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Identification of m6A/m5C‑related 
lncRNA signature for prediction 
of prognosis and immunotherapy 
efficacy in esophageal squamous 
cell carcinoma
Jianlin Wang 1,3,4, Huiwen Ren 1,4, Chao Xu 2, Bo Yu 2, Yiling Cai 2, Jian Wang 2* & Xinye Ni 1,3*

N6‑methyladenosine (m6A) and 5‑methylcytosine (m5C) RNA modifications have garnered significant 
attention in the field of epigenetic research due to their close association with human cancers. This 
study we focus on elucidating the expression patterns of m6A/m5C‑related long non‑coding RNAs 
(lncRNAs) in esophageal squamous cell carcinoma (ESCC) and assessing their prognostic significance 
and therapeutic potential. Transcriptomic profiles of ESCC were derived from public resources. 
m6A/m5C‑related lncRNAs were obtained from TCGA using Spearman’s correlations analysis. The 
m6A/m5C‑lncRNAs prognostic signature was selected to construct a RiskScore model for survival 
prediction, and their correlation with the immune microenvironment and immunotherapy response 
was analyzed. A total of 606 m6A/m5C‑lncRNAs were screened, and ESCC cases in the TCGA cohort 
were stratified into three clusters, which showed significantly distinct in various clinical features and 
immune landscapes. A RiskScore model comprising ten m6A/m5C‑lncRNAs prognostic signature 
were constructed and displayed good independent prediction ability in validation datasets. Patients 
in the low‑RiskScore group had a better prognosis, a higher abundance of immune cells (CD4 + T cell, 
CD4 + naive T cell, class‑switched memory B cell, and Treg), and enhanced expression of most immune 
checkpoint genes. Importantly, patients with low‑RiskScore were more cline benefit from immune 
checkpoint inhibitor treatment (P < 0.05). Our findings underscore the potential of RiskScore system 
comprising ten m6A/m5C‑related lncRNAs as effective biomarkers for predicting survival outcomes, 
characterizing the immune landscape, and assessing response to immunotherapy in ESCC.
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ROC  Receiver operating characteristic
SNV  Single-nucleotide variants
TPS  Tumor proportion score

Esophageal carcinoma (EC) is a highly lethal gastrointestinal malignancy worldwide, which occurs an esti-
mated 604,100 newly diagnosed cases and 544,100 individual deaths in  20201. Esophageal squamous cell car-
cinoma (ESCC) represents the major histological subtype, constituting approximately 90% of all incident EC 
cases annually. The prevailing therapeutic approach for advanced-stage patients currently contains platin-based 
chemotherapy, either as a standalone regimen or in conjunction with checkpoint inhibitors. Notably, the integra-
tion of PD1 immunotherapy has yielded substantial clinical benefit, particularly within the subset of patients 
exhibiting tumor proportion scores (TPS) more than 1% or combined positive scores (CPS) higher than  102. 
Nevertheless, despite breakthroughs in ESCC diagnosis and therapeutic intervention, the prognosis for advanced 
patients remains unsatisfactory owing to the clandestine onset of symptoms at an early stage and the propensity 
for metastatic dissemination. Thus, the emergence of a molecular phenotyping-based prognostic risk model 
offers useful information for the identification and differentiation of high-risk individuals, potentially leading 
to enhanced medical outcomes.

RNA modifications have been confirmed as a critical epigenetic mechanism for post-transcriptional gene 
regulation via affecting RNA splicing, stability, and translation. To date, over 170 different types of natural modifi-
cation have been identified, and N6-methyladenosine (m6A) represents the most prevalent methylated alteration 
that occurs in all types of RNAs, including cording mRNA, tRNA, rRNA, and non-coding RNA. The process 
of m6A is determined by RNA methyltransferases (METTL3, METTL14), demethylases (FTO and ALKBH5), 
and recognized by methylation binding proteins (YTHDF1, YTHDC2, and IGF2BP1)3. Another type of RNA 
modification, 5-Methylcytosine (m5C) is also widespread in various RNAs but most abundant in eukaryotic 
tRNAs and rRNAs. It is mainly catalyzed by methyltransferase of DNMT2 and NSUN family, demethylated by 
methylcytosine dioxygenase  TET24. ALYREF recognizes m5C-methylated mRNA, and YBX1 interacts with m5C 
methylated site to regulate maternal mRNA stabilization. Deregulation of m6A and m5C regulators is reported in 
diverse human cancers and is intimately linked to oncogenic or tumor-suppressive functions, such as processes 
of proliferation, spreading, invasion, and  immunity5,6. For example, METTL3 and METTL14 have been impli-
cated as overexpressed and act as oncogenes in most cancer types. METTL3 could methylate BCL-2 and c-Myc 
mRNAs to increase their stability and expression, thus suppressing cancer cells apoptosis, and promoting disease 
 progression7. m6A demethylase FTO displays the oncogenic function via reducing the tumor suppressor mRNA 
level, resulting in cancer cell differentiation and tumor  growth8. The m6A regulators YTHDF1 and IGF2BP1 are 
overexpressed in ESCC. Increased expression of YTHDF1 and HNRNPC in ESCC could be utilized as a prog-
nostic  predictor9. IGF2BP1 interacted with cofactors RPS15 to promote core proteins translation of p38 MAPK 
signaling in an m6A-dependent  manner10. In the case of m5C, the level of m5C is closely related to carcinogen-
esis, and NSUN2 could promote cancer cell proliferation via up-regulating the m5C levels. In ESCC patients, 
NSUN2 promotes cancer development and chemo-resistance via the mRNA-m5C modification of cancer-related 
genes and enhances their expression, such as TIGAR 11 and  GRB212. Mechanically, elevated GRB2 levels increased 
the activation of downstream pathways PI3K and ERK in the LIN28B-dependent  manner12. TIGAR activates 
the pentose phosphate pathway to generate more reductants, thus protecting cancer cells from ROS  damage11.

