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Data‑driven optimization 
for microgrid control 
under distributed energy resource 
variability
Akhilesh Mathur 1, Ruchi Kumari 1, V. P. Meena 1,2*, V. P. Singh 1, Ahmad Taher Azar 3,4,5* & 
Ibrahim A. Hameed 6*

The integration of renewable energy resources into the smart grids improves the system resilience, 
provide sustainable demand-generation balance, and produces clean electricity with minimal leakage 
currents. However, the renewable sources are intermittent in nature. Therefore, it is necessary 
to develop scheduling strategy to optimise hybrid PV-wind-controllable distributed generator 
based Microgrids in grid-connected and stand-alone modes of operation. In this manuscript, a 
priority-based cost optimization function is developed to show the relative significance of one cost 
component over another for the optimal operation of the Microgrid. The uncertainties associated 
with various intermittent parameters in Microgrid have also been introduced in the proposed 
scheduling methodology. The objective function includes the operating cost of CDGs, the emission 
cost associated with CDGs, the battery cost, the cost of grid energy exchange, and the cost associated 
with load shedding. A penalty function is also incorporated in the cost function for violations of 
any constraints. Multiple scenarios are generated using Monte Carlo simulation to model uncertain 
parameters of Microgrid (MG). These scenarios consist of the worst as well as the best possible cases, 
reflecting the microgrid’s real-time operation. Furthermore, these scenarios are reduced by using a 
k-means clustering algorithm. The reduced procedures for uncertain parameters will be used to obtain 
the minimum cost of MG with the help of an optimisation algorithm. In this work, a meta-heuristic 
approach, grey wolf optimisation (GWO), is used to minimize the developed cost optimisation function 
of MG. The standard LV Microgrid CIGRE test network is used to validate the proposed methodology. 
Results are obtained for different cases by considering different priorities to the sub-objectives using 
GWO algorithm. The obtained results are compared with the results of Jaya and PSO (particle swarm 
optimization) algorithms to validate the efficacy of the GWO method for the proposed optimization 
problem.

Keywords  Microgrids, Stochastic process, Optimal scheduling, Monte Carlo simulation, K-mean clustering, 
Probability distribution function, Grey-Wolf optimization, Jaya algorithm

Microgrid (MG) is a scaled-down version of the conventional grid. It is self-sufficient and can supply the local 
demands of a particular geographic area. The active components of the MG are renewable energy sources like 
wind turbines (WT), photovoltaic (PV), micro-hydro generators, biomasses, fuel cells, etc. The other associated 
components of MG are energy storage units, combined heat and power (CHP) units, thermal and electric loads, 
etc.1.

For ensuring supply reliability, fuel savings, lesser emissions, voltage security, full exploitation of renewable 
potential, and coordinated output of multiple DGs, there is a need for energy management and optimal dispatch 
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of microgrids. Two different approaches that have widely been used in the literature for the optimal operation 
of MG are (a) deterministic approaches and (b) heuristic optimization approaches2–8.

Deterministic algorithms like linear programming, mixed-integer linear programming, and dynamic pro-
gramming have been used in articles9–15 for unit commitment and economic load dispatch (ELD) of microgrids 
with or without the energy storage system. Various objectives, i.e. cost minimization, reliability maximization, 
emission reduction, power loss minimization, voltage security, and utilization of bio-waste in microgrids, are 
developed with multiple constraints in these papers. However, deterministic methods have some drawbacks: 
(a) they take more time with the complexity of the problem; (b) they become intractable with the increase in the 
number of parameters; (c) they have a high dependency on the initial solutions; (d) these methods are gradient-
dependent, etc. Using meta-heuristic algorithms has resolved the issues related to deterministic methods. Some 
of the meta-heuristic algorithms, like a genetic algorithm (GA), modified genetic algorithm, particle swarm 
optimization (PSO), modified particle-swarm optimization (MPSO), grey-wolf optimization (GWO), artificial 
fish algorithms, african vultures optimization algorithms (AVOA) etc. were used in the literature16–32 to solve 
the optimization problems of MG. A GA has been used in the papers16 and17 for the energy trading strategy of 
the MG considering uncertain quantities.

