present a challenging medical condi-
tion due to the unique shape and characteristics of the pelvic bones. Pelvic fractures can result in severe com-
plications such as nerve damage, bladder or bowel dysfunction, and internal bleeding, resulting in increased 
morbidity and mortality rates. Hence, pelvic fracture can be considered as a significant health concern, par-
ticularly in older adults and those with underlying medical  conditions1. Moreover, pelvic fracture is a leading 
cause of death among the  elderly2,3. Early diagnosis of pelvic fractures is crucial for timely interventions as well 
as lowering the risk of mortality.

The plain pelvic radiograph, commonly referred to as pelvic X-ray (PXR), plays a crucial role in diagnosing 
fractures in the pelvic region. While studies have demonstrated that computed tomography (CT) has higher 
sensitivity and specificity in detecting pelvic  fractures4,5, the diagnostic procedure typically starts with PXR 
 examination4. However, one of the challenges associated with PXR examination is the increasing number of pelvic 
 fractures6–8. This surge in cases puts additional pressure on radiologists and contributes to early  misdiagnoses9. 
These misdiagnoses have negative implications, including worsened prognosis, an increase in treatment cost, 
and increased mortality rates. Therefore, a computer-aided diagnosis system (CAD) can help to improve the 
efficiency of pelvic fracture detection. Another challenge in PXR examination is the constrained viewing angle 
for which some fractures, especially some insufficiency fractures and osteoporotic fractures, may be invisible. 
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Insufficiency fractures are caused by repetitive stress and some are practically invisible in PXR  images4. Similarly, 
fractures associated with osteoporosis are also challenging to detect in PXR  images10. Many osteoporosis fractures 
are invisible in their initial stage of development without an appropriate viewing angle. Deep learning has been 
demonstrated to be effective in learning subtle features and patterns to assist in different disease  diagnosis11–13. 
Hence, employing a deep learning-based assistive system could prove valuable in recognizing PXR images with 
visible fracture, as well as invisible fracture.

In the initial stages, fracture detection methods relied on image processing techniques and computational 
models like morphological operations with Hough  transform14, neighbor-conditional shape  model15, and relaxed 
digital straight-line segment (RDSS)16. However, these methods depended on numerous parameters, and were 
susceptible to subject-specific limitations. Recently, deep learning has gained popularity for detecting vari-
ous fractures, such as wrist  fractures17, rib  fracture18, femur  fracture19, femoral neck  fracture20, and vertebral 
 fractures21. Similarly, for hip and pelvic fracture detection, methods have been proposed utilizing deep learning. 
Krogue et al.22 proposed a DenseNet-based method for detecting hip region and fracture classification from PXR 
images. The binary classification accuracy achieved was 93.7%, and the multi-class classification accuracy was 
90.8%.  Kitamura23 also introduced a method based on DenseNet121 model, where the model was trained to cre-
ate position labeling and detect hardware presence in PXR images. A separate model was used to detect different 
types of fractures. The area under the curve (AUC) for position and hardware detection was 0.99. The AUCs 
for proximal femoral fracture, pelvic fracture, and acetabular fracture were 0.95, 0.75, and 0.85, respectively. 
Another method proposed the use of YOLOv4-tiny deep learning model to detect 3 types of hip  fractures24. The 
model’s performance was also compared with that of doctors, achieving a sensitivity of 96.2%, while the perfor-
mance of the doctors varied from 69.2 to 96.2%. The study concluded that the performance of the trained model 
was comparable to attending physicians and chief residents in orthopedics with no statistical difference, and 
outperformed the first-year residents and general practitioners. Cheng et al. proposed a scalable deep learning 
algorithm named PelviXNet for universal trauma detection on PXR  images25. PelviXNet combined feature pyra-
mid network (FPN) with DenseNet-169 and was trained using weakly supervised point annotated PXR images. 
The trained PelviXNet yielded an area under the receiver operating characteristic curve (AUROC) of 0.973 on a 
clinical population test set. All of the above methods discussed about fractures that are visible on PXR images.

Another challenge associated with deep learning is the significant amount of data required to effectively train 
a model. However, obtaining a substantial number of annotated medical images is often difficult. A common 
practice in this field is to utilize the transfer  learning26 technique. In transfer learning, a deep learning model is 
initially trained on a large dataset called  ImageNet27 for a classification task. Later, only the final layers are fine-
tuned with the task-specific dataset. This approach was applied in previous studies on hip and pelvic  fractures22–25. 
However, a recent study has demonstrated a more efficient three-step training scheme for transfer learning, which 
significantly reduced the labeled medical image requirements by 688-fold compared to the conventional two-
step transfer learning, while maintaining similar  performance28. In this proposed three-step training process, 
the deep learning model was first initialized with the ImageNet  dataset27. Then, in the second step, the model 
was re-trained using a large chest X-ray (CXR) dataset to detect normal and abnormal cases. Finally, in the third 
step, the model was trained with a small dataset to detect a specific pulmonary disease. Another study utilized 
plain radiographs to train a deep learning model for detecting limbs, and then fine-tuned the model using PXR 
images for hip fracture  detection29. The accuracy of hip fracture detection reached 91%.