Long non-coding RNAs (lncRNAs) are RNA molecules that do not encode proteins but exert a precise regu-
latory function via interacting with various target mRNAs, regulatory factors, and sponging microRNAs. The 
tissue-specific and condition-specific expression modes of lncRNAs implicated their potential use as biomarkers 
for early diagnosis and therapy outcome monitoring in cancer. m6A and m5C can also modify lncRNAs, thereby 
affecting tumor genesis and progression. In addition, risk models based on m6A or m5C-related lncRNAs were 
also developed for prognosis prediction. For example, Li et al. reported a prognostic risk model for low-grade 
glioma based on 8 m6A/m5C methylated lncRNAs signature that could predict survival and infiltration of 
immune  cells13. By consensus clustering analysis of colorectal cancer samples, Song et al. established an m6A/
m5C-related lncRNAs signature that displays accurate capability in predicting cancer prognosis, immune-stro-
mal microenvironment, clinicopathological features, and immunotherapy  efficacy14. Despite these findings, the 
advances in exploring the prevalence and molecular function of m6A/m5C methylated lncRNAs remain elusive.

In this study, we extracted transcriptome profiles from The Cancer Genome Atlas (TCGA) database, then 
conducted bioinformatics analysis to identify m6A/m5C -related lncRNAs signatures associated with ESCC 
prognosis. Moreover, we established the m6A/m5C lncRNAs-based RiskScore system for survival prediction and 
used the Gene Expression Omnibus (GEO) dataset for model validation. The association of RiskScore, immune 
microenvironment, and immune molecules were analyzed. Notably, we assess the predictive value of RiskScore 
in immunotherapy efficacy. Our findings highlight the potential role of m6A/m5C-related lncRNAs for clinical 
prognostic prediction in ESCC.

Methods
Data processing of transcriptomic profiles
RNA sequencing data associated with ESCC were derived from TCGA (https:// xenab rowser. net/ datap ages/). 
Corresponding clinical information, encompassing overall survival times, age, and gender was also collected 
from TCGA. This dataset comprising 81 ESCC samples was set as a training set, as detailed in Table 1. Meanwhile, 
 GSE5362215 dataset related to ESCC was obtained from GEO using the GEOquery package and was tested on 
the platform of Agilent-038314 CBC Homo sapiens lncRNA-mRNA microarray V2.0. This dataset consisted of 
120 samples, of which contain clinical data.

https://xenabrowser.net/datapages/
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Identification of m6A/m5C‑associated lncRNAs
We obtained m6A or m5C-related genes from previously published  sources16. We classified the genes from tran-
scriptome sequencing as either lncRNAs or mRNAs based on annotation information. To assess the expressed 
correlations between lncRNAs and m6A/m5C-related genes, we conducted Spearman’s correlation analysis. We 
screened for m6A/m5C-lncRNA pairs with an absolute correlation coefficient greater than 0.3 and a p-value less 
than 0.05, selecting the corresponding lncRNAs as candidate molecules.

LncRNA target genes prediction
LncRNAs modulate the target gene expression through co-localization and co-expression mechanisms. Here, 
we predicted the lncRNA target genes according to previous  research17,18. We screened for protein-coding genes 
located within 10 kb of each lncRNA to explore their potential function. A correlation matrix was generated by 
computing the coefficient between all pairs of lncRNAs and mRNAs. We designated genes with an  R2 > 0.95 as 
lncRNA target genes.

Furthermore, we utilized the online tools lncATLAS (http:// lncat las. crg. eu/)19 and  lncSLdb20 (http:// bioin 
forma tics. xidian. edu. cn/ lncSL db/ index. jsp) to determine the cellular localization of m6A/m5C-associated 
lncRNAs.

We performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis on 
these lncRNA target genes using the clusterProfile package, and the parameters were set as follows: pAdjust 
Method = ’BH’, p-value Cutoff = 0.05, and q-value Cutoff = 0.2.

Screening of prognosis‑related lncRNAs
To classify ESCC samples from the TCGA dataset, we used the ConsensusClusterPlus package to generate a 
consistency matrix based on the expression of m6A/m5C-associated lncRNAs. Differential expression analysis of 
lncRNAs in the TCGA dataset was performed on log2-transformed TPM count data using the IOBR  package21. 
Clustering consistency was evaluated using the k-means algorithm, with parameters including Euclidean distance, 
seed = 1100, and k.max = 10.

The survival package was employed for Cox analysis of m6A/m5C-associated lncRNAs in the TCGA-ESCC 
dataset, and a significance threshold of P < 0.05 was applied to identify prognostic genes.

Table 1.  Clinical information of TCGA-ESCC and GSE53622 dataset.

