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Source identification and driving 
factor apportionment for soil 
potentially toxic elements 
via combining APCS‑MLR, UNMIX, 
PMF and GDM
Cang Gong 1,2, Xiang Xia 1*, Mingguo Lan 3, Youchang Shi 3, Haichuan Lu 1, Shunxiang Wang 1 & 
Ying Chen 1*

The contamination and quantification of soil potentially toxic elements (PTEs) contamination sources 
and the determination of driving factors are the premise of soil contamination control. In our study, 
788 soil samples from the National Agricultural Park in Chengdu, Sichuan Province were used to 
evaluate the contamination degree of soil PTEs by pollution factors and pollution load index. The 
source identification of soil PTEs was performed using positive matrix decomposition (PMF), edge 
analysis (UNMIX) and absolute principal component score‑multiple line regression (APCS‑MLR). 
The geo‑detector method (GDM) was used to analysis drivers of soil PTEs pollution sources to help 
interpret pollution sources derived from receptor models. Result shows that soil Cu, Pb, Zn, Cr, Ni, Cd, 
As and Hg average content were 35.2, 32.3, 108.9, 91.9, 37.1, 0.22, 9.76 and 0.15 mg/kg in this study 
area. Except for As, all are higher than the corresponding soil background values in Sichuan Province. 
The best performance of APCS‑MLR was determined by comparison, and APCS‑MLR was considered 
as the preferred receptor model for soil PTEs source distribution in the study area. ACPS‑MLR results 
showed that 82.70% of Cu, 61.6% of Pb, 75.3% of Zn, 91.9% of Cr and 89.4% of Ni came from traffic‑
industrial emission sources, 60.9% of Hg came from domestic‑transportation emission sources, 57.7% 
of Cd came from agricultural sources, and 89.5% of As came from natural sources. The GDM results 
showed that distance from first grade highway, population, land utilization and total potassium (TK) 
content were the main driving factors affecting these four sources, with q values of 0.064, 0.048, 0.069 
and 0.058, respectively. The results can provide reference for reducing PTEs contamination in farmland 
soil.
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After years of urbanization and industrialization, soil potentially toxic elements (PTEPTEs) pollution caused 
by high-intensity and intensive human activities has become a global environmental  problem1–6. It changes the 
chemical and physical properties of soil, reduces the quality of soil and crops, and further endangers human 
health through the food  chain1,7–9. In China, the pollution of PTEs in soil is more prominent in some areas. 
According to the National soil pollution  Survey10, the over-standard rates of Cd, Hg, As, Cu, Pb, Cr, Zn and Ni 
were 7.0%, 1.6%, 2.7%, 2.1%, 1.5%, 1.1%, 0.9% and 4.8%, respectively. Therefore, taking measures to control 
and repair PTEs contamination in farmland soil is the key to ensure soil environment quality and agricultural 
products safety.

Quantitative research on the source analysis and driving factors of soil PTEs is of great significance for 
effective control of soil PTEs contamination. In general, soil PTEs sources are influenced by natural factors, 
anthropogenic activities factors or a combination of these  factors3,10–13. Anthropogenic factors include mining 
activities, agricultural activities, industrial activities, transportation activities, etc., while natural factors include 
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soil parent material, elevation, hydrological conditions, etc. The combined action of these factors further leads 
to the complex spatial variability of PTEs in soil, which increases the difficulty of source analysis.

Quantitative source analysis of PTEs is to use the chemical and physical characteristics of contaminants in 
receptor model to distinguish contamination sources and quantify contribution apportionment rate of various 
sources. Among them, positive matrix decomposition (PMF), edge analysis (UNMIX) and absolute principal 
component scores–multiple line regression (APCS-MLR) were frequently used in soil PTEs source  analysis14–16. 
APCS-MLR obtains the absolute factor score and the quantitative contribution of each factor by reducing and 
multiple linear regression  respectively15. UNMIX model automatically delete unreasonable data through the 
system model, does not need to set contamination sources number and uncertainty, and reduces anthropogenic 
factors  influence16. According to the concentration of PTE in each soil sample, PMF obtained the source profile, 
source contribution and the corresponding  uncertainty14. Due to the different algorithms used, the results of 
source distribution of PTEs in soil by these receptor models may be different. As these models require numerical 
data to satisfy the algorithm, type variables such as soil parent material and land use type cannot be  calculated16. 
In addition, the spatial variability of data was not taken into account by these models. In fact, spatial stratification 
heterogeneity among variables has significant effect on the accumulation of soil PTEs.