A subset of deep learning, deep convolutional neural network (DCNN), has demonstrated remarkable 
performance across diverse applications including image  classification30,31, object  detection32–35, and video 
 processing36,37. One of the key characteristics of DCNNs is their ability to recognize and extract features auto-
matically, without human  supervision38,39. This capability enables DCNNs to generate equivalent representations, 
facilitate sparse interactions, and implement parameter  sharing40. As a result, different DCNNs have been used 
for the diagnosis and detection of various  diseases41. Ibrahim et al. introduced a modified norm-VGG16 DCNN 
for the diagnosis of COVID-19 and its severity  levels42. Inoue et al. utilized Faster-RCNN-Inception-V2-COCO 
DCNN to automatically detect fractures in whole-body trauma  CT43. Ukai et al. used DCNN-based YOLOv3 to 
detect fractures in images extracted from multiple orientations of 3D-CT44. Cina et al. proposed a method that 
used several DCNNs for the localization of landmarks in spine  radiographs45.

To address the lack of substantial amounts of annotated medical images to train a DCNN, this study intro-
duces a novel two-step transfer learning approach based on digitally reconstructed radiograph (DRR). In the first 
step, a deep convolutional neural network (DCNN) is trained using different numbers of synthesized PXR images 
derived from 3D-CT by DRR. The second step involves fine-tuning the classification layers of the DCNN using 
acquired PXR images. Another contribution of this study is the performance evaluation of DCNN on different 
PXR datasets categorized based on fracture visibility. Furthermore, the performance of the proposed method is 
compared with the conventional ImageNet-based transfer learning method, and combinations of DRR-based 
method with ImageNet-based method. The proposed DRR-based method, using 20 synthesized PXR images for 
each CT, achieved AUROCs of 0.9327 and 0.8014 for visible and invisible fractures, respectively. The ImageNet-
based method yielded AUROCs of 0.8908 and 0.7308 for visible and invisible fractures, respectively.

Result
Distribution of PXR dataset
In the PXR dataset, there were primarily two classes of images: ’fracture’ class, consisting of images with fractures, 
and ’normal’ class, comprising images without any fractures. After excluding the PXR images with implants, and 
partial pelvic regions, the remaining PXR images with fractures were further categorized into three groups based 
on the visibility of fractures: PXROV, PXRIV, and PXRVIV. PXROV included PXR images with visible fractures, 
PXRIV included PXR images without visible fractures but with fractures identified in the corresponding 3D-CT, 
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and PXRVIV included PXR images with both visible and invisible fractures. Additionally, PXROV and PXRVIV 
were merged into a single dataset called PXROVVIV. The normal PXR images were separated into 2 groups: 
normal1 which contained 60 PXR images and normal2 which consisted of 12 PXR images. The normal1 group 
was combined with PXROV, PXRVIV, and PXROVVIV groups to assess the performance of visible fracture 
diagnosis. Furthermore, normal2 group was combined with PXRIV group to assess the performance of invisible 
fracture diagnosis. The distribution of each dataset is illustrated in Fig. 1.

DRR‑based method
Applying DRR on a single 3D-CT image, numerous radiographic images can be synthesized. For this study, three 
DRR datasets, namely DRR10, DRR20, and DRR74, were synthesized by randomly rotating the 3D-CT. Each 
dataset consisted of 10, 20, and 74 synthesized images, respectively, corresponding to each 3D-CT. The 3D-CT 
of the subjects with fractures included in the XROV, XRVIV or XRIV dataset, as well as 3D-CT with implants, 
were excluded. After exclusions, a total of 349 3D-CT remained, out of which 152 had fractures and 197 was 
normal. DRR was applied only on the pelvic region of the 3D-CT. The DCNN was trained separately using the 
DRR10, DRR20, and DRR74 datasets, using fivefold cross-validation. The best model for each category were 
selected, and only the Fully-Connected (FC), SoftMax (SM) and Classification (CL) layers were fine-tuned using 
the PXROV dataset. The overview of the DRR-based method is shown in Fig. 2. The area under the receiver 
operating characteristic (AUROC) curves for PXROV diagnosis using models trained with DRR10, DRR20, and 
DRR74, were 0.9406, 0.9327, and 0.9211, respectively. The ROC curves of PXROV diagnosis by models trained 
with DRR10, DRR20, and DRR74 are shown in Fig. 3.

Additionally, for the models pre-trained with DRR10, DRR20, and DRR74, the F1 scores for PXROV 
were found to be 0.847, 0.895, and 0.860, respectively. Hence, DRR20 was chosen for additional analysis and 

Figure 1.  Distribution of PXR dataset.