TCGA-ESCC GSE53622

OS
Alive 65 54

Dead 31 66

Age
 ≤ 60 61 60

 > 60 35 60

Gender
Male 81 96

Female 15 24

Stage T

T1 7 8

T2 34 14

T3 50 96

T4 5 2

Stage N

N0 52 58

N1 29 40

N2 5 18

N3 – 4

NX 10 –

Stage M

M0 85 –

M1 5 –

MX 5 –

Stage

I 7 8

II 56 60

III 27 52

IV 5 –

Tobaco
Yes – 69

No – 52

Alcohol
Yes – 64

No – 56

http://lncatlas.crg.eu/
http://bioinformatics.xidian.edu.cn/lncSLdb/index.jsp
http://bioinformatics.xidian.edu.cn/lncSLdb/index.jsp
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Construction of m6A/m5C‑lncRNAs RiskScore model
Using the samples and corresponding genes in the TCGA-ESCC dataset, we conducted lasso analysis with the 
cv.glmnet function of the lars package. In the lasso analysis, parameters were set as “family = cox”, and genes 
with a coefficient value not equal to zero were retained. The RiskScore was defined as the sum of the product of 
the lasso score coefficient and gene expression, formulated as follows:

RiskScore =
∑n

i=1
expression of gene i ∗ lasoo coefficient of gene i or, RiskScore =

∑n
i=1

expi ∗ coef i , 
where the expi represents the ith gene expression value (log2(TPM + 1)), and coefi represents the lasso regres-
sion coefficient of the ith gene.

To validate the prediction accuracy of the RiskScore, we classified ESCC samples in the TCGA dataset into 
high- and low-RiskScore groups based on the median RiskScore. Kaplan–Meier curves were used to predict 
overall survival times between these groups, and receiver operating characteristic (ROC) curves were generated 
with corresponding AUC values calculated to assess predictive ability. The performance of the RiskScore model 
was also validated using the GSE53622 dataset.

Immune landscape analysis
To evaluate the infiltration of immune cells and stromal cells in different clusters and subgroups, we calculated 
the ESTIMATE immune scores and stromal scores. Additionally, we utilized the ssGSEA, CIBERSORT, and xCell 
methods to assess the composition of the tumor microenvironment.

Statistical analysis
Correlation analysis
The Peasron correlation test was performed using the R function corr.test. The P values of the association tests 
were corrected using FDR. In this paper, Pearson’s correlation coefficient was used for testing. Pearson’s correla-
tion coefficient is a method used to measure the linear correlation between two variables. Its value is between -1 
and 1. When the correlation coefficient is positive, it indicates that there is a positive correlation between the two 
variables. When the correlation coefficient is negative, it indicates that there is a negative correlation between 
the two variables. When the correlation coefficient is 0, it indicates that there is no linear correlation between 
the variables. (ns: p > 0.05, *p ≤ 0.05, **p ≤ 0.01,***p ≤ 0.001,****p ≤ 0.0001).

Kaplan–Meier survival estimates
Kaplan–Meier survival estimation is a nonparametric method that estimates the probability of survival based 
on the observed survival time. Kaplan–Meier curves can be used to visualize survival differences across multiple 
categories, and the KM curve is a step function that reflects the cumulative probability of survival over time. The 
curve is horizontal during periods when no events occur and then decreases vertically as the survival function 
changes with each event.

In conclusion, Spearman’s correlation was computed using the corr.test in R, with P values corrected using 
FDR. Wilcoxon tests were employed for pairwise comparisons. Kaplan–Meier curves were generated for prog-
nosis analysis, with the log-rank test determining significant differences. Multivariate Cox regression analysis 
was conducted to identify independent predictive factors, including RiskScore, age, gender, and pathology stage. 
All statistical analyses were two-sided, and a significance level of P < 0.05 was applied.

Results
Screening m6A/m5C‑related lncRNAs
Using the defined criteria (|r|> 0.3 and P < 0.05), we identified a total of 2091 m5C gene-related lncRNAs and 
2366 m6A gene-related lncRNAs within ESCC samples compared with normal samples. The top 30 lncRNAs 
related to m5C and m6A genes were listed in the correlation matrix (Fig. 1A,B). Based on the sequencing data in 
TCGA and GEO dataset, the lncRNA included in both two datasets were selected. Next, the overlapped lncRNAs 
between m5C and m6A gene-related lncRNAs were obtained as candidate molecules. Finally, we screened a total 
of 606 m6A/m5C-related lncRNAs for further analysis (Fig. 1C).

For these lncRNAs, we predicted their potential target genes by examining coding genes located 10 km 
upstream and downstream of each lncRNA, obtaining 758 target genes. We performed functional analysis, and 
found these m6A/m5C-lncRNA target genes were significantly enriched in the olfactory transduction pathway 
(Fig. 1D). Moreover, these genes demonstrated relevance to multiple biological process, cellular component, 
and molecular function, such as metabolism-related process, fibrinogen complex, chromatoid body, olfactory 
receptor activity and odorant binding (Fig. 1E–G).

In addition, we utilized the LncSLdb/lncATLAS database to predict the subcellular localization of lncRNAs. 
Our findings indicated that 61.55% of m6A/m5C-lncRNAs were localized in the ribosome, while 33.17% of 
lncRNAs were situated in the cytoplasm. Moreover, 4.79% of m6A/m5C-lncRNAs were found in exosomes, and 
0.5% were identified in the nucleus (Fig. 1H).

