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An enhanced EWMA chart 
with variable sampling interval 
scheme for monitoring 
the exponential process 
with estimated parameter
Yajie Bai , Jyun‑You Chiang , Wen Liu * & Zhengcheng Mou 

Control charts have been used to monitor product manufacturing processes for decades. The 
exponential distribution is commonly used to fit data in research related to healthcare and product 
lifetime. This study proposes an exponentially weighted moving average control chart with a variable 
sampling interval scheme to monitor the exponential process, denoted as a VSIEWMA‑exp chart. The 
performance measures are investigated using the Markov chain method. In addition, an algorithm to 
obtain the optimal parameters of the model is proposed. We compared the proposed control chart 
with other competitors, and the results showed that our proposed method outperformed other 
competitors. Finally, an illustrative example with the data concerning urinary tract infections is 
presented.

Keywords Exponential process, Estimated parameter, Exponentially weighted moving average, Variable 
sampling interval, Markov chain method, Optimization algorithm design

The control chart is one of the important tools in statistical process control, mainly used to detect process shifts 
in the manufacturing process.  Shewhart1 first proposed a control chart, which effectively detects large shifts. 
Subsequently, the memory control charts, such as the  CUSUM2,3 and  EWMA4,5 control charts, were developed 
to detect moderate and small shifts. Most recent studies have designed the charts based on the two assumptions. 
The first assumption is that the quality characteristic follows a normal distribution. The second assumption is 
that the in-control process parameter is known. When the normal distribution assumption is violated, it may 
lead to a high false alarm rate for the in-control  process6. Therefore, many non-normal control charts have been 
 proposed7–9. Additionally, in real applications, process parameters are often unknown and need to be estimated. 
Considering the impact of parameter estimation on control charts, some studies have focused on designing 
control charts with estimated  parameters10,11.

In practical applications, the exponential distribution is usually used to fit non-normal distribution data, 
such as lifetimes or failure times of product, disease infection rate, etc.12,13. Consequently, many studies have 
been conducted on control charts for the exponential processes. For example, Xie et al.12 and Zhang et al.14 
developed the Shewhart-type control charts for the exponential process. Besides, the CUSUM and EWMA-typed 
charts have been employed to monitor the exponential  process15,16. However, most studies on monitoring the 
exponential processes focused on assuming the process parameter is known. In practice, the process parameter 
needs to be estimated, so the control chart with an estimated parameter should be designed. In addition, due 
to the asymmetry of the exponential distribution, the performance measure of the two-sided control chart is 
biased. The unbiasedness refers to the values of the in-control performance measure being consistently greater 
than that for the out-of-control  state17. To avoid this bias, one-sided charts are used to monitor the exponential 
 process18. However, as we know, a two-sided chart can display both upward and downward shifts on the same 
chart. Therefore, the two-sided chart is also necessary.

The control charts mentioned in the above literature are all standard fixed-parameter control charts. When 
sample size, sampling intervals, or other control chart components vary, the chart is referred to as the adap-
tive control chart. The adaptive control charts are superior to the standard fixed-parameter control charts in 
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monitoring small and medium  shifts19. Sabahno et al.20 categorized adaptive charts into four types: VSS (Variable 
Sample Sizes)21, VSI (Variable Sampling Intervals)22,23, VSSI (Variable Sample Sizes and Sampling Intervals)24, 
and VP (Variable Parameters, if all of the chart parameters are allowed to vary)25. In this paper, we consider using 
VSI scheme to construct the proposed control chart for the following reasons: (1) Aykroyd et al.26 highlighted the 
VSI scheme as a recent research hotspot through bibliometric analysis. (2) While much VSI research are based 
on the normal  distributions27,28, some studies have extended its applicability to the non-normal  distributions24,29. 
However, no studies have yet applied the VSI scheme to monitoring the exponential processes. (3) Similar to 
studies by Liu et al.16, Santiago et al.31, Aslam et al.32, etc., this research employs transformed the exponential data 
with a sample size of 1 as the quality characteristic to be monitored, rendering the VSI scheme suitable for use.

To sum up, the exponential distribution is essential in fitting skewed data. The process parameter is unknown 
and needs to be estimated in practice. Additionally, the performance measure is usually biased when the two-
sided chart monitors skewed distributed data. Therefore, it is necessary to design an efficient control chart with 
unbiased properties and parameter estimation to monitor the exponential process. The main contributions of 
this study are as follows:

(1) Designed a two-sided VSI EWMA control chart to monitor the exponential process with unknown param-
eter.