Figure 2.  Overview of DRR-based method for PXR with fracture detection.
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comparison. Grad-CAM was used to visualize the fracture region. Figure 4 shows some examples of Grad-CAM 
result overlaid on PXR images for visualization of relevant region.

Comparison between DRR‑based and conventional method for detecting PXR image with vis‑
ible fracture
In this step, we implemented four pre-training approaches: DRR20, ImageNet, ImageNet + DRR20, and Ima-
geNet + DRR20_Full. The ImageNet approach involved training a DCNN model initially on the ImageNet data-
set, followed by fine-tuning the FC, SM, and CL layers using PXR images. In the DRR20 approach, the DCNN 
model was trained using the DRR20 dataset, and then the FC, SM, and CL layers were fine-tuned with PXR 
images. For the ImageNet + DRR20 approach, we re-trained the DCNN model pre-trained on ImageNet with 
the DRR20 dataset, and subsequently fine-tuned the FC, SM, and CL layers with PXR images. Lastly, in the Ima-
geNet + DRR20_Full approach, the DCNN model pre-trained on ImageNet was first re-trained with the DRR20 
dataset, and then the entire DCNN model was fine-tuned using PXR images.

In the first evaluation, the DCNN was fine-tuned using the PXR images from the PXROV dataset, and the 
performance evaluation was conducted on the PXROV dataset using fivefold cross-validation. The AUROCs 
obtained for DRR20, ImageNet, ImageNet + DRR20, and ImageNet + DRR20_Full were 0.9327, 0.8908, 0.8872, 

Figure 3.  ROCs of PXROV diagnosis for DRR10, DRR20 and DRR74 training schemes.

Figure 4.  Visualization of Grad-CAM result on PXR images. (a) Pre-training dataset DRR10; Fracture class. 
(b) Pre-training dataset DRR20; Fracture class. (c) Pre-training dataset DRR74; Fracture class. (d) Pre-training 
dataset DRR10; Normal class. (e) Pre-training dataset DRR20; Normal class. (f) Pre-training dataset DRR74; 
Normal class.
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and 0.9005, respectively. Figure 5a illustrates the corresponding ROC curves. The F1 scores achieved for DRR20, 
ImageNet, ImageNet + DRR20, and ImageNet + DRR20_Full were 0.895, 0.811, 0.774, and 0.804, respectively.

In the second evaluation, the PXR images from the PXRVIV dataset were utilized for fine-tuning the DCNN, 
and the performance evaluation was conducted on the PXROV dataset. The AUROCs obtained for DRR20, Ima-
geNet, ImageNet + DRR20, and ImageNet + DRR20_Full were 0.9337, 0.8945, 0.934, and 0.9152, respectively. The 
F1 scores achieved for DRR20, ImageNet, ImageNet + DRR20, and ImageNet + DRR20_Full were 0.875, 0.800, 
0.839, and 0.818, respectively. Figure 5b shows the corresponding ROC curves.

In the third evaluation, the PXROVVIV dataset was utilized to fine-tune the DCNN, and the PXROV dataset 
was used to assess its performance. The AUROCs obtained for DRR20, ImageNet, ImageNet + DRR20, and Ima-
geNet + DRR20_Full were 0.9290, 0.8961, 0.9280, and 0.9151, respectively. Figure 5c displays the corresponding 
ROC curves. The F1 scores achieved for DRR20, ImageNet, ImageNet + DRR20, and ImageNet + DRR20_Full 
were 0.852, 0.800, 0.839, and 0.833, respectively.

Comparison between DRR‑based and conventional method for detecting PXR image with 
invisible fracture
We have also assessed the performance of DCNNs obtained by different training schemes on the PXRIV dataset. 
When fine-tuning the DCNN with PXROV, the AUROCs for DRR20, ImageNet, ImageNet + DRR20, and Ima-
geNet + DRR20_Full were found to be 0.8014, 0.7308, 0.6980, and 0.6304, respectively. Similarly, when fine-tuning 
the DCNN with PXRVIV, the AUROCs for DRR20, ImageNet, ImageNet + DRR20, and ImageNet + DRR20_Full 
were 0.8005, 0.7515, 0.7092, and 0.7026, respectively. For fine-tuning the DCNN with PXROVVIV, the AUROCs 
for DRR20, ImageNet, ImageNet + DRR20, and ImageNet + DRR20_Full were 0.8002, 0.7549, 0.7140, and 0.6896, 
respectively. The ROC curves corresponding to these results are illustrated in Fig. 6. The AUROC and F1 scores 
are summarized in Table 1.

Figure 5.  ROC curves for recognizing PXROV in DRR20, ImageNet, ImageNet + DRR20, and 
ImageNet + DRR20_Full training schemes. (a) Fine-tuning data PXROV. (b) Fine-tuning data PXRVIV. (c) Fine-
tuning data PXROVVIV.