In Ref.16, the energy trading strategy was developed for optimal scheduling of conventional generators, energy 
storage systems, and grid power exchanges. In Ref.17, the objective is cost minimization, including the installa-
tion cost of battery storage, solar modules, and the operational cost of diesel generators. The goal is subjected 
to equality constraints like active and reactive power balance and inequality constraints to ensure stability. A 
modified genetic algorithm has been used in article18 to share the power generation among the various DERs 
optimally. The results show that the modified GA gives better results than the GA.

PSO-based optimization algorithms have been developed in article19,21,22,33 for the ELD problems with multiple 
thermal units, energy storage devices, etc. Some of these works include the impact of large-scale EV integra-
tion along with the numerous constraints and load uncertainty. These studies show that the results obtained by 
the PSO algorithm are much better than those obtained by the GA. However, in article24–26,34 researchers have 
analyzed the performance of variants of PSO named “improved, coordinated aggregation-based particle swarm 
optimization (ICA-PSO)” algorithm and “PSO with BA parameter inspired acceleration coefficients (MHPSO-
BAAC)” to solve the ELD problem with valve point loading for all combinations of RES-based power plants. 
These algorithms proved that the PSO variants performed better than basic PSO.

In papers27,35, another meta-heuristic-based Grey Wolf Optimization algorithm has been developed to solve 
the economic operation of the microgrid system, the sizing optimization of BESS, etc. The results obtained by 
GWO have been compared with the results of other meta-heuristic algorithms like GA, PSO, ABC, etc. to show 
the effectiveness of GWO. A fuzzy PID control based modified slime mould algorithm (MSMA) is developed for 
optimal battery management system in article30. In this article, the tuning of fuzzy PID controller is performed to 
accommodate the uncertainties of the automatic voltage variation and power management. An African vultures 
optimization algorithm (AVOA) has been developed in article31 for the optimization of a novel two-degree of 
freedom PID (2DOFPID) controller to emulate the virtual inertia and damping into the Microgrid. The perfor-
mance of the proposed controller has been compared with the other conventional controller to show its effec-
tiveness. The developed methodlogy31 has also been validated on OPAL-RT real time environmental simulator. 
A slime mold meta-heuristic optimization algorithm for the operation management of Microgrids considering 
Demand Response Program (DRP) is presented in article32. The obtained results show that the developed slime 
mold optimization algorithm performs better than PSO and Genetic Algorithms.

From the above-discussed literature, the key limitations of the work have been identified and presented as 
follows: (i) Few studies consider the deterministic approach, and others use the stochastic process; however, 
computational tractability is an issue. (ii) The scheduling under uncertainty is addressed by a reduced number . 
of scenarios of load, PV, wind, etc., which makes the system unrealistic. (iii). Only a few pieces of literature have 
discussed the priority factor-based cost components and the static penalty associated with constraints and limit 
violations; it needs further investigation.

The main contribution of this work is listed below:

•	 To tackle the volatile and intermittent nature of PV, wind, and load, maximum scenarios are considered to 
represent the real system.

•	 Economic scheduling in both grid-connected and islanded modes uses the concept of load and power cur-
tailment with the help of the GWO algorithm, considering the entire day of system data.

•	 A combination of the stochastic nature of resources, unpredictable loads, and the heuristic approach to solv-
ing the problem.

•	 An optimal scheduling methodology for MG considering uncertain parameters is proposed along with the 
existence of an energy storage system.

The remaining paper is organised as follows: In Sect. "Optimal operation of microgrid", the optimal operation 
of MG is discussed. Section "Results and discussion" describes the results and discussion of the proposed meth-
odology, whereas Sect. "Conclusion" gives the conclusion part of the work.

Optimal operation of microgrid
The microgrid can be operated in two modes, grid-connected or stand-alone. The fundamental steps of the 
proposed optimal scheduling strategy of the microgrid in both modes are given: 

1.	 Component modeling
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2.	 Scenario generation and reduction of uncertain parameters
3.	 Problem formulation
4.	 Implementation of optimization techniques

Component modelling
The basic structure of a grid-connected microgrid is shown in Fig. 1, which considers controllable generations, 
PV generations, wind generations, and energy storage systems.

