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Assessing scale‑dependency 
of climate risks in coffee‑based 
agroforestry systems
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Agroforestry is a management strategy for mitigating the negative impacts of climate and adapting to 
sustainable farming systems. The successful implementation of agroforestry strategies requires that 
climate risks are appropriately assessed. The spatial scale, a critical determinant influencing climate 
impact assessments and, subsequently, agroforestry strategies, has been an overlooked dimension 
in the literature. In this study, climate risk impacts on robusta coffee production were investigated at 
different spatial scales in coffee‑based agroforestry systems across India. Data from 314 coffee farms 
distributed across the districts of Chikmagalur and Coorg (Karnataka state) and Wayanad (Kerala 
state) were collected during the 2015/2016 to 2017/2018 coffee seasons and were used to quantify the 
key climate drivers of coffee yield. Projected climate data for two scenarios of change in global climate 
corresponding to (1) current baseline conditions (1985–2015) and (2) global mean temperatures 2 °C 
above preindustrial levels were then used to assess impacts on robusta coffee yield. Results indicated 
that at the district scale rainfall variability predominantly constrained coffee productivity, while at 
a broader regional scale, maximum temperature was the most important factor. Under a 2 °C global 
warming scenario relative to the baseline (1985–2015) climatic conditions, the changes in coffee 
yield exhibited spatial‑scale dependent disparities. Whilst modest increases in yield (up to 5%) were 
projected from district‑scale models, at the regional scale, reductions in coffee yield by 10–20% on 
average were found. These divergent impacts of climate risks underscore the imperative for coffee‑
based agroforestry systems to develop strategies that operate effectively at various scales to ensure 
better resilience to the changing climate.
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Coffee is among the top traded agricultural commodities in the  world1. Climate variability and change are 
increasingly threatening the profitability and sustainability of the coffee  industry2–6. Prolonged droughts and 
high temperatures during the crop season, in combination with heavy rains and frosts, not only affect blossoming 
and fruit setting but also cherry development and filling, thereby reducing coffee bean yield and/or decreasing 
bean  quality4,7–10. With longer and more intense droughts coupled with higher temperatures increasing across 
most of the world’s coffee growing  areas11,12, strategies such as relocation of coffee farming, adapting coffee farm-
ing practices and/or the development of new coffee crops are being developed to ensure the sustainability and 
profitability of coffee production in the  future13,14.

Agroforestry is a potential management strategy for mitigating climate variability and change impacts in coffee 
farming  systems13,15–17. Coffee-based agroforestry systems (CAFS) consist of coffee intercropped with a diverse 
canopy of native or nonnative forest trees in high to moderate shade, with varying shade cover management. 
There are various benefits of CAFS, including improved soil chemical and physical properties, the creation of 
a microclimate at the farm level that can lower soil and air temperatures and acts as a buffer against extreme 
temperature fluctuations within the farm, and an increase in ecosystem productivity per  area13,15,18,19. CAFS can 
also provide additional income to  farmers20,21. However, similar to any other ecosystem, CAFS are vulnerable to 
large-scale annual and multi-year fluctuations in weather and climate. In countries that manage diverse shade 
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trees in all or parts of their coffee-producing regions (i.e., India, Colombia, Haiti)22, the vulnerability of these 
managed ecosystems to climate is expected to increase over the coming  decades23–25. The appropriate scale at 
which to describe the impact of climate on coffee under the scope of varying CAFS set-ups needs, therefore, 
explicit investigation.

When assessing climate risks and climate change impacts on coffee, studies have mostly focused on either the 
suitability of land areas for coffee  production2,16,26 or the assessment of potential coffee yield under projected cli-
mate  conditions4,27,28, the exposure and vulnerability of coffee-producing regions to changes in climate  hazards29 
or the proportion of variation in coffee yield explained by climate predictors (i.e., rainfall and temperature)30,31. 
However, the risks associated with climate variability at different spatial scales in CAFS under various manage-
ment practices have yet to be fully investigated.