Figure 6.  ROC curve of DCNN performance on PXRIV dataset. (a) Fine-tuning data PXROV. (b) Fine-tuning 
data PXRVIV. (c) Fine-tuning data PXROVVIV.
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Discussion
In this study, our hypothesis was that pre-training a DCNN with synthesized images would enhance its perfor-
mance in detecting PXR images with fractures. As DRR is a process of projecting 3D volume onto a 2D plane, the 
synthesized PXRs generated by random rotation contain unique anatomical variations. In contrast, conventional 
augmentation methods alter the locations of fractures or intensities without introducing any new anatomical 
variations. Hence, we proposed a DRR-based method, where the DCNN was pre-trained using synthesized PXR 
images generated from 3D-CT images by DRR. We also investigated the impact of the number of synthesized 
images on the DCNN’s performance. We evaluated the AUROC for detecting PXR images with visible fractures 
and calculated F1 scores using a confidence score threshold of 0.5. Among 10, 20 and 74 synthesized PXR images 
from each 3D-CT, the AUROCs were similar for detecting PXR images with visible fractures (Fig. 3). The DCNN 
pre-trained with 20 synthesized PXR images achieved the highest F1 score.

Next, we compared the performance of the DRR-based method with the conventional ImageNet-based trans-
fer learning approach, as well as combinations of both methods (Fig. 5). The summary of the results has been 
shown in Table 2. When detecting PXR images with visible fractures using the PXROV dataset, the DRR20 
method achieved the highest AUROC and F1 score of 0.9327 and 0.895, respectively. Similarly, for the detection 
of PXR images with visible fractures using PXRVIV and PXROVIV datasets for fine-tuning the DCNN, the 
DRR20 method also achieved the highest AUROC and F1 score. Hence, irrespective of variations in the fine-
tuning data based on fracture visibility, the DRR20 method outperformed ImageNet-based method. Furthermore, 
we explored the combination of the DRR20-based and ImageNet-based methods through ImageNet + DRR20 
and ImageNet + DRR20_Full approaches. Although the AUROC values for these combinations surpassed those 
obtained using the ImageNet-based method, they remained lower than the DRR20-based method in almost all 
cases. These findings demonstrate that pre-training the DCNN with a synthesized dataset designed to the desired 
task enhances the learning of relevant features.

During the synthesis of PXR images using DRR, fractures that were present in the 3D-CT data were some-
times obstructed due to rotations in the 3D plane. As a result, the synthesized PXR dataset contained images with 
visible fractures, images without visible fractures, and normal images without any fractures. We anticipated that 
the trained DCNNs would capture certain unique features associated with fractures that were not visible in the 
images. To test this assumption, we evaluated the performance of the trained DCNNs on the PXRIV dataset. The 
DRR-based method demonstrated promising results in this scenario as well. Regardless of the type of fine-tuning 
data, DRR20 achieved the highest AUROCs (Fig. 6) and F1 scores (Table 1).

Although the DRR-based method achieved the highest AUROC for detecting PXR images with visible and 
invisible fractures, the AUROC for detecting PXR images with invisible fractures was significantly lower. This 
observation was also valid for the ImageNet-based method. This trend was expected since the DCNNs were not 
trained with the PXRIV dataset. Figure 7 illustrates the comparison of AUROCs for different fine-tuning data.

From Fig. 7a, we can see that the decrease in AUROC from detecting PXR images with visible fractures to 
detecting PXR images with invisible fractures was higher for ImageNet compared to DRR20 when using PXROV 
as the fine-tuning data. However, from Fig. 7b and c, it can be seen that the decrease in AUROC became similar 
for ImageNet and DRR20 when fine-tuning the DCNNs with PXRVIV and PXROVVIV datasets. This suggests 
that the fine-tuning dataset, which included some PXR images with invisible fractures, improved the detection 
of PXR images with invisible fractures. Therefore, accurate annotation of data was crucial for enhancing the 
performance of the DCNN in detecting PXR images with invisible fractures.

Table 1.  AUROC and F1 scores of different DCNNs on PXRIV dataset. Significant values are in bold.

Fine-tuning data 
PXROV

Fine-tuning data 
PXRVIV

Fine-tuning data 
PXROVVIV

AUROC F1 score AUROC F1 score AUROC F1 score

DRR20 0.8014 0.787 0.8005 0.792 0.8002 0.786

ImageNet 0.7308 0.733 0.7515 0.731 0.7549 0.727

ImageNet + DRR20 0.6980 0.699 0.7092 0.726 0.7140 0.721

ImageNet + DRR20_Full 0.6304 0.692 0.7026 0.789 0.6896 0.775

Table 2.  AUROC and F1 scores of different DCNNs on PXROV dataset. Significant values are in bold.