PV system
Sun is the ultimate source of solar energy. The solar irradiance received from the sun can be converted into DC 
power with the help of solar cells (basic semiconductors), which is further converted into AC power with the 
help of inverters. The output power ( Ppv ) of the PV module depends upon the effective global irradiance, the 
area of the module, the energy conversion efficiency of the solar module, and the temperature. It is given as,

where Geff  is the effective global irradiance ηg is the conversion efficiency of the generator, Ag is the active surface 
area of the module, Tc is the temperature. Generally, the hourly irradiance is modeled by using the Beta distribu-
tion function36 and is given as,

The value of the parameters a and b is calculated with the help of mean value u and standard deviation n as,

(1)Ppv = Geff ηgAg × [1− 0.005(Tc − 25)]

(2)Fb(G) =







Ŵ(a+b)
Ŵa+Ŵb × G(a−1) × (1− G)b−1 0 ≤ G ≤ 1

a ≥ 0, b ≥ 0

0 otherwise

(3)a =
u× b

1− u

(4)b =(1− u)×
u(1+ u)

n2
− 1

Figure 1.   A fundamental architecture of Microgrid.
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Wind system
The kinetic energy of wind can be converted into electricity with the help of the wind turbine, however the 
speed of the wind is intermittent. Therefore, the wind velocity (u) is modeled by using the Weibull probability 
distribution function and is given as36,

The output power PW (u) of the wind turbine can be modeled in terms of the wind velocity (u) as,

where PratedW  (MW) is the rated power output of the wind turbine, u (m/s) is the maximum wind speed up to 
which generation is possible, uin (m/s) is the cut in speed at which wind turbine generates, ur (m/s) is the aver-
age wind speed.

Controllable distributed generator (CDG)
It is one of the important components of the microgrid to supply the base demand and increase the system’s 
reliability.

The cost associated with conventional generators is the fuel cost and is modeled as,

where Pi is the output power, a, b, and c are the fuel consumption curve parameters for any CDG whose units 
are $/Kw2h , $/Kwh and $ respectively.

Another significant cost associated with CDGs is the emission cost. It is the penalty for polluting the environ-
ment and can be calculated using37.

Where Ki is the penalty term for pollution, whose unit is $/Kg . mi , ni and oi are the emission coefficients, whose 
units are Kg/Kw2h , Kg/Kwh and Kg respectively.

Battery energy storage system
It is a device used to store energy. It takes energy from various sources, uses it when required by the loads, and 
helps balance generation and loads. The battery’s power output can be positive or negative depending on the 
discharging or charging mode.

This is determined by calculating the net energy and state of charge of the battery38.
When the load is greater than a generation, the battery will get discharged,

similarly, when we have sufficient generation, and the battery is not fully charged, it will be charging,

Scenario generation and reduction of uncertain parameters
There is uncertainty associated with renewable generation because of the intermittent nature of wind and solar 
irradiance. It can be forecasted based on the previous data, but there are some errors. These errors can be mod-
eled using MCS39.

Scenario generation
To generate the scenarios, there is a need for the forecasted value and error associated with the various stochastic 
quantities like wind speed (to calculate the wind power) and global irradiance (to calculate PV output) over the 
entire scheduling horizon36.

Then, for each hour, the value of the stochastic quantity is equal to the sum of the forecasted value for that 
hour, and the error is generated randomly with the help of historical data40,41. The same procedure is followed 
for the load scenario generation as it also keeps changing from time to time and is uncertain.

Scenario reduction
Since there are many scenarios for this proposed optimization problem, a proper reduction method must be 
used to decrease the number of generated techniques so that the solution will become tractable. Clustering is a 
classic machine learning and computational geometry issue. In this work, we have used the K-mean clustering 
algorithm. The k-means method is one of the popular clustering methods (unsupervised) where the aim is to 
reduce the distance between the points of the same cluster42.