At different scales, climate risks such as excess or deficit rainfall, dry spells or frosts, may differ depending on 
the topographical characteristics and the management practices that dominate the CAFS. If climate impacts vary 
considerably between scales, i.e., the particular climate driver(s) most important for yield vary, then extrapolating 
findings from global and country-level  studies2,4,9,31 may have limited utility for informing smaller farm-scale 
climate adaptation responses. Likewise, smaller experimental and farm-scale  studies32 may not be relevant for 
understanding the larger scale regional and global impacts of climate change. Understanding the impact of cli-
mate at different spatial scales is therefore crucial for accurately assessing the threat current and future climate 
variability pose to CAFS.

In this study, climate risk impacts on robusta coffee (Coffea canephora Pierre ex A. Froehner) yield at different 
spatial scales in CAFS were investigated for the key robusta coffee-growing regions in India, the third largest 
Asian robusta coffee-producing  country33. Robusta coffee production in India accounts for approximately 70% 
of the national production, for an average annual cultivated land area estimated ca. 237,000 ha (that is, approxi-
mately 50% of the national coffee acreage)34.

In India, coffee is grown under native and nonnative shade tree cover and presents a range of management 
practices across different  landscapes21,35, making it an ideal system for investigating climate impacts at differ-
ent scales. In the study we hypothesized that climate risks and their impact on coffee yield would vary across 
spatial scales, i.e., within and across regions. Therefore, mitigation and adaptation strategies must be designed 
and implemented accordingly. Agroforestry is pivotal to the success and sustainability of Indian coffee farming 
systems since it helps protect against the adverse effects of prolonged dry spells and hot summers, particularly 
during the dry season (November–March)6,21. The findings of this study could inform and support spatial plan-
ning and actions for improved climate risk management at multiple spatial scales in robusta CAFS in India and 
other coffee-producing countries around the world.

Methods
Study area
Data were collected from 314 coffee farmers across the districts of Chikmagalur, Coorg (Karnataka state), and 
Wayanad (Kerala state) in India (Fig. 1) during the 2015/2016 to 2017/2018 coffee seasons. Karnataka and Kerala 
are the main robusta coffee-producing states in India and account for 93% of national  production34. The robusta 
coffee calendar in the study regions can be roughly divided into four periods: the January to April period, dur-
ing which flower-bud initiation, blossoming, and fruit setting occur; the May to October period, encompassing 
cherry development and maturation; the October to December period, encompassing ripening and harvest; and 
the dormancy stage from December to  January36. In Wayanad, coffee is grown in rainfed conditions, whereas 
in Chikmagalur and Coorg supplemental deficit irrigation is adopted, namely, to trigger flowering when blos-
som showers (occurring generally during March–April) are not sufficient. Robusta coffee flowering in the study 
regions usually falls during the dry season and coincides with the summer  months30, with backing showers 
needed within 20–25 days of first blossom showers to allow for good fruit  setting36.

Farm data
Farm level data were collected using designed questionnaires. The sampling was performed to represent the range 
of farm sizes and crop management practices. Coffee farmers kept their farm activity records using bookkeeping, 
which is also valuable for coffee certification and traceability programmes. The surveyed farmers were selected 
so as to represent the range of climate, the proportion of coffee growing area, use of irrigation water, and farming 
systems. The questionnaire was reviewed and approved by the ethical committee of ECOM Agroindustrial Corp. 
Ltd. Data collection was carried out in accordance with relevant guidelines and regulations. Informed consent 
was obtained from all participants before the interview.

The total number of farmers surveyed each year was 122, 146, and 46 in Chikmagalur, Coorg, and Wayanad, 
respectively; that is 942 observational data records for the three coffee seasons. Data collected included farm 
characteristics (farm size, type of shade trees—native or exotic tree species), crop management practices (plant 
density, fertilizer types and rates, pest and disease management strategies, irrigation water use), and production 
data (i.e., annual coffee bean yield). The surveyed coffee farms were composed of robusta coffee and native tree 
species, with tree spacings of 3 m × 3 m and 12 m × 14 m for coffee and shade trees,  respectively36. All the data 
were anonymised before any analysis was performed in this study.