Fine-tuning data 
PXROV

Fine-tuning data 
PXRVIV

Fine-tuning data 
PXROVVIV

AUROC F1 score AUROC F1 score AUROC F1 score

DRR20 0.9327 0.895 0.9337 0.875 0.9290 0.852

ImageNet 0.8908 0.811 0.8945 0.800 0.8961 0.800

ImageNet + DRR20 0.8872 0.774 0.934 0.839 0.9280 0.839

ImageNet + DRR20_Full 0.9005 0.804 0.9152 0.818 0.9151 0.833
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As DRR20 achieved the highest AUROC and F1 score for visible fracture (PXROV) diagnosis, we can con-
clude that DRR20 is the best method among DRR20, ImageNet, Imagenet + DRR20, and Imagenet + DRR20_Full. 
Furthermore, even though the DCNN was not optimized with PXRs that had only invisible fractures (PXRIV 
dataset), the DRR20 demonstrated promising AUROC and F1 score for detecting PXRs with invisible fractures. 
The reason for the better performance of the proposed method is that the DCNN was pre-trained using syn-
thesized PXR images. As a result, the FC layers along with the Resnet101 backbone were specifically tuned for 
pelvic fracture diagnosis. In contrast, the ImageNet dataset was used to pre-train the Resnet101 backbone in 
the conventional transfer learning method, which doesn’t contain the characteristics of pelvic fracture. Hence, 
this method can significantly contribute to the improved diagnosis of pelvic fractures, leading to a reduction 
in morbidity and mortality. However, the evaluation of pelvic fracture detection performance was limited to a 
single deep convolutional neural network (DCNN) with different pre-training schemes. Given the unique char-
acteristics of pelvic fractures, it is important to further evaluate the method using various types of DCNNs before 
considering practical implementation. Additionally, it is important to note that it was a retrospective study, and 
the data were from a single institute, which introduces the possibility of population bias. Moreover, the selec-
tion of PXR images and 3D-CT scans was performed randomly, potentially including selective bias. Therefore, 
the interpretation of the findings may differ when applied to other institutes or populations. Consequently, it 
is crucial to validate the proposed method using larger and more diverse datasets to establish its usefulness in 
different hospital settings.

Methods
Subjects and materials
The data were collected from a total of 478 subjects with a mean age of 64.22 ± 19.08 years. The range of age was 
from 20 to 93 years. Among the subjects, 268 were male and 209 were female. 3D-CT were acquired from 473 and 
201 subjects had pelvic fractures. The CT images were acquired using multidetector-row CT (MDCT) scanners 
with a tube voltage of 120kVp and auto mAs. Additionally, a total of 481 PXR images were obtained from 315 
subjects. Among the PXR images, 365 images from 199 subjects had fractures. All the data were obtained at Steel 
Memorial Hirohata Hospital in Japan between April 2013 and August 2019. The existence of fractures in 3D-CT 
and PXR images were confirmed by expert radiologist and doctors from Steel Memorial Hirohata Hospital, Japan.

Synthesizing PXR images from 3D‑CT using DRR
In this study,  DRR46 volume rendering, also known as simulated x-ray (XR) rendering is used to synthesize PXR 
images from 3D-CT. This method involves simulating x-rays passing through a reconstructed CT volume by 
considering the tissues absorption properties. We created a parallel projection algorithm that can be explained 
by Eq. (1).

where α is the absorption coefficient, XCT is the CT value in Hounsfield unit (HU), and XDRR is the synthesized 
value. α controls the boosting of X-ray absorption as the tissue density increases. For this study, the value of α 
is chosen to be 90.

DCNN training and fine‑tuning
In this study, a residual block-based architecture named  Resnet10147 is utilized as the backbone of DCNN. The 
DCNN consists of residual blocks of Resnet101 followed by a global average pooling layer, three fully-connected 
(FC) layers, a softmax (SM) layer and a classification (CL) layer. The architecture of the DCNN is illustrated in 
Fig. 8. The backbone contains 8 residual blocks. Each of the residual blocks has 3 convolution layers followed by 

(1)XDRR(i, j) =
1

N

∑N

k=1
e
( α
100 )×

(

XCT (i,j,k)+1024

1000

)

Figure 7.  Performance comparison of visible and invisible fracture detection between DRR-based and 
ImageNet-based method. (a) Fine-tuning data PXROV. (b) Fine-tuning data PXRVIV. (c) Fine-tuning data 
PXROVVIV.
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a batch normalization (BN) layer and a rectified liner unit (ReLU) layer. The input and output of the 2nd, 4th, 
6th, and 8th residual blocks are added elementwise. Convolution operation and upscaling are performed on the 
input of the 1st, 3rd, 5th, and 7th residual blocks before adding elementwise to their respective output. The 2nd, 
4th, 6th, and 8th convolution blocks are repeated 2, 3, 22, and 2 times, respectively. Categorical cross-entropy 
is used as the loss function with class weights to address the class imbalance. Equations (2)–(3) are used for 
calculating the class weights.

where CWF is the class weight for fracture class, and CWN is the class weight of normal class. nN and nF are the 
number of normal PXR images and the number of PXR images with fracture, respectively. All the processing 
and training is done using MATLAB 2022b (x64) on a computer with AMD Ryzen 7 2700 8-core processor 
(3.20 GHz), DDRAM 32 GB, and NVIDIA Titan RTX graphics card.