In contrast, the geo-detector method (GDM) can well overcome the limitations of PMF, UNMIX and APCS-
MLR models. GDM is an effective tool for spatial variance analysis, which can detect the nonlinear relationship 
among multiple explanatory variables, quantitatively determine the influence of various influencing factors on 
the spatial heterogeneity of soil PTEs, and solve the limitations of traditional methods in analyzing category 
 variables17–19. It has been widely used in  groundwater20, land  use21,22, ecological  vulnerability23,24, soil PTEs 
 pollution10,25, 26 and other fields. Therefore, based on measurement data, auxiliary data and spatial information, 
this study proposes a comprehensive method to combine receptor models APCS-MLR, UNMIX and PMF with 
GDM. Auxiliary data include classification variables, such as elevation, slope, aspect, land use type, soil pH, 
organic matter (OM), total nitrogen (TN) content, total phosphorus (TP) content, total potassium (TK) content. 
Spatial information includes distance from industrial land, commercial distance, railway distance, residential 
land distance, highway distance and river distance. This approach provides an in-depth understanding of the 
source analysis and driving factors identification of PTEs in soil at the town scale.

The study area is located in the heart of Chengdu Plain, Sichuan Province, which is a famous national agri-
cultural park and Chinese chives production base. However, with the rapid expansion of urbanization, the rapid 
development of industrial enterprises and the widespread use of agricultural substances such as pesticides and 
chemical fertilizers, the soil environment of Chengdu Plain has changed to varying degrees, directly affecting the 
content of PTES in agricultural products in Chengdu Plain. In this study, it was speculated that anthropogenic 
factors such as traffic activities, industrial activities and agricultural activities may be the main pollution sources 
of HMs in the soil of the study area. Combined with the spatial information and spatial analysis data of the sam-
pling points, this hypothesis was tested by a comprehensive method, and the source analysis of PTEs in the soil 
was objectively explained. The purpose of this study was to (1) evaluate the level of PTEs contamination in the 
central soil of Chengdu Plain, Sichuan Province; (2) APCS-MLR, UNMIX and PMF models were used to assign 
potential contamination sources of soil PTEs; (3) GDM was used to analysis the driving factors affecting soil PTEs 
pollution sources. The research results revealed the potential contamination sources and corresponding driving 
factors of soil PTEs contamination, and provided targeted strategies for the control of soil PTEs contamination.

Materials and methods
Study area
The study area is located in the central zone of Chengdu Plain, Chengdu, Sichuan Province, about 40 km away 
from the urban area of Chengdu. The study area covers an area of 80  km2 and a population of 7.51 ×  104. Except 
a small part of the area is shallow hill platform, most of the area is flat dam, and 90% of the soil is black oil-sand 
soil formed by impact. 3/4 of the research area is located in the water source protection area, and many major 
rivers such as Baitiao river and Xuyan river flow through this area. Major transportation hubs such as National 
highway 317, Chengguan expressway and Chengguan express railway run through the whole territory. The land 
use type is mainly cultivated land (about 46.5%), followed by forest land (24.1%) and residential land (13.9%), 
and 1.9% of industrial land is scattered in the southwest and central regions.