(5)pdf (u) =
h

e
×

(u

e

)h−1

× e−( ue )
h

(6)PW (u) =







PratedW (u− uin)/(ur − uin) uin ≤ u ≤ ur
PratedW uin ≤ u ≤ u
0 otherwise

(7)FCi = a× P2i + b× Pi + ci

(8)Ki × (mi × P2i + ni × Pi + oi)

(9)Pdisht = min(SOC − SOCmin, Pload − Pgen)

(10)PChart = max(SOCmax − SOC, Pgen − Pload)
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Problem formulation
The main objective of microgrid operators is to minimize the overall operating cost of the microgrid by the 
maximum utilization of renewable energy. The operating cost function of the microgrid is as follows,

where

In Eq. (11), πs is the probability of each scenario, and 
∑

s∈S πs = 1 , where S is the total number of scenarios. The 
α,β , γ , δ , and ζ are the priority factors that are changed for different cases to get the optimal solution. J1, J2, J3, J4 , 
and J5 are the costs associated with CDGs, emission costs, the cost associated with power exchange between 
microgrid and utility, battery costs, and the value of load loss, respectively. 

∑l+m
j=1 �j × gj represents the penalty 

term, where �j is the penalty factor of the jth constraint and gj represents the jth constraint function that is being 
violated. l and m are the equality and inequality constraints, respectively. CCDG

i  is the operating cost, and PCDGi,t,s  
is the power output at time t for scenario s of the ith conventional generator, whose units are $/KWh and Kw, 
respectively. CSU

i,t,s and CSD
i,t,s are the start-up and shut-down costs. mi , ni , and oi are the emission cost coefficients 

of the CDGs. ρRT ,Buy
t,s  and ρRT ,Sell

t,s  are the buying and selling prices of electricity with the utility grid, respectively. 
P
RT ,Buy
t,s  and PRT ,Sellt,s  are the amounts of energy bought and sold to the utility grid, respectively. PChart,s  and PDischart,s  

are the charging and discharging energies of the battery. ρChar
t,s  and ρDischar

t,s  are the charging and discharging 
costs associated with the battery.

The objective function given in (11) is subjected to multiple constraints, among which the power balance is 
the most important and is given by (17).

where Pgrid = PBuy − PSell.
Other inequality constraints subjected to the (11) are as follows,

PCDG is output of CDG and PCDG,Min and PCDG,Max are the minimum and maximum limits of the power out-
put of CDG. PPV is the output of the PV panel, and it has a minimum limit of PPV ,Min and a maximum limit 
of PPV ,Max . PW is the wind output with PW ,Min and PW ,Max as the minimum and maximum limit, respectively. 
State of charge (SOC) is the indicator of battery energy, and it should also be in between minimum SOCMin and 
maximum limit SOCMax.

Optimization technique: Grey Wolf optimization GWO
GWO is a population-based metaheuristic algorithm proposed by Mirjaliali et al. in 2014. The social hierarchy 
and hunting mechanism of grey wolves inspire this algorithm. They belong to the Canidae family, and their sci-
entific name is Canis lupus. Grey wolves are social animals and live together in a group called packs. Each pack 
consists of 6-12 wolves divided into four categories αG , βG , δG , and ωG . The first level leads the pack to decisions 
such as hunting, sleeping location, etc. They need not be the strongest, but they are best at pack management. The 
second member of the hierarchy is βG . These are the supporting wolves that aid the leader in decision-making. 
Play the role of discipliner and advisor for the pack. It provides feedback to the alpha and guarantees that all 
other wolves obey the command. In the absence of αG , they will be leading the team. Sentinels, scouts, hunters, 