Molecular classification of ESCC case based on m6A/m5C‑lncRNAs expression
Based on the expression differences of m6A/m5C-lncRNAs, we performed unsupervised classification of the 
ESCC cases in the TCGA dataset, ultimately identifying three distinct clusters (Fig. 2A,B). Survival analysis dem-
onstrated significant variations in survival outcomes among these three clusters (Fig. 2C). Specifically, patients 
in cluster 1 exhibited superior survival outcomes compared to those in the other two clusters.

We further investigated the differences in various clinical features among the subtypes within the TCGA-
ESCC dataset. The matrix results indicated that the m6A/m5C-lncRNAs expression in cluster 3 was relatively 
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lower. In contrast, cluster 2 displayed moderate expression, while cluster 1 exhibited the highest expression levels 
of m6A/m5C-lncRNAs. Additionally, differences were observed in clinical pathological parameters, including 
age, grade, immune subtype, and gastric classification, across the three clusters (Fig. 2D).

Notably, significant differences were identified among the three clusters in the hallmark gene set. For instance, 
samples in cluster 1 displayed relatively lower GSVA enrichment scores across the 50 hallmark gene sets, while 
cluster 3 exhibited high scores. A total of 32 hallmark gene sets exhibited significant differences between the 
three clusters (Fig. 2E).

We analyzed immune landscape differences among the three distinct clusters using the xCell, CIBER-
SORT, and ssGSEA methods for the TCGA-ESCC samples. Our findings indicated that the infiltration ratio of 
CD4 + memory T cells, CD8 + T cells, and other T cell-related cell types was significantly lower in cluster 3, as 
evident in the xCELL results (Fig. 2F,G). Furthermore, a total of 17 immune checkpoint genes exhibited signifi-
cant expression difference among the three clusters. Notably, most of these genes were markedly upregulated in 
cluster 1 compared to cluster 3 (Fig. 2G).

Figure 1.  Identification of m6A/m5C-related lncRNAs in ESCC. (A,B) Top 30 m5C-related lncRNAs and top 
30 m6A-related lncRNAs. (C) Overlapping lncRNAs between m5C- and m6A-related lncRNAs. (D) Functional 
enrichment analysis revealing KEGG pathways enriched by the lncRNA target genes. (E–G) Enrichment of 
GO biological process, cellular component, and molecular function. (H) Cellular localization of m6A/m5C-
lncRNAs.
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Construction of m6A/m5C‑lncRNA‑based prognostic signature
To identify the prognostic lncRNAs, we conducted a cox regression analysis based on the TCGA-ESCC samples. 
There were 17 m6A/m5C-lncRNAs with significant prognostic differences (Table 2). We classified the ESCC 
cases into higher and lower expression groups using the median gene expression value as the criterion. Survival 
analysis results demonstrated significant prognostic differences among 8 of these lncRNAs between the high- 
and low-expression groups (Fig. 3).

According to lasso-cox analysis, we finally obtained 10 prognostic lncRNAs, including LINC00847, 
LINC00942, TTTY15, LINC01602, LINC01310, LINC00898, EGFR-AS1, MIF-AS1, LINC00993, and LINC01415. 
A ten lncRNAs-based RiskScore model was generated for survival prediction (Fig. 4A–C).

In the training set, we observed that patients in the high-RiskScore subtype had a worse prognosis than 
those in the low-RiskScore group (Fig. 4D,F–H). Furthermore, ROC curve analysis indicated that this model 
exhibited promising predictive ability for survival in TCGA-ESCC samples (AUC value at 1-, 3-, and 5- years 
were respectively 0.805, 0.921 and 0.903; Fig. 4E).

Validation of the RiskScore model
The predictive ability was also evaluated in the validation set GSE53622. There was a significant prognostic dif-
ference between the two subgroups (Fig. 5A,C–E). ROC curve confirmed the superior predictive power of this 
RiskScore model in the validation sets (AUC values at 1-, 2-, and 3- years were respectively 0.545, 0.583, 0.590; 
Fig. 5B).

Next, the prognostic efficiency of the RiskScore system in various clinical feature subgroups was confirmed 
on the TCGA-ESCC samples. The results demonstrated significant survival differences between the high- and 
low- RiskScore groups in different clinical characteristics, age, grade, stage, immune subtype, and SCNA level 
(Fig. 6A).

Furthermore, ESCC patients in the TCGA dataset could be classified into different subgroups based on 
clinical features, such as stage, grade, and age. RiskScore assessments were performed between different clinical 
feature groups and the previously identified three clusters. Notably, patients in the alive and female subgroups 
presented a low RiskScore, indicating a significant correlation between RiskScore and survival status and gender. 
Moreover, a significant difference in RiskScore was observed between the G1 and G2 grade subgroup (P < 0.05, 
Fig. 6B). Patients in cluster 1 displayed the lowest RiskScore than the other two clusters (P < 0.05, Fig. 6D). Sankey 
diagram showed the consistency between cluster and RiskScore for survival status prediction, which exhibited 
a consistent result to the RiskScore assessments (Fig. 6C,D).