Climate data
Monthly climate data for the period 1985–2018, sourced from the TerraClimate dataset (~ 4 km resolution)37,38, 
were used. Climate projections for the study area were for two levels of change in global climate corresponding 
to (1) baseline conditions representing those from 1985 to 2015 and (2) a global mean temperature 2 °C above 
the preindustrial period (1850–1879)37,38. The approach from Refs.37,38 for developing future climate projections 
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uses monthly data from 23 Coupled Model Intercomparison Project 5 (CMIP5) climate models and observa-
tional records to scale changes in individual climate  variables38. Details of the pattern scaling approach, as well 
as information about the 23 different Coupled Model Intercomparison Project 5 (CMIP5) climate models used, 
are provided in Ref.38.

In this study, we focused on the flowering (January–April) and post-flowering (May–August) periods as 
this is when coffee production is most sensitive to climatic  variability4,8. For each farm, the total rainfall, mean, 
minimum and maximum temperatures were computed each year for the flowering and post-flowering periods. 
Variations in each of the climate predictors for the period 2015–2018 are presented in Fig. 2.

Data analysis
Climate impacts were assessed at two different scales: (1) regional, encompassing the entire study region and 
including all sample farms, and (2) district, covering the three distinct districts of Chikmagalur, Coorg and 
Wayanad (Fig. 1). All data analyses were carried out in  R39.

Identifying the key climate drivers of robusta coffee production
A generalized additive regression model (GAM)40,41 and multimodel  selection42 were used to identify the key 
climate drivers of coffee yield. In the GAM coffee yield was modeled as a nonlinear function of climate variables 
for each site and year using a scaled t distribution to account for the heavy tailed distribution of yield data. A 
random effect for each site and year was included to account for the repeat measurements for each year at the 
district level. Random effects control for non‐independence by constraining non‐independent observations to 
have the same  intercept43. For example, yield observations from a particular district, may be more similar (e.g., 
higher on average if soils and management techniques are better) relative to yield observations from other areas. 
There were six potential climate predictors (maximum temperature, minimum temperature, and total rainfall 
for both the flowering and post-flowering periods) in the global model.

To select the best climate predictor(s) for each of the periods (flowering and post-flowering) the second-
order Akaike Information Criterion (AICc)-based model  selection42 was used. This approach tests all possible 
model combinations of predictors and provides an AICc for these, which is used to rank model performance or 
parsimony. AICc is a stricter form of AIC and accounts well for situations when there are limited sample  sizes42, 
as occurs here for our smaller-scale analyses. As with AIC, lower AICc values indicate better model performance 
and model parsimony. From model selection based on AICc, the most parsimonious model, that is, the one with 
the lowest AICc was selected. Model selection also accounted for collinearity, with no predictors with a Pearson 
coefficient of correlation > 0.7 being included in any of the models  tested44. AICc-based model selection was 
performed using the ‘MuMIn’  package45.

Figure 1.  The study regions and spatial distribution of the surveyed robusta coffee farms across the districts 
of Chikmagalur, Coorg (Karnataka state) and Wayanad (Kerala state) in India. The total number of surveyed 
farmers each year was 122, 146, and 46 in Chikmagalur, Coorg, and Wayanad, respectively.
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Assessing the impacts of climate change scenarios on robusta coffee yield across different 
spatial scales
The best models selected for the regional scale (all sample farms within the Karnataka and Kerala states) and 
district scale (sample farms for each of the three districts Chikmagalur, Coorg, and Wayanad) were used to assess 
the percentage change in robusta coffee yield across the study area in the future under two different scenarios 
corresponding to (1) baseline conditions (1985–2015) and (2) projections under a global mean temperature 
scenario of 2 °C. Under each scenario, we projected a percentage change in yield based on the best model for 
each district and the regional model, which encompassed all districts.

Results
Key climate drivers of robusta coffee yield variability across scales
The key drivers of robusta coffee yields in the CAFS we assessed across India varied considerably (Tables 1 and 
2). At the regional scale encompassing our entire study region (Karnataka and Kerala states), post-flowering 
maximum temperatures were the most important climate driver of coffee yields (Table 1). In contrast, at the 
smaller district scale in Wayanad and Coorg, only rainfall-related variables were selected in the best models for 
explaining variation in coffee yields (Table 1).