(11)Min
∑

s∈S

πs(α × J1 + β × J2 + γ × J3 + δ × J4 + ζ × J5)+

l+m
∑

j=1

�j × gj ,

(12)J1 =
∑

t∈T

∑

i∈Ni

[CCDG
i (PCDGi,t,s )+ CSU

i,t,s + CSD
i,t,s],

(13)J2 =
∑

t∈T

∑

i∈Ni

[mi(P
2
i )+ ni(Pi)+ oi] × Ki ,

(14)J3 =
∑

t∈T

[ρ
RT ,Buy
t,s P

RT ,Buy
t,s − ρ

RT ,Sell
t,s PRT ,Sellt,s ],

(15)J4 =
∑

t∈T

[ρChar
t,s × PChart,s − ρdish

t,s × Pdisht,s ],

(16)J5 =
∑

t∈T

LShedj,t,s �
Voll
j,t ],

(17)PPV + PW + Pgrid + PCDG + PLshed = PLoad ,

(18)PCDG,Min ≤ PCDG ≤ PCDG,Max ,

(19)PPV ,Min ≤ PPV ≤ PPV ,Max ,

(20)PW ,Min ≤ PW ≤ PW ,Max ,

(21)SOCMin ≤ SOC ≤ SOCMax ,
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and caretakers form the next hierarchy. Scouts monitor the territory’s boundary and warn the pack in case of 
danger. Sentinels guarantee safety for the other members of the pack. Hunters and caretakers hunt prey and take 
care of the pack’s ill and wounded members. Rest all are the δG , wolves.

The hunting mechanism of wolves is as follows:

•	 Encircling prey: During the hunt, grey wolves encircle prey, whose position is ( Xp)
•	 Hunting: Ak and Ck are coefficient vectors, here encircling and hunting is done through Dk & Xnew , respec-

tively along with new population are computed where, rd is a random number between 0 and 1, and agwo 
changes linearly from 2 to 0 with each iteration. The entire process is described below 

•	 Attacking the prey: Once the prey stops moving, wolves attack the prey.
•	 Exploration: Grey wolves mainly seek according to the alpha, beta, and delta positions. They disperse from 

each other to hunt for prey and converge to attack prey. We use random values larger than 1 or less than -1 
to mathematically describe divergence to force the search agent to diverge from the prey.

Another feature of GWO that encourages exploration is C . This vector has random values in the range [0, 2], 
allowing GWO to behave more randomly during optimization, promoting exploration and avoiding local optima. 

Algorithm 1.   GWO.
Implementation steps of algorithm: Implementation of GWO algorithm for the objective function formulated 

in (11), is illustrated as follows:

•	 Choose initial parameters and set priority factor γ = 0 for isolated mode.
•	 Choose other priority factors (αG ,βG , γG and δG) for Grid-connected mode.
•	 Subject to inequality constraints in (18)–(21), minimize the objective function given in (11) using GWO 

algorithm as described in Algorithm 1.
•	 Repeat the process for the calculation of J1 , J2 , J3 and J4 using (12) - (16).
•	 Stop the procedure once termination criterion meets.

The flowchart for the proposed algorithm is shown in Fig. 2.

Results and discussion
To validate the proposed methodology, a standard LV Microgrid CIGRE test network is considered. The various 
data of LV MG CIGRE test system for wind turbine, photovoltaic, battery energy storage system, controllable 
load etc. are collected from43. The GWO algorithm, as discussed in Sect. Optimization technique: Grey Wolf 
optimization GWO, is implemented in MATLAB software to get the optimal solution of the developed optimi-
zation problem, along with the Jaya and PSO algorithms. Each search agent in the optimisation approach has 
number of variables that keep changing every hour. Cost analysis is carried out to demonstrate the efficiency of 
GWO and Jaya. At first, the total 2000 scenarios for loads, PV output, and wind output were generated to get all 

(22)Ak =2 · agwo · rd − agwo,

(23)Ck =2 · rd,

(24)Dk =�Ck · Xp − Xk�,

(25)X
′
k =Xk − Ak ·Dk ,

(26)Xnew =

∑3
k=1 X

′
k

3
,
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the uncertainties associated with them, as discussed in the Sect. Scenario generation and reduction of uncertain 
parameters.