Sample collection and measurement
The sample sites were arranged in 1  km2 grid, the density of cultivated land and forest land was 9 points  km−2, 
and the density of residential areas, schools, industrial land and construction land was 4 points  km−2. Sample 
collection will be completed in April 2021. According to the Code for Geochemical Evaluation of Land Quality 
(DZ/T0295-2016), 788 samples of topsoil (0–20 cm) were collected (538 samples of cultivated soil, 209 samples 
of forest soil and 41 samples of other land soil). The sampling locations were recorded by GPS. The sampling loca-
tion is shown in Fig. 1. In order to improve sample representativeness, the "X" sampling method (1 sub-sample 
was collected at each of the 4 end points of "X" and the middle crossing point) was used to collect 5 sub-samples 
from a 20–50 m area around each sampling point and mix them into one sample. The samples were air-dried 
for a week, removed from debris, passed through a 10-mesh plastic sieve, and sent to the Institute of Compre-
hensive Utilization of Mineral Resources, Chinese Academy of Geological Sciences for analysis and testing. pH 
was determined by ion selective electrode method (for water extraction without carbon dioxide, the ratio of soil 
to water was 1/2.5), TOC by volumetric method (analysis methods for regional geochemical sample-part 27: 
determination of organic carbon contents by potassium dichromate volumetric method (DZ/T 0279. 27–2016)), 
TN by combustion infrared method, As, Hg and Se by atomic fluorescence method, Cu, Pb, Zn, Ni, Cr, Cd, TP 
and TK by X-ray fluorescence method and inductively coupled plasma optical /mass spectrometry. The quality of 
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analysis and test was controlled by means of inserting national soil standard substances (GBW07424, GBW07425, 
GBW07426, GBW07427 and GBW07428), repeatability inspection, anomaly inspection and blank test.

Pollution assessment
The pollution factor (PF) and pollution load index (PLI) were used to evaluate the pollution degree of soil 
 PTEs10,16, 21. PF and PLI were calculated based on the Eqs. (1), (2):

where  Ci is the concentration of soil PTEs,  Cb is the geochemical background concentration of Sichuan province. 
There are five classes based on PF value: ≤ 1 (uncontaminated), 1 < PF ≤ 2 (slightly contaminated), 2 < PF ≤ 3 
(mild contaminated), 3 < PF ≤ 5 (moderate contaminated), > 5 (high contaminated). Four classes based on 
PLI value: ≤ 1 (uncontaminated), 1 < PLI ≤ 2 (moderate contaminated), 2 < PLI ≤ 5 (highly contaminated), > 5 
(extremely contaminated).

Absolute principal component scores–multivariate linear regression (APCS‑MLR)
The APCS-MLR model was proposed by Thurston and Spengler in 1985. Which can determine the load of PTEs 
to each pollution source, and calculate the average contribution of each source to soil PTEs. The detailed steps 
are as follows:

where  Zij is the concentration after normalization,  Cij is the concentrations of the ith sample of the jth PTE, c is 
the average concentrations of jth PTE, σi is the standard deviation of the jth PTE,  b0 is the intercept of regression 
for soil PTE,  bk is the regression coefficient of the soil PTE, m is the number of factors,  APCSk is the adjusted score 
of the kth source,  bkAPCSk can be regarded as the contribution of the kth source to the soil PTE concentrations.

UNMIX model
In this model, the data space dimensionality is reduced via singular value decomposition, and then number of 
sources, source composition and contribution rate of sources of each sample can be estimated (USEPA, 2007). 
The fundamental model can be characterized as follow:

(1)PF =
Ci

Cb

(2)PLI = n
√
PF1 × PF2 × · · · .× PFn

(3)Zij =
Cij − C

σi

(4)(Z0)i =
0− Ci

σi
= −

Ci

σi

(5)Xi = b0 +
m
∑

k=1

bkAPCSk

Figure 1.  Distribution of sampling locations in the study area (map were generated with software ArcMap10.8 
http:// www. esri. com/).

http://www.esri.com/
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where  Cij is the concentrations of bth PTEs in ith sample,  Uik is the contribution of kth in the ith sample,  Dkj is 
the concentrations of the jth PTEs from kth source,  Sij is the error. The source component spectrum parsed by 
the model needs to meet minimum system requirements that can be interpreted by the model (Min Rsq(R2) > 0.8, 
Min Sig/Noise(S/N) > 2).

Positive Matrix Factorization (PMF)
The PMF model decomposed the original matrix  Xij into two factor matrices  gik and  fkj as well as a residual matrix 
 eij, and it was expressed as follows (USEPA, 2014):

where, xij is the concentration of the jth PTE in the ith sample (mg/kg); gik is the contribution of the kth source 
in the ith sample; fkj is the concentrations of the jth PTE from the kth source factor; and eij is the residual. The 
residual error matrix  eij is calculated by the minimum value of the objective function Q calculated according 
to the Eq. (9):

where  uij is the uncertainty of the jth PTEs in ith samples. The uncertainty (u) of the PTEs was calculated as 
 follows27:

When the concentration values below the detection limit:

When the concentration values beyond the detection limits:

For missing values:

where  xij is the concentration of sample species,  dij is the detection limit, σij is the  xij concentration uncertainty, 
 cij is the sample measured concentration, cij  is the measured concentrations geometric mean.