Figure 2.  Identifying three clusters of ESCC cases by consensus clustering in the TCGA set. (A) Consensus 
clustering analysis and relative change in the area under the CDF curve. (B) Heat map of consensus matrix. 
(C) Prognosis analysis among the three clusters. (D) Heatmap of the clinical features among the three clusters 
in ESCC cases. (E) GSVA analysis displaying the key pathways enriched by 50 hallmark gene sets across 
three clusters. (F–G) Box plots illustrating differences in immunity landscape and immune checkpoint gene 
expression among three clusters.
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Identification of RiskScore as an independent prognostic factor
Utilizing survival information from the TCGA-ESCC dataset, we conducted a cox regression analysis, and the 
results revealed that RiskScore emerged as an independent prognostic factor for survival prediction (Fig. 7A,B; 
P < 0.05, P < 0.01).

We constructed a nomogram model that integrated clinical characteristics and RiskScore for predicting sur-
vival in the TCGA (Fig. 7C). To gauge the predictive accuracy, we employed ROC curves, revealing AUC values 
of 0.518 and 0.648 for age and stage, respectively (Fig. 7G). The nomogram prediction and RiskScore possessed 
higher AUC values (0.886, 0.818) than other clinically relevant prognostic factors in the TCGA cohort. It is worth 
noting that due to limited data, we refrain from drawing generalized conclusions beyond 3 years. The calibration 
curves demonstrated consistency with the standard curve in predictive outcome at 0.5, 1, and 2 years (Fig. 7D–F). 
These findings revealed nomogram model exhibited reliable prognostic predictive power compared with other 
clinical characteristics in TCGA cohorts.

Association of RiskScore and several highly trustworthy indices
Cancer progression encompasses the transition towards a dedifferentiated oncogenic phenotype and the acqui-
sition of stem cell-like features. A previous study employed the innovative logistic regression OCLR algorithm 
to introduce two stemness indices for quantifying tumor microenvironment  stemness22: mRNA expression and 
the methylated DNA-based stemness index (mRNAsi and mDNAsi). These indices reflect the gene expression 
and epigenetic characteristics of stem cells. Epigenetic regulation-based mRNAsi and mDNAsi (EREG-mRNAsi 
and EREG-mDNAsi) were generated via reconstructing the gene regulatory network from methylation and 
transcriptome  data22. Additionally, single nucleotide variants (SNVs) represent the most prevalent genomic 
mutations in tumor cells, leading to the production of variant peptides distinct from wild-type proteins, which 
are subsequently presented by MHC-I23.

In this context, we explored the correlation between RiskScore and several highly reputable indices within 
the TCGA-ESCC cohort. These indices encompassed stemness indices (mRNAsi, mDNAsi, EREG-mDNAsi, 
DMPsi), tumor mutational burden (TMB), stromal score, tumor purity, immune score, and SNV-neoantigen. 
Our findings unveiled a negative correlation between the m6A/m5C-lncRNA signature and mDNAsi, EREG-
mDNAsi, DMPsi, ENHsi, TMB, and SNV-neoantigen. Further analysis revealed significant statistical differences 

Table 2.  Univariate cox regression analysis showing the m6A/m5C-related prognostic lncRNAs.

Gene coef p.value Hazard_ratio Lower_.95 Upper_.95
Log rank 
pvalue Wald pvalue

Likelihood_
pvalue HR

LINC00898  − 0.291339 0.00167241 0.74726232 0.62311853 0.89613926 0.00125613 0.00167241 0.00292077 0.75 
(0.62 − 0.9)

LINC00847 1.1596129 0.00240528 3.18869869 1.50795139 6.74278988 0.00221678 0.00240528 0.00105983 3.19 
(1.51 − 6.74)

LINC01415  − 0.3823088 0.00261062 0.68228435 0.53193629 0.87512723 0.00308498 0.00261062 0.00876798 0.68 
(0.53 − 0.88)

LINC00993  − 0.2139095 0.01601545 0.80742144 0.67842728 0.96094218 0.01004049 0.01601545 0.00552336 0.81 
(0.68 − 0.96)

EGFR-AS1  − 0.3346057 0.00933494 0.71562018 0.55605549 0.92097327 0.01120361 0.00933494 0.01302588 0.72 
(0.56 − 0.92)

LINC01602  − 0.201695 0.01547201 0.81734415 0.69421638 0.96231013 0.01305807 0.01547201 0.00907101 0.82 
(0.69 − 0.96)

XIST  − 0.1318115 0.02867726 0.87650617 0.77888553 0.98636197 0.02146775 0.02867726 0.01243166 0.88 
(0.78 − 0.99)

MIF − AS1  − 0.4483249 0.02921312 0.63869717 0.42686483 0.95565162 0.02690006 0.02921312 0.03236641 0.64 
(0.43 − 0.96)

TTTY15 0.16123551 0.03157228 1.17496165 1.01433849 1.3610199 0.02879093 0.03157228 0.02035923 1.17 
(1.01 − 1.36)

LINC00208  − 0.6352842 0.0648618 0.52978488 0.26989787 1.03991935 0.03195375 0.0648618 0.009065 0.53 
(0.27 − 1.04)

LINC01393 0.36344936 0.02849482 1.43828203 1.03897716 1.99104973 0.03489665 0.02849482 0.01637473 1.44 
(1.04 − 1.99)

LINC01037  − 0.1297853 0.04422671 0.87828402 0.77397328 0.99665304 0.03599402 0.04422671 0.02655686 0.88 
(0.77 − 1)