(2) Derived the transition probability matrix of the proposed VSIEWMA-exp control chart, enabling the 
Markov chain method to be used to calculate the performance measures of the control chart.

(3) Taking inspiration from Yeong et al.28, we propose an optimization algorithm for unknown parameters. This 
algorithm aims to achieve optimal out-of-control detection efficiency at different shift levels while ensuring 
average in-control performance. Moreover, the performance measure of the optimized VSIEWMA-exp 
chart is unbiased.

The remainder of this paper is organized as follows: Section "Structural design of the proposed control chart" 
introduces the proposed VSIEWMA-exp chart control chart. In Section "Investigation of performance measures 
for the proposed scheme", performance measures are investigated using the Markov chain method. Section 
"Optimization algorithm design for model enhancement" introduces the optimization algorithm for adjusting 
model parameters. Additionally, a numerical comparison is presented in Section "Comparison of proposed and 
existing schemes". A real data on urinary tract infections is used to demonstrate the proposed control chart in 
Section "Implementation of the proposed schemes". Finally, the concluding remarks are given in Section "Sum-
mary remarks".

Structural design of the proposed control chart
Let X = {X1, X2, . . . } be a random variable following an exponential distribution with the scale parameter η , 
denoted as Xi ∼ exp(η) , where i = 1, 2, · · · . The probability density function (pdf) of the exponential distribu-
tion is

This study uses the two-sided chart to design the proposed control chart. The null and alternative hypotheses 
are presented as follows:

where η0 and η1 represent the scale parameter of the exponential distribution for the in-control and out-of-control 
states. Let δ = η1/η0 , which represents the magnitude of the shift.  0 < δ < 1 and δ > 1 represent downward and 
upward shifts, respectively. Let Y = X1/3.6 ; the advantage of such  transformation30 is to make the data asymptoti-
cally symmetric, thereby using symmetric control limits. Many studies have adopted this  statistic16,31,32. It is 
evident that Y follows a Weibull distribution with a scale parameter of η1/3.60  and a shape parameter of 3.6, denoted 
by Y ∼ Weibull

(

η
1/3.6
0 , 3.6

)

 . Next, the EWMA statistic is shown as follows:

where � is the smoothing parameter with a range of (0, 1] . This study employs the variable sampling interval 
(VSI) scheme, where h1 and h2 represent the longer and shorter sampling intervals, respectively. When samples 
are within the central region ( CR ), indicating a low risk of process shift, h1 is utilized; conversely, when samples 
fall within the warning region ( WR ), indicating a higher shift risk, h2 is employed, as shown in Fig. 1. Based on 
the control chart theory, the definitions of LCL , UCL , LWL , and UWL are as follows:

and

(1)f (x) =
1

η
e
− x

η , x > 0, η > 0.

H0 : η1 = η0;H1 : η1 �= η0,

(2)Zi = �Yi + (1− �)Zi−1, i = 1, 2, . . . ,

LCL = µ0(Z)− Kσ0(Z),

UCL = µ0(Z)+ Kσ0(Z),

LWL = µ0(Z)−Wσ0(Z),
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where µ0(Z) and σ0(Z) represent the mean and standard deviation of the statistic Z when the process is in-
control, and K and W are model parameters to be optimized in section "Investigation of performance measures 
for the proposed scheme". Equation (2) can be equivalently written as a moving average of the current and past 
observations: Zi = �

∑i−1
j=0(1− �)jYi−j + (1− �)iZ0 , where the initial value Z0 is often taken to be the target 

value or the process mean. Then, if the Yi are independent and have a common standard deviation σ0(Y) , we have

Hence, Eqs. (3), (4), (5) and (6) are easily derived accordingly.

and

where µ0(Y) and σ0(Y) are equal to

and

η̂0 =
∑m

j=1 Xj/m is the estimated process parameter, where m denotes the number of samples for the in-control 
state. Note that as i increases, the term ( 1− (1− �)2i ) converges to unity. Thus, these limits converge toward 
constant levels given as

UWL = µ0(Z)+Wσ0(Z),

µ0(Z) = µ0(Y),

σ0(Z) =

√

�

2− �

[

1− (1− �)2i
]

σ0(Y).