Geo‑detector method (GDM)
GDM was an effective tool to analyze the spatial variance that can identify the explanatory variables affecting the 
dependent variable based on the assumption that explanatory variable (X) is associated with dependent variable 
(Y) if their spatial pattern is  consistent17. The detailed calculation  references17.

The dependent variables are the mean factor scores of APCS-MLR and PMF, 24 explanatory variables includ-
ing TP, TK, TN, OM, pH, Se, slope  (X1), slope direction  (X2), elevation  (X3), distance from river  (X4), distance 
from tributary  (X5), population  (X6), land utilization  (X7),distance from super highway  (X8), distance from first 
grade highway  (X9),distance from secondary road  (X10), distance from tertiary highway  (X11), distance from 
township road  (X12), distance from transportation service station  (X13), distance from irrigation canals and 
ditches  (X14), distance from railway  (X15), distance from residential area  (X16), distance from industrial zone 
 (X17) and distance from commercial service area  (X18) were selected. Natural factors are represented by TP, TK, 
TN, OM, pH, Se,  X1–X5. Anthropogenic factors are represented by  X6–X18. If the independent variable is numeri-
cal quantity, it needs to be discretized into type  quantity17. The natural breakpoint method is used to divide 15 
influencing factors into 10 categories. GeoDetector (http:// www. geode tector. org/) SPSS26.0, ArcGIS10.8 and 
Origin2019 were used in this study. The schematic technical route of combining receptor models APCS-MLR, 
UNMIX and PMF with GDM was proposed in this study was showed in Fig. 2

Results and discussion
Concentrations and distribution of soil PTEs
The descriptive statistical characteristics of As, Cd, Cu, Cr, Hg, Ni, Pb and Zn concentrations in the overall soil 
and different land use types soils are showed in Table 1. Except for As, the concentration of total soil PTEs in 

(6)Cij =
m
∑

k=1

UikDkj + Sij

(7)xij =
p

∑

k=1

gikfkj + eijxij =
p

∑

k=1

gikfkj + eij

(8)Q =
n

∑

i=1

m
∑

j=1

[

eij

uij

]2

(9)xij =
dij

2
, uij =

dij

2

(10)xij = cij

(11)if xij ≤ 3 dij , uij =
dij

3
+ 0.2× cij

(12)if xij > 3 dij , uij =
dij

3
+ 0.1× cij

(13)xij = cij uij = 4cij

http://www.geodetector.org/
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study area was higher than the background value of Sichuan province (BSS)28, and the average values of Cu, Pb, 
Zn, Cr, Ni, Cd and Hg in soil were 1.13, 1.05, 1.26, 1.16, 1.14, 2.78 and 2.46 of the corresponding BSS, respectively. 
In particular, the maximum concentrations of Cu, Zn, Cd and Hg were 19.5, 21.0, 10.5 and 14.4 times of the cor-
responding BSS. The average values of Cu, Pb, Zn, Cr, Ni, Cd, As and Hg in cultivated soil were 1.15, 1.04, 1.28, 
1.17, 1.14, 2.78, 0.90 and 2.62 times higher than their corresponding BSS, respectively. The average values of Cu, 
Pb, Zn, Cr, Ni, Cd, As and Hg in forest soil were 1.09, 1.06, 1.21, 1.15, 1.13, 2.66, 0.92 and 2.46 times higher than 
corresponding BSS, respectively. For other land soil, mean values of Cu, Pb, Zn, Cr, Ni, Cd, As and Hg were 1.15, 
1.00, 1.23, 1.19, 1.10, 3.04, 0.94 and 3.11 times higher than corresponding BSS, respectively. In this study, the 
average values of soil PTEs were all lower than the risk screening value of soil PTEs (GB15618-2018)10, indicat-
ing that soil PTEs did not pose a significant threat to crops and humans on the whole. However, 1.52%, 0.13%, 
0.25%, 0.13% and 13.1% of soil Cu, Pb, Zn, Cr and Cd contents exceeded the risk screening values, indicating 
that there was a significant risk of point source pollution in the study area.