Regional‑scale yield variation is best explained by post‑flowering season temperature 
variation
At the regional scale, higher mean maximum temperatures were linearly and negatively related to yields (Fig. 3). 
In the post-flowering season, yields for mean maximum temperature of 28 °C were predicted to be approximately 

Figure 2.  Distribution of mean maximum and minimum temperatures, and total rainfall across the 
Chikmagalur, Coorg, and Wayanad districts in India for the period 2015–2018. (a–c): values during the 
flowering period (January–April); (d–f): values during the post-flowering period (May to August). In a boxplot, 
the top and bottom of the box represent the 75th and 25th percentiles, respectively; the solid line indicates 
the median. The whiskers on the top and bottom represent the largest and smallest values within the 1.5 times 
interquartile range above the 3rd and 1st quantiles, respectively. Black points are outliers.
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700 kg/ha lower than those for a mean maximum temperature of 23 °C. Each degree increase in mean maximum 
temperatures, therefore, corresponded to an approximately 140 kg/ha decline in coffee yield (Fig. 3).

District‑level yields are best explained by rainfall
In contrast to the regional scale models, district-level yields were best explained by variations in rainfall (Fig. 4). 
In Wayanad, rainfall was a key predictor of yield variation in both the flowering and post-flowering periods 
(Fig. 4a, b). The relationship between rainfall and robusta coffee yields was negative during flowering; that 
is, higher rainfall corresponded to lower coffee yields (Fig. 4a). The opposite (higher rainfall corresponded to 
higher coffee yields) was found for the post-flowering period. During the post-flowering period in Wayanad, 
there was also a notable nonlinear relationship between rainfall and coffee yield, such that yields did not begin 
to decline until rainfall fell below 3000 mm (Fig. 4b). Once rainfall fell below 3000 mm, yields declined strongly, 
by approximately 400 kg/ha as rainfall declined to 2000 mm (Fig. 4b).

In Coorg, rainfall was also important, but only during the flowering period. There was a distinct inverted ‘U’ 
relationship between flowering total rainfall and coffee yield for that district (Fig. 5). Increasing rainfall from 
80 to 100 mm corresponded to increased coffee yield, at which point the yield plateaued, and further rainfall 
(rainfall above 100 mm) was predicted to decrease yields. The lowest coffee yields (~ 1500 kg/ha) were predicted 
to occur at the highest flowering period rainfall observations (> 160 mm) (Fig. 5). In Chikmagalur, maximum 

Table 1.  Model selection results (showing all models < delta 2) at the district level and across all regions 
combined. a Log Likelihood. b Second-order Akaike Information Criterion.

Region

Flowering phase Post-flowering phase

Df LogLika AICcb Delta WeightTmax Tmin Rain Tmax Tmin Rain

Wayanad − −  + − −  + 44 24.33 89.36 0 0.29

Coorg − −  + − − − 152 84.83 298.03 0 0.13

Chikmagalur − − −  + − − 126 203.99 −21.95 0 0.09

All regions − − −  + − − 310 292.96 345.18 0 0.22

Table 2.  Statistical indicators of the best selected models at the combined regional and district levels. 
a Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

Region Predictor p  valuea Adjusted  R2 Deviance (%) N

Wayanad
Flowering-rain 0.0495*

0.578 65.6 129
Post-flowering-rain 0.0071**

Coorg Flowering-rain 0.0033** 0.829 87.5 438

Chickmagalur Post-flowering-Tmax 0.4956 0.907 83 366

All regions Post-flowering-Tmax 0.0023** 0.864 90.2 933

Figure 3.  The relationship between post-flowering mean maximum temperature and robusta coffee yield at the 
regional level (across all farms assessed in the study). The shaded area is the 95% confidence interval from the 
model predictions.
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temperature was the only variable identified in the best model, but its relationship with robusta coffee yield was 
not statistically significant (p > 0.05; Table 2).