(3)LCLi = µ0(Y)− K

√

�

2− �

[

1− (1− �)2i
]

σ0(Y),

(4)UCLi = µ0(Y)+ K

√

�

2− �

[

1− (1− �)2i
]

σ0(Y),

(5)LWLi = µ0(Y)−W

√

�

2− �

[

1− (1− �)2i
]

σ0(Y),

(6)UWLi = µ0(Y)+W

√

�

2− �

[

1− (1− �)2i
]

σ0(Y),

(7)µ0(Y) = η̂
1
3.6
0 Ŵ

(

1+
1

3.6

)

,

(8)σ0(Y) = η̂
1
3.6
0

√

(

Ŵ

(

1+
2

3.6

)

− Ŵ2

(

1+
1

3.6

))

.

Figure 1.  The VSIEWMA-exp chart with action and warning control limits.
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and

where

and

Next, the VSIEWMA-exp control chart works as follows:
Step 1: Collect m in-control samples and estimate scale parameter η0.
Step 2: Calculate the control and warning limits based on the optimal model parameters obtained from the 

proposed optimization model later.
Step 3: Let i = i + 1 , draw a random sample Xi with the sampling interval h1 , and transform it to Xi

1/3.6 . 
Then, calculate the statistic Zi.

Step 4: If Zi ∈ CR , go to Step 3. If Zi ∈ WR , go to Step 5. Otherwise, go to Step 6.
Step 5: Let i = i + 1 , draw a random sample Xi with the sampling interval h2 , and calculate the statistic Zi . 

Then, go to Step 4.
Step 6: If Zi ∈ AR , stop the process and eliminate assignable causes.

Investigation of performance measures for the proposed scheme
In this section, we evaluate the performance of the proposed chart using the conditional average time to signal 
( CATS ), which depends on the estimated process parameter η̂0 . CATS is computed utilizing the Markov chain 
 method33.

The in-control region [LCL,UCL] is divided into 2N + 1 discrete subintervals. A larger N  indi-
cates a more accurate result. However, as N  increases, the computation time also grows, and typically, 
2N + 1 is taken to be 50 or greater. Saccucci et  al.34 consider 2N + 1 = 83 to be sufficient. The width 
of the subinterval is d = (UCL− LCL)/(2N + 1) .  Lj = LCL +

[

(j − 1)(UCL − LCL)
]

/(2N + 1) and 
Uj = LCL+

[

j(UCL− LCL)
]

/(2N + 1) indicate the lower and upper bounds of the jth discrete subinterval, where 
j = 1, ..., 2N + 1 . Let lj = lcl +

[

(j − 1)(ucl − lcl)
]

/(2N + 1) and uj = lcl +
[

j(ucl − lcl)
]

/(2N + 1) , then, we 
have Lj = η̂

1/3.6
0 lj and Uj = η̂

1/3.6
0 uj . Mj = Lj +

(

Uj − Lj
)

/2 represents the midpoint of the jth discrete subinterval. 
It can be rewritten as Mj = η̂

1/3.6
0

(

lj +
(

uj − lj
)

/2
)

= η̂
1/3.6
0 mj . Naturally, the transition probability is equal to

where FWB(·; 1, 3.6) represents the Weibull distribution with the scale parameter of 1 and the shape parameter 
of 3.6. Here, γ = η̂0/η0 follows a Gamma distribution, denoted by γ ∼ Gamma(m, 1/m) , where 1/m and m 
represent the corresponding scale and shape parameters, respectively. Then, the transition probability matrix of 
this Markov chain is given as follows:

(9)LCL = η̂
1
3.6
0 lcl,

(10)UCL = η̂
1
3.6
0 ucl,

(11)LWL = η̂
1
3.6
0 lwl,

(12)UWL = η̂
1
3.6
0 uwl,

(13)lcl = Ŵ

(

1+
1

3.6

)

− K

√

�

2− �

(

Ŵ

(

1+
2

3.6

)

− Ŵ2

(

1+
1

3.6

))

,

(14)ucl = Ŵ

(

1+
1

3.6

)

+ K

√

�

2− �

(

Ŵ
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1+
2
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1

3.6
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,

(15)lwl = Ŵ

(

1+
1

3.6

)

−W

√

�

2− �

(

Ŵ
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1+
2

3.6

)

− Ŵ2

(

1+
1
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,

(16)uwl = Ŵ

(

1+
1

3.6

)

+W

√

�
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Ŵ
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)
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(

1+
1

3.6

))

,

(17)

P̂kj
(

δ|η̂0
)