Figure 8 shows all the strategies generated for load using the MCS for the entire day. The blue line curve 
shows the upper limit curve of the load profile, the green line shows the lower limit of the load curve, and the 
red dotted curve is the forecasted load curve. Figure 3 is all the scenario sets for the wind power output with a 
deviation of 15%. The blue curve is the upper limit of the wind curve for 24 hours; the green colour shows the 
lower acceptable limit curve for wind scenarios; and the red curve shows the predicted values of the wind but 
is highly uncertain compared to the load and PV scenarios. Figure 4 shows the multiple techniques for solar 
output generated with the help of MCS using the base value forecasted (red curve) and the error produced using 
their probability distribution function. The blue and green lines in the set of scenarios show the upper and lower 
limits of the solar output with the maximum deviations.

It is reduced into smaller samples using the K-mean clustering algorithms to reduce the computational time 
and complexity. Figure 5 is the graph obtained after applying the k-mean algorithm to the load scenario graph. 
The set of two thousand load curves is reduced to the group of ten load curves represented by S1, S2, S3, S4, S5, 
S6, S7, S8, S9, and S10, respectively. In Figs. 6 and 7, the total 2000 of wind power output and solar power output 
curves are also reduced to a set of 10 curves represented as S1 to S10 with the help of K-mean clustering, respec-
tively. Data sets of PV, wind, and load are obtained with their associated probabilities for each of the ten scenarios.

Grid connected mode
The grid can be considered the virtual generator. A microgrid can buy power when there is a deficit and supply 
power when it has excess renewable generation.

In Table 1, different priority factor terms like α , β , γ , δ , and ζ show the relative significance of each cost 
component in the overall objective function. Based on these priority factors, five cases have been considered.

Figure 2.   Flowchart of the proposed algorithm.
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•	 Case1: The value of α is taken as .75, it shows the relative significance of fuel cost J1 , the value of β is .04, it 
is the weight factor for the emission cost J2 , and the values of γ and δ are 0.1 and 0.1, respectively, and these 
show the weight factor of the cost associated with energy exchanged with grid (J3) and battery cost (J4) , 
respectively.

•	 Case2: The value of α is taken as .6, which is associated with fuel cost J1 ; the value of β is 0.1; it is the weight 
factor for the emission cost J2 ; and the values of γ and δ are 0.2 and 0.1, respectively, and these show the 
weight factors of J3 and J4 , respectively.

•	 Case3: The value of α is reduced to .5, the value of β is .1, and the values of γ and δ are 0.25 and 0.15, respec-
tively.

•	 Case4: The value of α is .5, the value of β is .15, and the values of γ and δ are 0.2 and 0.15, respectively.
•	 Case5: For this case, the values of α , β , γ , and δ are assumed to be 1.

In each case, 10 scenarios are taken, with (PV1W1L1) or S1 of PV from Fig. 8, S1 of wind from Fig. 7, S1 of load 
from Fig. 6 being the first scenario or the first data set, PV2W2L2 (S2 of PV, S2 of wind, S2 of load) being the 
second scenario (second data set), and so on. For these data sets, optimisation is carried out using the GWO and 
Jaya algorithms. For each scenario, there is an optimal value, but we are focusing on stochastic optimisation, so 
to consider the uncertain nature, we need to take the average optimal values of all the scenarios.

From Table 3, GWO gives better results than Jaya for all the cases. The lowest cost for case 4 in the GWO 
algorithm value is 4004$ . The standard deviation is less when using GWO and quite high when using Jaya.

The main cost is the operating cost of CDGs, followed by the grid exchange cost, battery cost, and emission 
cost. The same can be observed from Table 2, when the priority of all the cost terms is equal, the cost is maximum, 

Figure 3.   Wind scenarios for 24 hours.

Figure 4.   Solar output scenarios for 24 hours.
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as in case 5 of all the optimisation methods, but if it is allotted properly, the overall cost reduces. From Table 3, 
GWO is giving better results than the Jaya algorithm for my problem. Although the difference between the 
optimal cost obtained from GWO and Jaya is not high for one day, it will significantly affect the cost for longer. 
Figure 9 shows the load curve, total of CDGs power, wind power output, solar output, exchange with the grid, 
battery power output, and dump energy (PL-PG) by using the GWO algorithm. Similarly, Fig. 10 shows the load 
curve, the total of CDGs power, wind power output, solar output, exchange with the grid, battery power output, 
and the dump using the Jaya algorithm.