The synthesized PXR images and acquired PXR images differ in size. To standardize the input for the DCNN, 
all images are initially downsampled to a size of 224 × 224. Then the intensity values are linearly converted to the 
range of 0–255. Later, the training images are augmented using random rotation, translation and scaling. In the 
DRR-based method, the DCNN is first trained using augmented synthesized PXR images for 110 epochs, with 
a batch size of 98 and a regularization parameter of 0.00001. The initial learning rate is 0.00005 and decreased 
by a factor of 0.1 every 8 epochs. In the fine-tuning step, the FC, SM, and CL layers of the trained DCNN are re-
trained using PXR images for 38 epochs. The initial learning rate is 0.0000005, and the regularization parameter 
is 0.00001. The batch size remains 98, and the learning rate is dropped by 0.1 every 10 epochs. The same hyper-
parameters are used for fine-tuning the DCNN in the conventional ImageNet-based method.

When combining DRR-based method and ImageNet-based method in ImageNet + DRR20, and Ima-
geNet + DRR20_Full training scheme, the DCNN initialized with ImageNet dataset is trained using synthesized 
XR images for 58 epochs, with a batch size of 98. The initial learning rate is set to 0.0000005, and the regulari-
zation parameter remains 0.00001. The learning rate is dropped by 0.1 every 10 epochs. The aforementioned 
hyper-parameters are used for fine-tuning in both the training schemes.

Evaluation
To evaluate the performance of DCNN on a dataset, fivefold cross-validation is used. The AUROC as well as F1 
score is calculated to compare the performance. Prior to plotting the ROC curve and F1 score, it is necessary 
to calculate sensitivity and specificity. Sensitivity and specificity are calculated using true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN). TP represents the successfully detected PXR images 
with fractures, while FN represents the falsely detected PXR images with fractures. TN denotes the number of 
correctly detected normal PXR images. FN indicates the number of PXR images with fracture detected as PXR 
images without fracture. Sensitivity, specificity, and F1 score are defined by Eqs. (4)–(6). To calculate the F1 score, 
a confidence score threshold of 0.5 is utilized to determine TP, FP, TN and FN.

(2)CWF =
nN

nN + nF

(3)CWN =
nF

nN + nF

(4)Sensitivity =
TP

TP + FN

Figure 8.  Architecture of DCNN.
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To plot the ROC curve, sensitivities and 1-specificities, also known as False positive rate (FPR), are calculated 
for various confidence score thresholds. Finally, AUROC is calculated by Eq. (7).

where sensitivityi and FPRi are the sensitivity and FPR, respectively, at the i-th point in ROC curve.

Ethical approval
The Institutional Review Board of Steel Memorial Hirohata Hospital, Japan, granted ethical approval (IRB Num-
ber: 2019-1-52) for the study, and all analyses adhered to related regulations and guidelines. The requirement for 
informed consent from the study subjects was waived by the IRB of Steel Memorial Hirohata Hospital, Japan.

Data availability
The PXR and 3D-CT are not publicly available due to the restrictions of the policy of the Steel Memorial Hirohata 
Hospital, Japan. However, the datasets can be provided from the corresponding author with permission of the 
Steel Memorial Hirohata Hospital, Japan, on reasonable request.

Received: 25 September 2023; Accepted: 3 April 2024

References
 1. Brauer, C. A., Coca-Perraillon, M., Cutler, D. M. & Rosen, A. B. Incidence and mortality of hip fractures in the United States. 

JAMA 302, 1573–1579 (2009).
 2. O’brien, D. P. et al. Pelvic fracture in the elderly is associated with increased mortality. Surgery 132, 710–715 (2002).
 3. Dechert, T. A. et al. Elderly patients with pelvic fracture: interventions and outcomes. Am. Surg. 75, 291–295 (2009).
 4. Weishaupt, D. et al. Traumatic injuries: Imaging of abdominal and pelvic injuries. Eur. Radiol. 12(6), 1295–1311 (2002).
 5. Grieser, T. Radiologische Diagnostik von Beckenringfrakturen [Radiological diagnosis of pelvic ring fractures]. Radiologe. 60(3), 

226–246 (2020).
 6. Marks, R. Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009. Int. J. Gen. Med. 3, 1–17 (2010).
 7. Lewiecki, E. M. et al. Hip fracture trends in the United States, 2002 to 2015. Osteoporos. Int. 29, 717–722 (2018).
 8. Hossain, A. et al. Epidemiology of pelvic fractures in adult: Our experience at two tertiary care hospital in Dhaka, Bangladesh. J. 