LINC00942 0.12213836 0.04113541 1.12991042 1.00492827 1.27043652 0.03952849 0.04113541 0.04785422 1.13 
(1 − 1.27)

LINC00638  − 0.3722211 0.0409009 0.68920183 0.48236903 0.98472153 0.04014923 0.0409009 0.04277191 0.69 
(0.48 − 0.98)

LINC00415  − 0.1628923 0.05239957 0.8496827 0.7207415 1.00169158 0.04029506 0.05239957 0.02560894 0.85 
(0.72 − 1)

LINC01310  − 0.3170921 0.05800911 0.72826368 0.52469096 1.01081977 0.04475305 0.05800911 0.02244852 0.73 
(0.52 − 1.01)

LINC01036  − 0.1226793 0.05475261 0.88454726 0.78047092 1.00250225 0.0485204 0.05475261 0.04237056 0.88 
(0.78 − 1)
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between the two groups in mDNAsi, DMPsi, and EREG-mDNAsi. Particularly noteworthy was that ESCCs in the 
high-RiskScore groups exhibited lower mRNAsi, DMPsi, and EREG-mDNAsi compared to the low-RiskScore 
group (Fig. 8, P < 0.05).

Correlation between lncRNA signature and immune cell proportion
We evaluated the immune cell ratio in the TCGA-ESCC dataset between the two risk groups. Based on xCell 
results, we observed a significantly increased ratio of CD4 + T cells in the low-RiskScore group compared to 
the high-RiskScore group (Fig. 9A, P < 0.05). Conversely, the cibersort results indicated a decreased proportion 
of activated NK cells and macrophage M2 in the low-RiskScore group (Fig. 9A, P < 0.05). However, ssGSEA 
analysis revealed no statistical difference in infiltrated immune cell levels between the high and low-RiskScore 
groups (Fig. 9A, P < 0.05).

Additionally, we analyzed the expression of immune checkpoint genes between the high and low RiskScore 
groups. Our findings revealed that five immune checkpoint genes exhibited significantly abnormal expression 
between the two groups, with their expression levels in the low-risk group being notably higher than those in 
the high-RiskScore group (Fig. 9B).

Moreover, we assessed the predictive value of RiskScore in immunotherapy efficiency using the TIDE method 
on TCGA-ESCC data. The results indicated that the low-RiskScore group was more likely to respond to immu-
notherapy compared with high- RiskScore patients (P = 0.025, Fig. 9C). Similarly, we analyzed the proportions 
of patients who responded to immunotherapy in the high and low-RiskScore groups using the IMvigor210 
dataset. Our findings revealed a significant difference in the percentage of drug response patients between the 
two subgroups (P = 0.032, Fig. 9D), underscoring the reliable predictive performance of the RiskScore model in 
immunotherapy response.

Discussion
In the treatment of patients with cancer, immunotherapy has emerged as a pivotal therapeutic avenue in the 
management of gastrointestinal cancers due to its potential to yield rapid and substantial therapeutic benefits 
for afflicted patients. However, it remains a huge challenge to screen the dominant populations likely to mount a 
robust response to immune checkpoint inhibitors (ICIs). Here, our findings unveil a strong correlation between 
low-RiskScores and favorable responses to immunotherapy, signifying the potential use of this system in patient 
stratification for enhanced therapeutic outcomes. LncRNA represents a diverse category of RNA molecules with 
intricate roles in regulating gene expression by engaging gene regulatory proteins and microRNAs. Similar to 
protein-cording RNAs, lncRNAs also undergo RNA methylation that contributes to their regulatory functions 
in the context of tumorigenesis.

In this study, we analyzed the transcriptomic profiles from public databases and uncovered 606 m6A/m5C-
related lncRNAs in ESCC. By consensus clustering analysis, we classified these ESCC samples into three clusters 
based on lncRNA expression profiles and found that cluster1 was associated with a significant better prognosis 

Figure 3.  Survival analysis results of prognostic lncRNAs between high- and low- expression groups of ESCC 
samples.
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than cluster 2 and cluster 3. The survival difference reason was investigated by comparing the immune landscape. 
As we expected, patients in cluster 1 displayed higher immune cell proportions in CD4 memory T cells and CD8 
T cells. Furthermore, most of the immune checkpoint genes were notably increased in cluster 1 than the other 
two subgroups, indicating that immunity plays a major role in ESCC prognosis.

We employ the lasso method and survival analysis to identify ten m6A/m5C-related lncRNAs associated 
with ESCC prognosis, including LINC00847, TTTY15, and LINC00942. Notably, LINC00847 has been exten-
sively studied in various cancer types. It emerges as a key player in laryngeal squamous cell carcinoma, and its 
overexpression has been linked to enhanced cell proliferation and cell cycle progression. Additionally, elevated 
LINC00847 levels are correlated with lymph node metastasis and poor differentiation, suggesting its potential 

Figure 4.  Construction of lncRNAs signature-based RiskScroe system for prognosis prediction. (A,B) 
Construction of the RiskScore model using the lasso method. (C) Lasso coefficients of the 10 prognostic genes. 
(D) Survival analysis of ESCC patients in high- and low- RiskScore cohorts. (E) ROC curve of the RiskScore at 
1-, 2- and 3-year follow-up. (F–H) Distribution of RiskScore, status, and expression of m6A/m5C-lncRNAs in 
the TCGA.
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as a prognostic biomarker. Our results further corroborate the significance of LINC00847 in ESCC survival, 
consistent with previous research. Mechanistically, LINC00847 is induced by the transcription factor E2F, exert-
ing its influence on cancer progression through the modulation of downstream targets, including miR-147a24.