In addition, the coefficient of variation (CV) values of Cu, Hg and Zn were all more than 50%, especially the 
CV values of Hg in different land use types were all above 50%, indicating that there were great spatial differ-
ences of these soils  PTEs29.

Figure 3 shows the spatial distribution of soil PTEs in the study area. It can be seen that the high value areas 
of Cu, Ni and Zn were generally distributed in the central and western regions, and the low content areas mainly 
appear in the western regions. The high content areas of Hg and Pb were mainly concentrated in the middle 
of study area. The high value areas of Cd were sporadically distributed in the central and eastern regions, and 
the eastern regions were generally higher than the central and western regions. The high value areas of As were 
mainly concentrated in the western regions, and the western regions were obviously higher than the central and 
eastern regions. The high value area of Cr was scattered in the whole study area. It can be seen that there is a 
significant difference in the spatial distribution of soil PTEs content on the town scale.

Soil PTEs contamination level
In order to better understand the level of soil PTEs pollution, we calculated the PF and PLI values of PTEs in 
total soils and different land use patterns soils in the study area (Fig. 4). The average PF values of PTEs in both 
the total soils and forest soils were in descending order: Cd > Hg > Zn > Cr > Ni > Cu > Pb > As, Cd > Hg > Zn > C
r > Cu > Ni > Pb > As in cultivated soils, and Hg > Cd > Zn > Cr > Cu > Ni > Pb > As in other soils. The average PF 
values of Hg and Cd in total soils and different use type soils were the highest, among which Hg and Cd in total 
soils, cultivated soils and forest soils were at 2–3 mild pollution levels, while in other use type soils were at 3–5 
moderate pollution levels, indicating that soils were polluted by Hg and Cd to a certain extent under different 
land use types. The average PF values of Zn, Cr, Ni and Cu and Pb in the total soils and different utilization type 
soils were 1–2, which belong to slightly contaminated. The average PF value of As in all soils were less than 1, 
which belongs to the uncontaminated. The PLI value is calculated from the PFs of a single PTE to evaluate the 
pollution status of multiple PTEs. PLI values showed that total soils (1.34), cultivated soils (1.34), forest soils 
(1.32) and other soils (1.36) were moderately polluted. Overall, soils were contaminated with PTEs to varying 
degrees regardless of land use type. Overall, PF and PLI revealed that human activities influence the accumulation 

Figure 2.  The schematic technical route of the comprehensive methodology.
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of soil PTEs. Human activities strongly affected Cd and Hg in the soil of the study area, followed by Zn, Cr, Ni, 
Cu and Pb, and had little effect on As. To understand the contribution of anthropogenic and natural activities to 
soil PTEs accumulation, a receptor model should be used to further quantify source resolution.

Source apportionment of PTEs in soils
Evaluation of source apportionment of different receptor models
Figure 5a–c, exhibits the composition of factors as analyzed by the APCS-MLR, UNMIX and PMF receptor 
models. The accuracies of the three models were evaluated by using the determination coefficient  (R2) and their 
respective diagnostic parameters. The  R2 values of each soil PTEs ranged from 0.72 to 0.98 in the APCS-MLR 
model, 0.80–1.00 in the UNMIX model, and 0.53–1.00 in the PMF model. As far as  R2 was concerned, the Unmix 
model has the highest reliability, followed by APCS-MLR and PMF. In terms of their respective diagnostic param-
eters, the KMO and Bartlett test results of the APCS-MLRU model show that the KMO value was 0.771, meeting 
the requirement of > 0.6, and the P value was 0.000, meeting the requirement of P < 0.00130, which was suitable 
for APCS-MLR analysis (Fig. 4a). Previous studies have shown that APCS-MLR model source apportionment 
has good repeatability and produces relatively accurate  results31–33. For the PMF model, the S/N of 8 kinds of 
soil PTEs were all greater than 7, indicating that the accuracy of the apportionment results was high (Fig. 4c), 
however, the  R2 of Cr, Pb and Cu were 0.53, 0.59 and 0.63 respectively, all less than 0.7, which indicated that the 
fitness of these PTEs was not ideal. Previous studies have shown that the PMF model was extremely sensitive 
to outliers, and reasonable results can`t be obtained without eliminating  outliers15. For the UNMIX model, the 
 R2 of each soil PTEs was very high, and Min  R2 was 0.94 and Min S/N was 2.10, which meets the requirement 
Min  R2 > 0.8 and Min S/N > 2.0, respectively. UNMIX model can compensate for the loss of some elements 
contribution and is an effective tool for soil PTEs source analysis  apportionment16,34, 35. Although the Unmix 
model identified three sources for all PTEs in this study, the proportion of each PTEs in the three sources was 
very close (Fig. 4b), which failed to effectively separate and identify the sources of each PTEs. This may be due 
to the relatively small change of soil PTEs in the small-scale areas of this study.