Clin. Orthop. Trauma. 11(6), 1162–1167 (2020).
 9. Stec, N., Arje, D., Moody, A. R., Krupinski, E. A. & Tyrrell, P. N. A systematic review of fatigue in radiology: Is it a problem?. Am. 

J. Roentgenol. 210, 799–806 (2018).
 10. Aparisi Gómez, M. P. Nonspinal fragility fractures. Semin. Musculoskelet. Radiol. 20(4), 330–344 (2016).
 11. AbdAlmageed, W. et al. Assessment of facial morphologic features in patients with congenital adrenal hyperplasia using deep 

learning. JAMA Netw. Open. 3(11), e2022199. https:// doi. org/ 10. 1001/ jaman etwor kopen. 2020. 22199 (2020).
 12. Pan, D. et al. Alzheimer’s disease neuroimaging initiative (ADNI). Deep learning for brain MRI confirms patterned pathological 

progression in Alzheimer’s disease. Adv. Sci. (Weinh) 10(6), e2204717. https:// doi. org/ 10. 1002/ advs. 20220 4717 (2023).
 13. Spasov, S., Passamonti, L., Duggento, A., Liò, P. & Toschi, N. Alzheimer’s disease neuroimaging Initiative. A parameter-efficient 

deep learning approach to predict conversion from mild cognitive impairment to alzheimer’s disease. Neuroimage 189, 276–287 
(2019).

 14. Donnelley, M. & Knowles, G. Automated bone fracture detection. In Proceedings of the SPIE 5747, Medical Imaging 2005: Image 
Processing. https:// doi. org/ 10. 1117/ 12. 594449 (2005).

 15. de Bruijne, M., Lund, M. T., Tankó, L. B., Pettersen, P. P. & Nielsen, M. Quantitative vertebral morphometry using neighbor-
conditional shape models. Med. Image. Comput. Comput. Assist Interv. 9(Pt 1), 1–8. https:// doi. org/ 10. 1007/ 11866 565_1 (2006).

 16. Bandyopadhyay, O., Biswas, A. & Bhattacharya, B. B. Long-bone fracture detection in digital x-ray images based on digital-
geometric techniques. Comput. Methods Prog. Biom. 123, 2–14 (2016).

 17. Kim, D. H. & MacKinnon, T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. 
Clin. Radiol. 73(5), 439–445 (2018).

 18. Yao, L. et al. Rib fracture detection system based on deep learning. Sci. Rep. 11, 23513. https:// doi. org/ 10. 1038/ s41598- 021- 03002-7 
(2021).

 19. Kim, T. et al. Detection of incomplete atypical femoral fracture on anteroposterior radiographs via explainable artificial intelligence. 
Sci. Rep. 13, 10415. https:// doi. org/ 10. 1038/ s41598- 023- 37560-9 (2023).

 20. Beyaz, S., Açıcı, K. & Sümer, E. Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm 
approaches. Jt. Dis. Relat. Surg. 31(2), 175–183 (2020).

 21. Chen, H. Y. et al. Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs. 
PLoS ONE 16(1), e0245992. https:// doi. org/ 10. 1371/ journ al. pone. 02459 92 (2021).

 22. Krogue, J. D. et al. Automatic hip fracture identification and functional subclassification with deep learning. Radiol. Artif. Intell. 
2(2), e190023. https:// doi. org/ 10. 1148/ ryai. 20201 90023 (2020).

 23. Kitamura, G. Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection. Eur. J. Radiol. 
130, 109139. https:// doi. org/ 10. 1016/j. ejrad. 2020. 109139 (2020).

 24. Twinprai, N. et al. Artificial intelligence (AI) vs. human in hip fracture detection. Heliyon 8(11), e11266. https:// doi. org/ 10. 1016/j. 
heliy on. 2022. e11266 (2022).

 25. Cheng, C. T. et al. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat. Com-
mun. 12(1), 1066. https:// doi. org/ 10. 1038/ s41467- 021- 21311-3 (2021).

 26. Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009).

(5)Specificity =
TN

TN + FP

(6)F1score =
2× Sensitivity × Specificity

Sensitivity + Specificity

(7)AUROC =

n
∑

i=1

sensitivityi × (FPRi − FPRi−1)

https://doi.org/10.1001/jamanetworkopen.2020.22199
https://doi.org/10.1002/advs.202204717
https://doi.org/10.1117/12.594449
https://doi.org/10.1007/11866565_1
https://doi.org/10.1038/s41598-021-03002-7
https://doi.org/10.1038/s41598-023-37560-9
https://doi.org/10.1371/journal.pone.0245992
https://doi.org/10.1148/ryai.2020190023
https://doi.org/10.1016/j.ejrad.2020.109139
https://doi.org/10.1016/j.heliyon.2022.e11266
https://doi.org/10.1016/j.heliyon.2022.e11266
https://doi.org/10.1038/s41467-021-21311-3


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8004  | https://doi.org/10.1038/s41598-024-58810-4

www.nature.com/scientificreports/

 27. Deng, J., Dong, W., Socher, R., Li, L. -J., Li, k. & Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In IEEE Conference 
on Computer Vision and Pattern Recognition. 248–255. https:// doi. org/ 10. 1109/ CVPR. 2009. 52068 48 (2009).