= P
(

Lj < Zi < Uj|Zi−1 = Mk

)

= P
(

Lj < �Yi + (1− �)Zi−1 < Uj|Zi−1 = Mk

)

= P

(

(

η̂0/η0

δ

)
1
3.6 lj − (1− �)mk

�
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(

Xi

η1

)
1
3.6

<

(

η̂0/η0

δ

)
1
3.6 uj − (1− �)mk

�

)

= FWB
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(γ

δ
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1
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The submatrix ̂Q is a (2N + 1)× (2N + 1) matrix of transition probabilities for the transient states, while r̂  is 
a (2N + 1)× 1 vector satisfying r̂ = (1− ̂Q)1 , where 1 = (1, 1, . . . , 1)

′

 . Inspired by Saccucci et al.22, we compute 
CATS as follows:

where b is a (2N + 1)× 1 vector of initial probability, defined as b =

{

1Zi ∈ [Lj ,Uj]
0Zi /∈ [Lj ,Uj]

.

I is the identity matrix. h = (h∗1, h
∗
2, . . . h

∗
2N+1) is a (2N + 1)× 1 vector, where each element satisfies the fol-

lowing conditions: for Mk ∈ CR , h∗i = h1 , and for Mk ∈ WR , h∗i = h2.
As we know, the CATS varies with η̂0 . Therefore, the unconditional measure AATS is required to assess the 

chart’s average performance. The AATS is calculated as follows:

Optimization algorithm design for model enhancement
In this section, we propose an optimization algorithm to adjust the model parameters (�,K ,W , h1, h2) . Our goal 
is to enhance detection efficiency across various shift levels while ensuring the in-control average performance.

When the process parameter is known, Yeong et al.28 proposed an optimization algorithm for optimizing 
model parameters. Inspired by Yeong et al.28, we propose an optimization algorithm for the scenario where the 
process parameter η0 is unknown. Additionally, the sampling intervals ( h1 and h2 ) are not predetermined like 
Yeong et al.28, but obtained through model optimization. The optimal model parameters ( �∗,K∗,W∗, h1

∗, h2
∗ ) 

are obtained as follows:

The performance measures AATS0 and AATS1 correspond to in-control and out-of-control states, respec-
tively, calculated using Eq. (20). AASI0 represents the in-control average sampling interval, computed as 
AASI0 = AASI(δ = 1) =

∫

CASI
(

δ = 1|η̂0
)

f (γ )dγ , where CASI
(

δ = 1|η̂0
)

= p1h1 + p2h2 denotes the con-
ditional average sampling interval for the in-control state, with p1 and p2 representing the probabilities of using 
long and short sampling intervals ( h1 and h2 ). τ is the specified value of AATS0 , set at 370.4 in this study, and h0 
is the given value of average sampling interval ( h2 < h0 < h1 ). Without loss of generality, we set h0 = 1.

Here are the steps for the model optimization algorithm we provide, please refer to the supplementary file 
for the corresponding R code.

Step 1: Specify δ and m.
Step 2: Set h2 = 0.1 , h1 = h0 + 0.1.
Step 3: Set � = 0.03 . Solve for K and W based on the constraints AATS0 = τ and AASI0 = h0.
Step 4: Compute AATS1 using Eq. (20).
Step 5: Increment � by 0.01 while maintaining h1 and h2 . Repeat Steps 3–4 until � = 1.
Step 6: Increment h1 by 0.1 while maintaining h2 . Repeat Steps 3–5 until h1 = 2.5.
Step 7: Increment h2 by 0.1. Repeat Steps 3–6 until h2 = 0.9.
Step 8: Terminate the loop and obtain the optimal model parameters 

(

�
∗,K∗,W∗, h1

∗, h2
∗
)

 corresponding 
to the smallest AATS1.

Comparison of proposed and existing schemes
We present boxplots of CATS0 for different values of  m ( m = 50, 200 ) in Fig. 2. “unadjusted” refers to CATS0 
is calculated using model parameters based on the assumption of known η0 , while “adjusted” indicates CATS0 
calculated using adjusted model parameters optimized through the optimization model detailed in section 
"Optimization algorithm design for model enhancement". Notably, “unadjusted” yields CATS0 values mostly 
below 370.4, indicating a higher false alarm rate. Conversely, the “adjusted” scenario shows improved CATS0 

̂P
(

δ|η̂0
)

=

[

̂Q r̂

0′ 1

]

(18)=













�p0,0 �p0,1 · · · �p0,2N 1− �p0,0 − �p0,1 − · · · − �p0,2N
�p1,0 �p1,1 · · · �p1,2N 1− �p1,0 − �p1,1 − · · · − �p1,2N
...