Isolated mode
In this mode, there is no grid to act like a virtual generator, so we will go for load curtailment when we don’t 
have sufficient generation. This load curtailment is associated with some revenue loss for the operator, which we 
call VOLL (value of loss load), which is higher than the price of electricity offered to the customer. In isolated 
mode, the third term of the objective function (exchange with the grid) is not there, and the Lshed term comes 
into the picture.

•	 Case1: The value of α is taken as .75, it shows the relative significance of fuel cost J1 , the value of β is .04, it 
is the weight factor for the emission cost J2 , and the values of ζ and δ are 0.1 and 0.1, respectively, and these 
show the weight factor of the cost associated with load shedding J5 and battery cost (J4) , respectively.

Figure 5.   Reduced scenarios of load for 24 hours.

Figure 6.   Reduced scenarios of wind output for 24 hours.
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•	 Case2: The value of α is taken as .6, which is associated with fuel cost J1 ; the value of β is .1; it is the weight 
factor for the emission cost J2 ; and the values of ζ and δ are 0.2 and 0.1, respectively, and these show the weight 
factors of J5 and J4 , respectively.

•	 Case3: The value of α is reduced to .5, the value of β is .1, and the values of ζ and δ are 0.25 and 0.15, respec-
tively.

•	 Case4: The value of α is .5, the value of β is .15, and the values of ζ and δ are 0.2 and 0.15, respectively.
•	 Case5: For this case, the values of α , β , ζ , and δ are assumed to be 1.

Figure 7.   Reduced scenarios of solar output for 24 hours.

Figure 8.   Load scenario for 24 hours.

Table 1.   Different cases considered for optimization.

α β γ δ

Case 1 0.75 0.04 0.1 0.1

Case 2 0.6 0.1 0.2 0.1

Case 3 0.5 0.1 0.25 0.15

Case 4 0.5 0.15 0.2 0.15

Case 5 1 1 1 1
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Table 5 observed that the overall cost has increased in isolated mode on the operator side sometimes when GWO 
optimization is used and for all instances where the Jaya algorithm is used. This is because of load curtailment 
to balance demand and supply and improve reliability. Load curtailment is associated with incentives given to 
the customer because of overall cost increases. For the GWO algorithm, the best optimal cost is 3754$ for case 
4, and the worst case is 9106$, whereas for Jaya, the best case is case 3 with 4222$ dollars, and the worst case is 
case 5 with 11608$. The detailed description of different cost components obtained in isolated mode is in Table 4 
for PSO, GWO, and Jaya.

Conclusion
This paper proposes a day-ahead stochastic scheduling problem for the MG with uncertainty. The main aim 
is to minimise the overall cost of the microgrid, and a scenario-based method is modelled for the uncertain 
nature of RESs (PV and wind) and load. The economic load dispatch problem has been solved using two popular 
metaheuristic algorithms, the Grey-Wolf algorithm and Jaya. Jaya and PSO performed equally well compared to 
GWO. The proposed strategy’s effectiveness in economics and reliability is investigated on a standard benchmark 
LV microgrid CIGRE test network. Economic load dispatch was performed for both the grid-connected and 
the islanded microgrid. During isolated mode, the cost was maximised by the Jaya algorithm and a little less by 
GWO. In grid-connected mode, GWO has obtained the best optimal solution.

Figure 9.   power profiles of the CDGs, renewables, and Grid Supply System considering battery using GWO.

Figure 10.   power profiles of the CDGs, renewables, and grid supply system considering battery using Jaya.
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Table 2.   Various cost components for different cases in grid-connected mode.