Table 1.  Descriptive statistics of soil PTEs in the study area. CV Coefficient of variation, BSC Background 
value of soil in Sichuan  province28, RSV Risk screening values (GB15618-2018)10.

Cu Pb Zn Cr Ni Cd As Hg

Total soils (n = 788)

Minimum (mg/kg) 18.5 19.8 55.0 61.7 23.6 0.082 4.17 0.022

Maximum (mg/kg) 607 90.3 1820 264 56.6 0.83 18.0 0.88

Median (mg/kg) 34.4 32.3 106 92.3 37.3 0.21 9.43 0.13

Average mean (mg/kg) 35.2 32.3 108.9 91.9 37.1 0.22 9.76 0.15

Standard deviation 21.3 5.01 63.5 10.1 3.75 0.07 2.09 0.09

CV (%) 60.5 15.5 58.3 11.0 10.1 31.1 21.4 58.4

Geometric mean (mg/kg) 34.2 31.9 105.9 91.5 36.9 0.21 9.55 0.14

Cultivated soils (n = 538)

Minimum (mg/kg) 18.5 19.8 55.0 61.7 26.7 0.082 4.17 0.030

Maximum (mg/kg) 607 60.2 1820 133 56.6 0.83 18.0 0.71

Median (mg/kg) 34.5 32.4 107 92.3 37.5 0.21 9.32 0.13

Average mean (mg/kg) 35.7 32.2 110.6 92.1 37.3 0.22 9.67 0.16

Standard deviation 25.2 4.55 76.1 7.94 3.67 0.07 2.02 0.08

CV (%) 70.7 14.1 68.8 8.63 9.86 31.3 20.9 54.4

Geometric mean (mg/kg) 34.4 31.9 107 91.7 37.1 0.21 9.47 0.14

Forest soils (n = 209)

Minimum (mg/kg) 19.0 20.4 59.8 64.0 23.6 0.092 4.93 0.038

Maximum (mg/kg) 102 90.3 170 108 49.2 0.44 17.8 0.88

Median (mg/kg) 34.4 32.4 106 92.5 36.9 0.21 9.52 0.13

Average mean (mg/kg) 33.9 32.6 105 91.2 36.9 0.21 9.91 0.15

Standard deviation 6.78 6.01 14.6 8.13 3.80 0.06 2.29 0.090

CV (%) 20.0 18.4 13.9 8.92 10.3 28.6 23.1 61.2

Geometric mean (mg/kg) 33.4 32.2 104 90.8 36.7 0.21 9.67 0.13

Other land soils (n = 41)

Minimum (mg/kg) 20.0 22.7 71.6 75.2 28.2 0.11 7.09 0.022

Maximum (mg/kg) 96.6 46.0 152 264 45.4 0.47 14.8 0.60

Median (mg/kg) 34.3 30.5 105 89.5 36.0 0.23 10.2 0.12

Average mean (mg/kg) 35.8 30.9 106 93.7 35.9 0.24 10.2 0.19

Standard deviation 11.0 4.8 16.6 27.9 4.21 0.09 1.80 0.14

CV (%) 30.7 15.6 15.7 29.8 11.7 36.6 17.7 77.3

Geometric mean (mg/kg) 34.7 30.6 104 91.6 35.7 0.23 10.0 0.14

BSS 31.1 30.9 86.5 79 32.6 0.079 10.8 0.061

RSV 50 90 200 150 70 0.3 40 1.8
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Pearson correlation analysis was further used to explain the relationship between the factors obtained from 
the three models. As shown in Fig. 6, the same factors produced by the APCS-MLR model and the model PMF 
have a strong correlation. For example, the correlation coefficients of source 1 (S1), source 2 (S2), source 3 (S3) 
and source 4 (S4) in APCS-MLR and PMF were all greater than 0.80, reaching a significant level of 0.05. However, 
most of the factors produced by UNMIX have no correlation except the individual factors of APCS-MLR and 
PMF. In general, APCS-MLR model was considered to be the preferred model for soil PTEs quantitative source 
apportion in this study area.