 28. Sellergren, A. B. et al. Simplified transfer learning for chest radiography models using less data. Radiology 305(2), 454–465 (2022).
 29. Cheng, C. T. et al. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radio-

graphs. Eur. Radiol. 29(10), 5469–5477 (2019).
 30. Krizhevsky, A., Sutskever, I., & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in 

neural information processing systems. 25 (2012).
 31. Ji, S., Xu, W., Yang, M. & Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. 

Intell. 35(1), 221–231 (2013).
 32. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision. 1440–1448 (2015).
 33. Peng, C. et al. Megdet: A large mini-batch object detector. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. 6181–6189 (2018).
 34. Redmon, J. & Farhadi, A. YOLOv3: An incremental improvement. arXiv: 1804. 02767 (2018).
 35. Muthalagu, R., Bolimera, A. & Kalaichelvi, V. Vehicle lane markings segmentation and keypoint determination using deep con-

volutional neural networks. Multimed. Tools Appl. 80, 11201–11215 (2021).
 36. Sharma, M. & Baghel, R. Video surveillance for violence detection using deep learning. In Advances in Data Science and Manage-

ment. Lecture Notes on Data Engineering and Communications Technologies Vol. 37 (eds Borah, S. et al.) (Springer, 2020).
 37. Soliman, M. M. et al. Violence Recognition from Videos using Deep Learning Techniques. In Ninth International Conference on 

Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt. 80–85 (2019).
 38. Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).
 39. Alzubaidi, L. et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data. 

8, 53. https:// doi. org/ 10. 1186/ s40537- 021- 00444-8 (2021).
 40. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT Press, 2016).
 41. Ahirwal, M. K., Londhe, N. D. & Kumar, A. Artificial Intelligence Applications for Health Care (CRC Press, 2022).
 42. Ibrahim, M. R., Youssef, S. M. & Fathalla, K. M. Abnormality detection and intelligent severity assessment of human chest computed 

tomography scans using deep learning: A case study on SARS-COV-2 assessment. J. Ambient Int. Hum. Comput. 14, 5665–5688 
(2021).

 43. Inoue, T. et al. Automated fracture screening using an object detection algorithm on whole-body trauma computed tomography. 
Sci. Rep. 12, 16549 (2022).

 44. Ukai, K. et al. Detecting pelvic fracture on 3D-CT using deep convolutional neural networks with multi-orientated slab images. 
Sci. Rep. 11, 11716 (2021).

 45. Cina, A. et al. 2-step deep learning model for landmarks localization in spine radiographs. Sci. Rep. 11, 9482 (2021).
 46. Ghafurian, S., Metaxas, D. N., Tan, V., & Li, K. Fast generation of digitally reconstructed radiograph through an efficient pre-

processing of ray attenuation values. In Proceedings of the SPIE 9786, Medical Imaging 2016: Image-Guided Procedures, Robotic 
Interventions, and Modeling. 97860C; https:// doi. org/ 10. 1117/ 12. 22177 56 (2016).

 47. He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. 770–778. https:// doi. org/ 10. 1109/ CVPR. 2016. 90 (2016)

Acknowledgements
We express our gratitude to Dr. Saadia Binte Alam (Independent University, Bangladesh) for her valuable con-
tributions in enhancing the language of the manuscript.

Author contributions
H.M. and S.K. designed the experiment. R.R. implemented the algorithm and conducted the experiment. R.R. 
and N.Y. analyzed the results. K.H., A.M., and H.M. prepared the data. R.R. wrote the manuscript. All authors 
reviewed the manuscript.

Funding
S.K., A.M., H.M., and N.Y. were financially supported by KAKENHI-PROJECT-23K11253.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1804.02767
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1117/12.2217756
https://doi.org/10.1109/CVPR.2016.90
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Enhancing fracture diagnosis in pelvic X-rays by deep convolutional neural network with synthesized images from 3D-CT
	Result
	Distribution of PXR dataset
	DRR-based method
	Comparison between DRR-based and conventional method for detecting PXR image with visible fracture
	Comparison between DRR-based and conventional method for detecting PXR image with invisible fracture

	Discussion
	Methods
	Subjects and materials
	Synthesizing PXR images from 3D-CT using DRR
	DCNN training and fine-tuning
	Evaluation
	Ethical approval

	References
	Acknowledgements