In addition, we developed a ten m6A/m5C lncRNAs-based RiskScore model, which had a promising ability 
in survival prediction for both TCGA cohorts and independent validation datasets. Patients stratified into high 
and low-RiskScore subgroups manifest conspicuous distinctions in key clinical characteristics, encompassing 
survival status, gender, tumor stage, and grade. Additionally, the RiskScore model unveiled significant associa-
tions with immune cell infiltration, notably affecting CD4 + T cells and Tregs proportion. To further improve its 
clinical utility, we constructed a comprehensive nomogram model incorporating clinical variables and RiskScore. 
This model performed excellent in predicting the survival probability of ESCC.

Moreover, emerging evidence highlights that tumor-infiltrating immune cells were correlated with prognosis 
and immunity. The composition changes and functional activation of immune cell populations within the TME 
exert a profound impact on patient survival and their responsiveness to  immunotherap25. For instance, aug-
mented infiltration of CD4 + lymphocytes has consistently demonstrated a significant association with prolonged 
survival in  ESCC26. In this study, we also characterized increased CD4 + T cell infiltration in low-RiskScore group, 
which displays a better prognosis. This observation aligns seamlessly with prior research, further reinforcing the 
notion that increased CD4 + T cell infiltration might be indicative of a more favorable prognosis.

Interestingly, we found the immune checkpoint genes were upregulated in the low-RiskScore group. Among 
these genes, CD226 deficiency restrains CD8 + T cell function, consequently curtailing the efficacy of cancer 

Figure 5.  Prognostic value of RiskScore models in an external validation set. (A) Survival analysis of two 
subgroups via the GSE53622 dataset. (B) ROC curve analysis of the RiskScore model in the validation set. (C–E) 
Distribution of RiskScore, status, and the expression level of lncRNAs in the GSE53622 dataset.
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 immunotherapy27. Aberrant expression of CD70 was linked to tumor progression and immunosuppression in 
the tumor microenvironment, and it can facilitate immune evasion through interacting with receptor  CD2728. 
TNFRSF9 is an activation marker for tumor-infiltrating Tregs, and inhibition of TNFRSF9 boosts anti-cancer 
treatments via reducing the immune suppressive function of  Tregs29. These compelling findings collectively 
imply a potential mechanism whereby m6A or m5C methylation on lncRNAs may exert regulatory control over 
immune checkpoint gene expression. Such regulation contributes to a positive response to immunotherapy in 
the context of ESCC.

More and more studies have confirmed that lncRNA has a close relationship with the immune microenviron-
ment. Studies have confirmed that most m6A regulators play an important role in the immune microenviron-
ment by activating the PI3K-AKT pathway and enriching infiltrating immune  cells30. m6A phenotype-related 
genes were obtained by identifying the DEGs associated with m6A phenotype and overlapping them. m6A 
phenotype-related genes involved in immune regulation were screened out, and the enriched biological processes 
were significantly related to antigenic process, Fc signal transduction, immune cell proliferation regulation and 
cytokine-mediated pathways. Meanwhile, Zhang et al.31 searched for highly correlated gene clusters associated 
with immune cells through the algorithm WGCNA. The feature genes of related gene clusters were clustered, 
and the gene-lncRNA modules related to immune cell score and clinical features were finally determined. An 
additional integrative analysis of the single-cell RNA-seq dataset has unveiled a compelling close association 
between LINC00847 and prognosis in lung adenocarcinoma. LINC00847 positively correlates with the infiltra-
tion of various immune cell types, and its overexpression significantly down-regulates PDL1 expression in the 
in-vitro assay, thus casting it as a prospective candidate in tumor  immunotherapy32. Furthermore, the male Y 
chromosome-linked lncRNAs TTTY15 assume a crucial role in carcinogenesis across diverse cancer types. 
Acting as an RNA sponge, TTTY15 engages several miRNAs to promote cancer progression, exemplified by 
its interaction with miR-29-3p in colorectal  cancer33, miR-98-5p34 and miRNA let-7a-5p35 in gastric cancer. In 
prostate cancer, TTTY15 exhibits prominent upregulation in most tumor samples, exerting a pro-carcinogenic 
influence by sponging miRNA let-7, subsequently elevating CDK6 and FN1  expression36. Interestingly, TTTY15 
assumes a contrasting suppressive role in NSCLC, wherein its overexpression inhibited cancer proliferation and 
metastasis through the modulation of  TBX437.