Figure 3.  Spatial distribution of the soil PTEs (map were generated with software ArcMap10.8 http:// www. esri. 
com/).

http://www.esri.com/
http://www.esri.com/
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Figure 4.  Pollution index of PTEs under total soil and different land utilization soil.
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Comparison of source apportionment results for different receptor models
In source apportionment, high load soil PTEs with certain factors can be served as typical PTEs. As shown in 
(Fig. 5a,c), S1 of APCS-MLR and PMF apportionment were mainly dominated by Cu, Pb, Zn, Cr and Ni, with 
contribution rates of 31.7–82.7%, 38.4–61.6%, 50.8–75.3%, 44.4–91.9% and 44.9–89.4%, respectively. S2 was 
mainly related to Hg, and the contribution rate of two models were 60.9–73.1%. In addition, Pb show moderate 
load with S2 in the two models, Cr and Ni show moderate load with S2 in PMF models. S3 of the two models 
were mainly related Cd, and the contribution rates was 50.9–57.7%. S4 has a significant correlation with As in 
two models, and the contribution rate was between 65.3 and 9.5%. Meanwhile, Cd shows moderate load with S4 
in the APCS-MLR model, Pb, Cr and Ni show moderate load with S4 in the PMF model. As shown in Fig. 5b, 
S1 of UNMIX apportionment was mainly dominated by Cu. S2 was mainly related to Pb, Cr, Ni, Cd, As and Hg. 
S3 was mainly related to Zn. It is obvious that the results of UNMIX producing were quite different from those 
of APCS-MLR and PMF.

Driving factors affecting pollution sources by GDM
Quantify the influence intensity of each influence factor on soil PTEs source apportionment factors by using 
the q value obtained from GDM. The maximum q value indicates that the influencing factor was the dominant 
explanatory variable of soil PTEs source apportionment  fators18,36, 37. As shown in Fig. 7, S1 was dominated by 
 X9 (q = 0.064, P < 0.01), followed by  X8 (q = 0.039, P < 0.01),  X11 (q = 0.064, P < 0.01) and  X17 (q = 0.055, P < 0.01), 
indicating that S1 has a significant spatial correlation with  X8,  X9,  X11 and  X17, indicating that S1 represented the 
anthropogenic source of soil pollution.  X6,  X8,  X9,  X11 and  X15 had significant spatial correlation with S2, with 
q values of 0.048 (P < 0.01), 0.035 (P < 0.05), 0.040 (P < 0.05) , 0.041 (P < 0.01) and 0.048 (P < 0.01), respectively. 
 X6 and  X7 have very significant spatial correlation with S3 (P < 0.01), and q values were 0.058 and 0.069, respec-
tively,  X8,  X9,  X11 and  X15 have significant spatial correlation with S3 (P < 0.05), which means that S3 represents 
the anthropogenic source of soil pollution. TK (q = 0.058, P < 0.01), OM (q = 0.058, P < 0.01) and  X3 (q = 0.046, 
P < 0.01) had very significant spatial correlation with S4, indicating that S4 represented the natural source of 
soil pollution.