Impacts of climate change scenarios on robusta coffee yield across different spatial scales
The projected impacts of climate change on robusta coffee yields vary depending on whether district-level or 
regional-level models are utilised. At the district level where rainfall was identified as the key limiting factor 
of robusta coffee yields, virtually no impact on yields is anticipated in Coorg under a 2 °C warming scenario 
(Fig. 6a). In contrast, at Wayanad, slight positive changes (up to 5%) were found under a 2 °C warming scenario 
relative to the baseline (1985–2015) climatic conditions (Fig. 6b). In contrast, when projecting from the regional 
scale model, for which post-flowering maximum temperature was identified as the key limiting factor on produc-
tion, the results showed decreases in robusta coffee yields under a 2 °C warming scenario for both Coorg and 
Waynad (Fig. 6). The median changes were − 7% and − 12% for Coorg and Waynad, respectively, with higher 
decreases found in the latter district (Fig. 6b).

Figure 4.  Relationships between robusta coffee yield and key climate drivers identified through model selection 
at the district level (see Table 1) for (a) flowering rainfall and (b) post-flowering rainfall in Wayanad. The shaded 
area in the figure represents the 95% confidence interval from the model predictions.

Figure 5.  The relationship between the key climate drivers of robusta yield at the district level identified in 
Coorg. The shaded area in the figure represents the 95% confidence interval from the model predictions.
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The spatial distribution of the projected changes in robusta coffee yields at the district and regional scales is 
presented in Fig. 7. Irrespective of the scale, there were no distinct spatial patterns across the study districts. For 
instance, when using the regional-level model for Coorg, projected decreases of 15% and 30% were found for 
multiple farms within the same vicinity (Fig. 7).

Discussion
The risks associated with climate variability and change during the flowering and post-flowering periods on 
robusta coffee production at different spatial scales were investigated. The results showed varying scale-dependent 
relationships between robusta coffee yield and flowering and post-flowering rainfall and temperature variables 
in the study areas. At the regional scale (pooled data for all three districts), post-flowering maximum tempera-
ture was selected as the best variable explaining the variability in robusta coffee yield, with lower maximum 
temperatures being associated with higher yields. These results concur with previous findings indicating that 
high temperatures adversely impact robusta coffee  yield7,31,46,47. Bud development and berry filling, two key yield 
determinants in coffee yield, can be drastically and negatively affected under high temperature  conditions7,46, 
which may explain the relationships observed in this study.

At the district scale (i.e., in coffee farms within each district), variations in rainfall during flowering mostly 
explained the variability in robusta CAFS across the study area. Negative impacts of relatively higher rainfall 
during flowering on robusta coffee yield were found across Coorg and Wayanad. Such results are in line with 
other  work46,47. This could be related to various factors including reduced pollination potential and abortion 
of flowers in the case of intense rainfall early and late flowering, respectively, which both result in lower overall 
fruit set and low final  yield10,15. On the other hand, good rainfall conditions during the post-flowering period 
yielded better robusta coffee productivity, namely, across Wayanad, where robusta coffee is typically grown 
under rainfed conditions. Good rainfall conditions are most often beneficial to cherry development in robusta 
 coffee8,15, although such conditions can be conducive to increased pest and disease infestations, which in turn 
may lead to yield loss if not well  managed46,47. The selection of post-flowering maximum temperature as the 
variable explaining the most variability in robusta coffee yield in Chikmagalur suggests that the effects of local-
ised microclimatic conditions on coffee yields were also identified through the model in our study. Indeed, the 
presence of a shade canopy can buffer extreme temperatures, reduce soil evaporation and crop transpiration, 
and improve  production15,48,49.

To cope with the adverse impacts of climate variability on coffee productivity in CAFS a range of manage-
ment strategies exist, including reliance on supplemental deficit irrigation, infrastructural investments in farms 

Figure 6.  Boxplots showing the distribution of projected percentage changes in robusta coffee yield under a 
2 °C global warming relative to baseline (1985–2015) climatic conditions for the best model at the district level 
and regional level for (a) Coorg and (b) Wayanad. No results are shown for Chickmagalur as there were no 
climate variables significantly related to yield at the district level for this area (p > 0.05; Table 2). In the boxplots, 
the top and bottom of the box represent the 75th and 25th percentiles, respectively; the solid line indicates 
the median. The whiskers on the top and bottom represent the largest and smallest values within the 1.5 times 
interquartile range above the 3rd and 1st quantiles, respectively. Black points are outliers.
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to enhance rainwater storage capability, tailored shade management to avoid competition for light during critical 
coffee phenological stages, diversification and careful selection of shade tree species (preferably context-specific 
species with rooting systems that would avoid competition for water and nutrients), crop and income diversifica-
tions, and adoption of crop insurance  schemes16,21,50,51.