Moreover, epigenetic modification of lncRNAs in regulating tumorigenesis and development has been 
reported. In breast cancer, it has been documented that LINC00942 directly engages methyltransferase METTL14, 
thereby facilitating METTL14-mediated RNA methylation processes  downstream38. Moreover, LINC00942 has 
been implicated in promoting chemoresistance in gastric cancer by impeding the degradation of oncoprotein 
MSI2. This, in turn, enhances the stability of c‐myc mRNA, a phenomenon reliant on m6A  modification39. 
Another lncRNA of interest, EGFR-AS1, arising from the reverse strand of lncRNA EGFR, has garnered attention 
for its overexpression in diverse cancer types. Elevated levels of EGFR-AS1 have been closely associated with 
unfavorable clinical features, encompassing pathological stage, lymph node metastasis, and overall  survival40. 
Functionally, EGFR-AS1 serves as an oncogene, fostering cell proliferation, chemotherapy resistance, invasion, 
and stemness through intricate interactions with downstream miRNAs and signaling pathways. EGFR-AS1 
notably stabilizes EGFR mRNA, consequently activating the PI3K/AKT pathway to promote proliferation and 
metastasis in renal cancer  cells41.

Figure 6.  Prognostic efficiency prediction of m6A/m5C-lncRNA signatures. (A) Predictive value of RiskScore 
in clinicopathological subgroups. (B) RiskScore assessments across different clinicopathological groups, 
including survival status, age, grade, gender, stage, somatic copy number alterations (SCNA) levels, and gastric 
classification. (C) Sankey diagram visualized the correlation ship of clusters, RiskScore group and survival 
status. (D) Risk score assessments between different cluster cohorts.
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Furthermore, EGFR activation has been linked to the up-regulation of PDL1 via the p-ERK1/2/p-c-Jun 
pathway, thereby inducing immune evasion in EGFR-driven  cancer42. In squamous cell carcinoma, EGFR-AS1 
emerges as a mediator of EGFR addiction, influencing treatment responses. Notably, EGFR-AS1 knockdown 
has been shown to reverse resistance to tyrosine kinase  inhibitors43. In ESCC, EGFR-AS1 has been implicated in 
up-regulating ROCK1 expression by sponging miR-145, thus promoting cancer cell invasion and  migration44. 
Additionally, lncMIF‐AS1 has demonstrated its significance in positively regulating NDUFA4 expression in gas-
tric cancer cells. This regulation is achieved through the sequestration of miR‐212‐5p, which attenuates NDUFA4 

Figure 7.  Cox regression analysis and nomogram model construction for m6A/m5C-lncRNAs prognostic 
signature. (A,B) Cox regression analysis for the survival time in TCGA cohorts. (C) The nomogram model 
predicting survival outcomes of ESCC. (D–G) ROC and calibration curves for predicting the survival time in 
the TCGA cohort.
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mRNA degradation. Upregulation of NDUFA4 activates the oxidative phosphorylation pathway, ultimately pro-
moting proliferation and inhibiting apoptosis in gastric cancer  cells45. It is noteworthy that the biological roles 
of the remaining five lncRNAs remain unclear, thus providing new directions for future research endeavors. 
Collectively, these findings illuminate the indispensable role of m6A/m5C-lncRNAs in cancer development. 
Moreover, they posit these lncRNAs as promising candidates for novel prognostic biomarkers, holding potential 
implications for the prognosis of patients afflicted with ESCC.

In summary, our finding demonstrated a ten m6A/m5C-lncRNA signature implicated in ESCC progression 
and established a lncRNA signature-based RiskScore model for prognosis prediction. Moreover, we assessed the 
immune landscape and immune checkpoint gene expression for low-RiskScore patients, which might contribute 
to a beneficial therapeutic response from ICI. The RiskScore system might be a useful tool to determine the 
m6A/m5C-lncRNA signature application in clinical practice, thus promoting treatment decisions for selecting 
the patient subgroup that more cline benefits from ICI therapy.

Certain limitations should be mentioned in our context. Firstly, since the data were analyzed through TCGA 
and GEO databases, there is still a lack of verification of wet laboratory biochemical experiments. Second, our 
results of m6A/m5C-associated lncRNAs signature were not validated in a separate patient cohort, and the sur-
vival predictive value of the RiskScore model requires more external datasets validation for clinical application. 
Finally, the potential molecular mechanism of these m6A/m5C-related lncRNAs remained unclear in ESCC, and 
we plan to conduct in vitro or in vivo biological experiments to verify our results in future studies.

Conclusion
In this study, ten m6A/ m5C-lncRNA signals were identified to be associated with ESCC progression. Molecular 
subgroup analysis based on m5C- and m6A-associated lncRNAs was performed on ESCC samples, and m5C- 
and m6A-associated lncRNAs related molecular subtypes were obtained, which confirmed significant prognostic 
differences between subtypes. By establishing the RiskScore model of lncRNA associated with m5C and m6A, 
we found that there were significant differences between the high and low risk groups regardless of the tumor 
micro-environment landscape or immune-related genes. At the same time, to further improve the clinical utility 
of the model, a comprehensive column line model including clinical variables and risk scores was constructed. 
The model performs well in predicting the survival probability of ESCC. Therefore, we believe that the RiskScore 
model has a good prognostic power. In addition, RiskScore model also has generalized value in chemotherapy 
prediction. The results are remarkable, and the analysis methods are solid, diverse and comprehensive. However, 
this risk score model is built on a public database and needs to be validated in a clinical setting. Bias from some 

Figure 8.  Correlation analysis between RiskScore and several clinical trustworthy indices. *P < 0.05; **P < 0.01; 
***P < 0.001.
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unmeasured clinical variables may have weakened the statistical validity of our study. In the future, we will verify 
our results in a clinical study.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on request.
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