...
...

...
...

�p2N ,0 �p2N ,1 · · · �p2N ,2N 1− �p2N ,0 − �p2N ,1 − · · · − �p2N ,2N

0 0 · · · 0 1













.

(19)CATSs
(

δ|η̂0
)

= b
′

(

I − ̂Q
(

δ|η̂0
)

)−1
h, s =

{

0, δ = 1
1, δ �= 1

,

(20)AATSs(δ) =

∫

CATSs
(

δ|η̂0
)

f (γ )dγ , s =

{

0, δ = 1
1, δ �= 1

.

(21)

(

�
∗,K∗,W∗, h∗1, h

∗
2

)

= arg min
(�,K ,W ,h1,h2,m)

AATS1(�,K ,W , h1, h2, δ,m)

Subject to the constraints

AATS0 = τ

AASI0 = h0,
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values. Therefore, the effect of the estimated parameter on CATS0 was mitigated when using the optimal model 
parameters.

To establish the superiority of the VSIEWMA-exp chart in shift detection, we conduct a numeri-
cal comparison with the three existing charts (Shewhart-exp, VSIShewhart-exp, and FSIEWMA-exp). 
The former two are Shewhart-type control charts using FSI and VSI schemes, respectively, while the lat-
ter is an EWMA-type control chart using the FSI scheme. Set m = {50, 200, 500,+∞} , N = 100 and 
δ = {0.9, 0.8, 0.6, 0.5, 0.4, 0.2, 0.1, 1.1, 1.25, 1.5, 2, 2.5, 5, 10}  ,  w h e r e  {0.9, 0.8, 0.6, 0.5, 0.4, 0.2, 0.1}  a n d 
{1.1, 1.25, 1.5, 2, 2.5, 5, 10} represent the downward and upward shifts, respectively. From Tables 1, 2, 3 and 4, we 
can conclude the following results:

(1) As m increases, the optimal model parameters and the AATS1 are both gradually converge between the two 
cases of unknown η0 ( m < +∞ ) and known η0 ( m = +∞ ). Additionally, when the shift level is large, the 
difference in AATS1 becomes small. This indicates that when m and shift levels are significant, the impact 
of parameter estimation on control chart performance is relatively small.

(2) Across various combinations of (m, δ) , the proposed VSIEWMA-exp chart consistently exhibits the smallest 
AATS1 values among competitive charts, suggesting superior sensitivity in detecting process shift.

Figure 2.  The distribution of CATS0 for adjusted and unadjusted model parameters. ( ATS0 = 370.4 ). The 
green and blue boxplots correspond to scenarios where m = 50 and m = 200 , respectively.

Table 1.  The values of AATS1 with optimal model parameters for m = 50 (in-control AATS0 = 370.4).

Optimal model parameters m = 50

δ �
∗

K
∗

W
∗ (h1∗, h2∗) VSIEWMA-exp FSIEWMA-exp VSIShewhart-exp Shewhart-exp

0.9 0.03 2.5628 0.5071 (2.5, 0.1) 325.02 332.56 500.59 501.24

0.8 0.03 2.5628 0.5071 (2.5, 0.1) 196.11 215.89 625.87 627.43

0.6 0.03 2.5622 0.5573 (2.3, 0.1) 32.90 51.61 687.91 691.95

0.5 0.06 2.7403 0.6218 (2.1, 0.1) 15.97 29.69 595.70 608.81

0.4 0.11 2.8526 0.6227 (2.1, 0.1) 9.18 18.99 446.41 492.93

0.2 0.26 2.9212 0.8070 (1.7, 0.1) 3.77 8.37 120.53 246.98

0.1 0.40 2.9064 0.9542 (1.5, 0.1) 2.39 5.20 23.10 123.74

1.1 1.00 2.7387 0.6218 (2.1,0.1) 258.51 262.85 258.51 262.85

1.25 0.95 2.7428 0.6218 (2.1, 0.1) 148.36 155.15 148.65 155.50

1.5 0.05 2.7014 0.5088 (2.5, 0.1) 44.04 57.18 65.30 71.73

2 0.10 2.8368 0.7017 (1.9, 0.1) 12.33 18.50 20.87 24.70

2.5 0.18 2.9071 0.9542 (1.5, 0.1) 7.07 10.49 10.44 12.87

5 0.55 2.8629 1.3668 (1.2, 0.1) 2.64 3.33 2.91 3.54

10 0.79 2.7801 1.6589 (1.1, 0.1) 1.64 1.85 1.67 1.87
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Table 2.  The values of AATS1 with optimal model parameters for m = 200 (in-control AATS0 = 370.4).