Our study shows that under a 2 °C warning scenario relative to baseline (1985–2015) climatic conditions, the 
projected coffee yield changes varied between + 5 and − 20% depending on the scale, with reductions found at the 
regional scale (i.e., projections made using the regional-scale model). With increasing interest in adopting CAFS 
as a strategy to reduce the vulnerability of both farmers and the global coffee sector to climate  change13,16,52, as well 
as to enhance ecosystem services in coffee-growing  regions53,54, it is important to identify the risks associated with 
climate variability in CAFS at different spatial scales for tailored and improved risk management. To date, studies 
have focused on the analysis of the co-benefits, synergies, and trade-offs of shade canopy and robusta coffee pro-
ductivity in CAFS, with little attention given to scale-dependent climate risk  levels14,49. Our study highlights the 
need to consider differentiated responses based on the main climate driver and its scale-dependent level of risk.

At finer spatial scales, mitigation and adaptation strategies should focus on helping farmers improve their 
shade management (pruning method and intensity, choice of context-specific and multipurpose tree species based 
on farmer knowledge), adopt practices that would increase water and nutrient use efficiencies, and use drought- 
and heat-stress-adapted varieties. Given that yield potentials and responses to environmental stresses in robusta 
coffee are genotype- and location-specific15,55, the adoption of new robusta coffee varieties needs to be preceded 
by appropriate pilot phases and good communications of their outcomes within farmers for better uptake.

At coarser spatial scales, land management and use that minimize the effects of regional warnings should be 
prioritized. This would require long-term institutional arrangements among multiple stakeholders, and mul-
tisectoral planning and implementation of appropriate adaptation actions to avoid risks of  maladaptation56,57. 
Although farm relocation to suitable cropping areas may be seen as a potential climate adaptation  strategy58–60, 
it is critical to investigate the feasibility of such strategies according to local contexts (e.g., suitable sites located 
in protected areas, prevailing land policies). Moreover, relocating farms will require adequate financial, techni-
cal, and social resources, which in most cases are unaffordable for smallholder coffee farmers, unless they are 
subsidised.

There are some limitations in this study that indicate a need for further research. Climatic variables such as 
solar radiation, wind speed, vapor pressure deficit, and soil moisture conditions were not included, but their 
effects may also vary across scales. As these factors could drive robusta coffee  productivity13,55,61, considering the 
potential interactions of these factors with robusta coffee productivity would provide further insights into the cli-
mate risk levels in CAFS and help improve risk management. Moreover, targeted data collection and quantitative 

Figure 7.  The spatial distribution of the projected mean change (%) in robusta coffee yield for each farm 
under a 2 °C global warming scenario relative to baseline (1985–2015) climatic conditions for the best model 
at the district scale in (a) Coorg and (b) Wayanad, and (c) the regional scale (all data pooled). Note that for the 
district-level model, no results are shown for Chickmagalur, as there were no climate variables significantly 
related to yield for this area (p > 0.05; Table 2).
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analysis should be undertaken in future research to explore the potential impacts of climate variability and change 
on shade trees in CAFS and understand how interspecific interactions will respond to climate  change62,63. This 
would help improve current adaptive management strategies for CAFS and ensure better preparedness for future 
climate conditions for profitable and sustainable robusta coffee farming systems.

In summary, the study highlights the need to consider differentiated responses based on the main climate 
driver and its scale-dependent level of risk in coffee-based agroforestry systems. Such findings could inform and 
support spatial planning and actions for improved climate risk management at multiple spatial scales in robusta 
coffee-based agroforestry systems in India and other coffee-producing countries around the world.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to privacy 
concerns but are available from the corresponding author on reasonable request.
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