Jaya PSO GWO

Case-1

J1 ( $) 6084 6181.61 6051

J2 ( $) 0.53 0.52 0.526

J3 ( $) 0.74 3.62 2.5

J4 ( $) 2.55 3.25 1.16

Case-2

J1 ( $) 4903 4853 4898

J2 ( $) 1.39 1.28 1.33

J3 ( $) – 2.03 7 –  0.5

J4 ( $) 0 3.7 0.48

Case-3

J1 ( $) 4098 4104 4034

J2 ( $) 1.36 1.34 1.327

J3 ( $) – 1.37 5.55 – 3.48

J4 ( $) 2.219 3.73 3

Case-4

J1 ( $) 4113.04 4290 4002

J2 ( $) 14.029 1.9 2

J3 ( $) – 26.0191 5.2 – 3.8

J4 ( $) 5.759 3.8 3.65

Case-5

J1 ( $) 8188 8160 8037

J2 ( $) 14.0229 13 13.57

J3 ( $) – 26.0191 36 – 24.2

J4 ( $) 6 28 28.59

Table 3.   Cost comparison using JAYA, PSO, and GWO algorithm in grid-connected mode.

Jaya PSO GWO

Case-1

Best cost ( $) 5683 5689 5583

Worst cost ( $) 6435 6530 6312

Average cost ( $) 6088 6189 6051

Standard deviation ( $) 194 270 262

Case-2

Best cost ( $) 4358 4490 4549

Worst cost ( $) 5446 5203 5176

Average cost ( $) 4903 4865 4898

Standard deviation ( $) 200 227 216

Case-3

Best cost ( $) 3853 3846 3841

Worst cost ( $) 4445 4281 4277

Average cost ( $) 4101 4104 4036

Standard deviation ( $) 210 160 159

Case-4

Best cost ( $) 3856 3866 3755

Worst cost ( $) 4449 6133 4278

Average cost ( $) 4112 4290 4004

Standard deviation ( $) 210 659 183

Case-5

Best cost ( $) 7026 7716 7616

Worst cost ( $) 8775 8794 8704

Average cost ( $) 8182 8160 8055

Standard deviation ( $) 515 308 391



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10806  | https://doi.org/10.1038/s41598-024-58767-4

www.nature.com/scientificreports/

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 17 February 2024; Accepted: 3 April 2024

Table 4.   Various cost components for different cases in Isolated mode.

Jaya PSO GWO

Case-1

J1 ( $) 7619 6428 5702

J2 ( $) 0.53 0.5 0.36

J3 ( $) 24 36 172

J4 ( $) 0.844 0.54 0.344

Case-2

J1 ( $) 6579 5030 4685

J2 ( $) 1.15 1.23 0.88

J3 ( $) 77 34 184

J4 ( $) 1.637 1.8 0.3

Case-3

J1 ( $) 5839 4116 3972

J2 ( $) 1.26 1.234 0.94

J3 ( $) 67.316 49.22 242

J4 ( $) 3.85 1.9 0.62

Case-4

J1 ( $) 5839 4122 3976

J2 ( $) 2 1.87 1.44

J3 ( $) 67 38 242

J4 ( $) 3.08 1.1 0.12

Case-5

J1 ( $) 9110 8133 8326

J2 ( $) 12 12 12.14

J3 ( $) 381 3030 407

J4 ( $) 12.45 4.22 4.152

Table 5.   Cost comparison using JAYA, PSO, and GWO algorithm in isolated mode.

Jaya PSO GWO

Case-1

Best cost ( $) 6239 5956 5513

Worst cost ( $) 9397 7301 5874

Average cost ( $) 7188 6428 5690

Standard deviation ( $) 1106 423 122

Case-2

Best cost ( $) 4893 4708 4350

Worst cost ( $) 6788 6991 4840

Average cost ( $) 5708 5315 4662

Standard deviation ( $) 612 689 176

Case-3

Best cost ( $) 4222 3944 3786

Worst cost ( $) 11116 5359 4176

Average cost ( $) 6193 4302 4050

Standard deviation ( $) 2450 409 116

Case-4

Best cost ( $) 4373 3985 3754

Worst cost ( $) 9152 5666 4189

Average cost ( $) 6074 4544 3976

Standard deviation ( $) 1614 525 131

Case-5

Best cost ( $) 820 7897 8136

Worst cost ( $) 11608 9104 9106

Average cost ( $) 9730 8560 8691

Standard deviation ( $) 1023 383 300
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