Optimal model parameters m = 200

δ �
∗

K
∗

W
∗ (h1∗, h2∗) VSIEWMA-exp FSIEWMA-exp VSIShewhart-exp Shewhart-exp

0.9 0.03 2.3798 0.6108 (2.1, 0.1) 277.02 287.15 530.16 530.47

0.8 0.03 2.3798 0.6108 (2.1, 0.1) 112.99 135.20 686.16 689.93

0.6 0.05 2.5519 0.5537 (2.3, 0.1) 22.52 37.76 721.56 723.88

0.5 0.08 2.6828 0.5846 (2.2, 0.1) 13.08 24.65 611.24 619.94

0.4 0.12 2.7690 0.6547 (2.0, 0.1) 8.22 16.75 451.37 497.85

0.2 0.28 2.8681 0.8673 (1.6, 0.1) 3.61 7.85 118.12 249.22

0.1 0.42 2.8672 1.0467 (1.4, 0.1) 2.35 4.98 22.21 124.86

1.1 0.94 2.7481 0.6545 (2.0, 0.1) 243.62 249.11 244.08 249.61

1.25 0.03 2.3798 0.6108 (2.1, 0.1) 91.36 105.63 133.53 141.41

1.5 0.05 2.5519 0.5537 (2.3, 0.1) 29.78 40.54 57.98 64.82

2 0.13 2.7852 0.7446 (1.8, 0.1) 10.90 16.18 19.26 23.12

2.5 0.19 2.8398 0.8670 (1.6, 0.1) 6.66 9.70 9.94 12.33

5 0.55 2.8413 1.3561 (1.2, 0.1) 2.59 3.27 2.85 3.50

10 0.81 2.7690 1.6458 (1.1, 0.1) 1.63 1.84 1.67 1.87

Table 3.  The values of AATS1 with optimal model parameters for m = 500 (in-control AATS0 = 370.4).

Optimal model parameters m = 500

δ �
∗

K
∗

W
∗ (h1∗, h2∗) VSIEWMA-exp FSIEWMA-exp VSIShewhart-exp Shewhart-exp

0.9 0.03 2.3133 0.5472 (2.3, 0.1) 249.56 260.16 538.91 539.24

0.8 0.03 2.3133 0.5472 (2.3, 0.1) 93.12 114.42 704.57 705.43

0.6 0.06 2.5604 0.5822 (2.2, 0.1) 21.37 35.47 731.06 733.43

0.5 0.09 2.6751 0.5838 (2.2, 0.1) 12.65 23.58 617.23 625.20

0.4 0.13 2.7567 0.6538 (2.0, 0.1) 8.06 16.22 455.11 501.61

0.2 0.28 2.8545 0.8659 (1.6, 0.1) 3.61 7.72 118.37 251.08

0.1 0.42 2.8588 1.0451 (1.4, 0.1) 2.33 4.92 22.17 125.79

1.1 0.03 2.3178 0.6439 (2.0, 0.1) 227.73 235.42 240.80 246.54

1.25 0.03 2.3178 0.6439 (2.0, 0.1) 78.08 91.33 130.63 138.63

1.5 0.06 2.5604 0.5822 (2.2, 0.1) 27.86 37.87 56.77 63.61

2 0.14 2.7724 0.7435 (1.8, 0.1) 10.65 15.71 19.01 22.85

2.5 0.19 2.8204 0.8656 (1.6, 0.1) 6.55 9.53 9.85 12.25

5 0.55 2.8361 1.3539 (1.2, 0.1) 2.58 3.26 2.85 3.50

10 0.81 2.7685 1.6432 (1.1, 0.1) 1.63 1.84 1.67 1.87

Table 4.  The values of AATS1 with optimal model parameters for m = +∞ (in-control AATS0 = 370.4).

Optimal model parameters m = +∞

δ �
∗

K
∗

W
∗ (h1∗, h2∗) VSIEWMA-exp FSIEWMA-exp VSIShewhart-exp Shewhart-exp

0.9 0.03 2.2510 0.5730 (2.2, 0.1) 220.45 229.92 545.63 545.98

0.8 0.03 2.2510 0.5730 (2.2, 0.1) 82.16 101.19 712.67 719.95

0.6 0.06 2.5209 0.6497 (2.0, 0.1) 20.58 33.73 738.54 740.96

0.5 0.09 2.6426 0.6519 (2.0, 0.1) 12.41 22.75 622.47 629.83

0.4 0.14 2.7494 0.6531 (2.0, 0.1) 7.95 15.80 458.53 505.08

0.2 0.28 2.8439 0.8650 (1.6, 0.1) 3.58 7.61 118.77 252.81

0.1 0.42 2.8525 1.0440 (1.4, 0.1) 2.32 4.88 22.18 126.66

1.1 0.03 2.2604 0.7824 (1.7, 0.1) 200.69 207.70 238.58 244.45

1.25 0.03 2.2532 0.6406 (2.0, 0.1) 70.86 82.26 128.77 136.85

1.5 0.06 2.5209 0.6497 (2.0, 0.1) 26.65 36.00 56.01 62.86

2 0.16 2.7756 0.7428 (1.8, 0.1) 10.53 15.36 18.85 22.69

2.5 0.19 2.8049 0.8647 (1.6, 0.1) 6.47 9.41 9.80 12.19

5 0.54 2.8345 1.3525 (1.2, 0.1) 2.57 3.26 2.85 3.50

10 0.81 2.7683 1.6415 (1.1, 0.1) 1.63 1.84 1.67 1.87
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(3) The AATS1 values of the proposed VSIEWMA-exp chart are consistently lower than the AATS0 value, 
demonstrating unbiasedness. However, both Shewhart-exp and VSIShewhart-exp charts exhibit bias, as 
evident from the AATS1 curve in Fig. 3.

As we know, the mean of the transformed exponential data ( X1/3.6 ) is u0 = η̂
1/3.6
0 Ŵ(1+ 1/3.6) , and the 

standard deviation is σ0 = η̂
1/3.6
0

√

(

Ŵ(1+ 2/3.6)− Ŵ2(1+ 1/3.6)
)

 . Based on the normality assumption with 
mean and standard deviation u0 and σ0 , we developed an EWMA-type control chart with a VSI scheme 
(VSIEWMA-nor). In the case of m = +∞ , we have obtained the optimal model parameters for the VSIEWMA-
nor chart at different shift levels δ , and calculated the AATS0 of the transformed data accordingly, denoted as 
AATS0_N , and display it in Table 5. We also provide the AATS0 of the VSIEWMA-exp control chart, calculated 
based on the optimal model parameters from Table 4, denoted as AATS0_E , and display it in Table 5. It is 
observed that the AATS0_N is not equal to 370.4. Because the transformed data only approximates a normal 
distribution, not a normal distribution, it results in AATS0_N  greater than 370. However, the AATS0 of our 
proposed VSIEWMA-exp chart is 370.4, as the transformed data follows a Weibull distribution. Therefore, utiliz-
ing the proposed control chart is more reliable.

Figure 3.  Curves of AATS1 . The vertical axis is logarithmic for the sake of comparison.

Table 5.  Performance of the transformed data based on VSIEWMA-nor chart.

δ �
∗

K
∗

W
∗ (h1∗, h2∗) AATS0_N AATS0_E

0.9 0.03 2.2699 0.5822 (2.1, 0.1) 370.25 370.4

0.8 0.03 2.2699 0.5822 (2.1, 0.1) 370.25 370.4

0.6 0.05 2.4705 0.5575 (2.2, 0.1) 372.65 370.4

0.5 0.09 2.6637 0.6280 (2.0, 0.1) 380.61 370.4

0.4 0.13 2.7649 0.6295 (2.0, 0.1) 391.58 370.4

0.2 0.27 2.9106 0.8378 (1.6, 0.1) 449.20 370.4

0.1 0.37 2.9497 1.0154 (1.4, 0.1) 509.98 370.4

1.1 0.03 2.2699 0.5822 (2.1, 0.1) 370.25 370.4

1.25 0.03 2.2699 0.5822 (2.1, 0.1) 370.25 370.4

1.5 0.06 2.5368 0.6255 (2.0, 0.1) 374.37 370.4

2 0.14 2.7826 0.7169 (1.8, 0.1) 394.79 370.4

2.5 0.22 2.8774 0.7726 (1.7, 0.1) 425.29 370.4

5 0.44 2.9684 1.3277 (1.2, 0.1) 567.42 370.4

10 0.68 2.9942 1.6330 (1.1, 0.1) 867.50 370.4
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Implementation of the proposed schemes
In this section, a dataset of urinary tract infections (UTIs) is considered to demonstrate our proposed control 
chart, which is presented in Table 6 by Santiago et al.31. The purpose of this data is to monitor the changes in the 
infection rate of UTI, so the days in between discharge of males in nosocomial UTIs in patients is recorded. For 
more details, please refer to Santiago et al.31. It can be observed from Fig. 4 that this dataset exhibits significant 
characteristics of an exponential distribution. Moreover, the p-value of the K-S (Kolmogorov–Smirnov) test is 
0.8112, indicating that this dataset follows the exponential distribution.

Firstly, we use in-control Phase I data to estimate η0 . Subsequently, we apply the optimization algorithm to 
obtain optimal model parameters for calculating the control and warning limits. Figure 5 displays the plotted 
points for the Phase I data. It can be observed that none of the control charts show any false alarms. It is consist-
ent with Santiago et al.31, indicating that they can be utilized to monitor Phase II data.

Figure 6 shows the detection results that the process is out-of-control. Regarding detection capability, 
Shewhart-exp and VSIShewhart-exp control charts failed to detect shifts. The FSIEWMA-exp chart identifies 
only one out-of-control sample, while the proposed VSIEWMA-exp chart detects five samples. Regarding detec-
tion efficiency, only the first example falls within the central region, while the others all fall within the warning 

Table 6.  The urinary tract infections (UTIs) dataset.

Phase I Phase II

i Samples i Samples i Samples i Samples i Samples

1 0.57014 19 0.12014 37 0.27083 1 0.38231 19 0.30506

2 0.07431 20 0.11458 38 0.04514 2 0.44270 20 0.25665

3 0.15278 21 0.00347 39 0.13542 3 0.28831

4 0.14583 22 0.12014 40 0.08681 4 0.18758

5 0.13889 23 0.04861 41 0.40347 5 0.09674

6 0.14931 24 0.02778 42 0.12639 6 0.20090

7 0.03333 25 0.32639 43 0.18403 7 0.57208

8 0.08681 26 0.64931 44 0.70833 8 0.49713

9 0.33681 27 0.14931 45 0.15625 9 0.13790

10 0.03819 28 0.01389 46 0.24653 10 0.31507

11 0.24653 29 0.03819 47 0.04514 11 0.74995

12 0.29514 30 0.46806 48 0.01736 12 0.09923

13 0.11944 31 0.22222 49 1.08889 13 0.49534

14 0.05208 32 0.29514 50 0.05208 14 0.68715

15 0.12500 33 0.53472 51 0.02778 15 0.24903

16 0.25000 34 0.15139 52 0.03472 16 0.22786

17 0.40069 35 0.52569 53 0.23611 17 0.13581

18 0.02500 36 0.07986 54 0.35972 18 0.63413

Figure 4.  Histogram of Urinary Tract Infections rate.
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region. This suggests that a shorter sampling interval is employed after the first example. Consequently, the 
proposed VSIEWMA-exp chart takes less time to trigger an out-of-control signal than the FSIEWMA-exp chart.

Summary remarks
The purpose of this study is to propose a VSIEWMA-exp control chart. The theoretical method is to use the VSI 
scheme to construct an EWMA-type control chart for the exponential distribution and consider the situation of 
unknown parameter. In addition, we use the Markov chain approach to propose two performance measures for 
the proposed control chart, CATS and AATS . We also provide an optimization algorithm for model parameters. 
In Section "Comparison of proposed and existing schemes", we compared our proposed control chart with the 
other three control charts, and the results showed that our proposed control chart outperformed other competi-
tors in most cases. Finally, the proposed control chart is demonstrated using the UTI data as an example, and the 
results showed that the proposed control chart has high efficiency in monitoring the Phase II data in this case.

It is worth noting that this study only used the VSI scheme. Future research can consider monitoring statisti-
cal data X  based on subgroup sample size. At this point, X  follows a gamma distribution, and EWMA control 
charts designed by VSS or VSI can be considered.

Figure 5.  The VSIEWMA-exp control chart for phase I dataset.
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