Interpretation of sources obtained by multiple methods
S1 interpretation
According to the multi-receptor model (Fig. 4), S1 contributes the most to Cu (82.7%), Pb (61.6%), Zn (75.3%), 
Cr (91.9%) and Ni (89.4%) in soil, followed by Hg (23.6%), Cd (10.6%) and As (0.3%). The results showed that 
S1 had the greatest contribution to Cu, Pb, Zn, Cr and Ni in soil, followed by Hg. In general, Cu, Pb and Zn may 
come from traffic emissions caused by motor vehicle engine, brake pads, galvanized parts and tires  wear5,38. 
Previous studies have shown that Pb mainly comes from traffic emissions, such as leaded gasoline emissions, 
engine brake wear and catalytic  combustion39, as well as Zn pollution caused by tire wear or galvanized parts 
 corrosion40. It was believed that copper oxide catalysts were often used in engine combustion systems to control 
carbon monoxide emissions from automobile  exhaust41. In addition, industrial activities, including hardware 
industry, metallurgical industry and electronics industry, will further increase the accumulation of soil Cd, Zn, 
Cu, Cr and  Ni42. It was found that Cr in soil is related to industrial production activities such as wear of metal 
parts and chromium-plated parts, iron and steel production and metallurgical  manufacturing43. Cr metal particles 
were produced in the operation and production process of iron and steel plants, hardware market, logistics base 
and automobile and parts industry, especially Cr elements will be released in different degrees in all aspects of 
cement production, which will lead to the enrichment of Cr in the surrounding  soil44.
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Based on the results of GDM, the spatial correlation between S1 with  X8,  X9,  X11 and  X17 were the highest. 
There are a large number of roads distributed in the study area, and the traffic and traffic flow are very busy. With 
the rapid increase of the number of motor vehicles in Chengdu, the traffic flow, road dust density and tail gas 
emission also increase sharply. potentially toxic element particles generated by road traffic activities are eventually 
enriched in the surrounding soil through atmospheric sedimentation and air dust adsorption. In addition, there 
were factories and enterprises in the study area, such as building materials decoration, plastic production, cement 
production, concrete manufacturing, red brick firing and printing, etc. The potentially toxic element particles 
and raw materials that may be scattered in these shops and workshops, as well as the PTEs carried by the “Three 
wastes” produced by industrial activities, were enriched into the soil by atmospheric sedimentation, rain water 
erosion and infiltration, causing the accumulation of soil PTEs. Overall, S1 represented traffic-industrial source.

S2 interpretation
S2 was dominantly explained by Hg (60.9%), followed by Pb (31.5%), whereas low loading were observed for Cu 
(7.1%), Zn (6.9%), Cr (1.4%), Ni (3.0%), Cd (4.5%) and As (3.6%). In this study, the high CV value (Table 1) and 
PF value (Fig. 3) of Hg indicate that human activities strongly influence the accumulation of soil Hg. Relevant 
research shows that Hg was related to coal  combustion45,46, waste gas  emission47,48 and mineral mining, and these 
industrial activities will increase the emission of Hg into the atmosphere. In addition, some studies show that 
traffic factors have a great effect on the accumulation of  Hg49, and the exhaust gas of gas companies will also emit 
Hg into the  atmosphere50. Hg in soil was mostly from the dry and wet deposition of the  atmosphere51. It has been 
reported that, railway transportation as a serious source of organic and inorganic  pollution52,53.

GDM shows that  X6 and  X15 were the highest driver of S2 (Fig. 7), followed by  X8,  X9,  X11. It means that human 
domestic emissions and traffic activities have the greatest impact on S2. PTEs produced by human production, 
domestic and transportation activities can enter the soil through atmospheric deposition, and then transfer to 
other places through runoff. In addition, as shown in Fig. 3, the hot spots of Hg′s spatial distribution appear in 
the central area with heavy traffic and dense population. Therefore, S2 can represent domestic-transport emis-
sions source.

S3 interpretation
The content of Cd (57.7%) was the highest in S3, and the content of other PTEs were less than 10% in S3. Under 
land utilization, the PF value of soil Cd in the study area was the highest (Fig. 4), reached the level of mild and 
moderate pollution. Previous studies have shown that Cd has been introduced into soil with the agricultural 
application of phosphate fertilizers, organic fertilizers and  pesticides54. In addition, a large amount of Cd was 
discharged into the environmental medium through waste water, waste gas and waste residue, and then into 
the  soil55.

The results of GMD showed that there was a significant spatial correlation between S3 with  X6 and  X7, indi-
cating that agriculture activity was the main driving factor of S3. It has been reported that phosphorus fertilizer 
was the main source of Cd in French farmland soil, accounting for more than 1/2 of the input of Cd in French 
agricultural  soil56. The input flux of Cd through fertilization in Songnen plain soil in China ranges from 0.001 
to 0.255 mg/m2/a57, and the input flux of Cd through insecticides (oxazepine, chlorpyrifos and carbendazam) in 
Zhangshi Irrigation Area of Shenyang was 2.0 ×  10−6 mg/m2/a58. According to our field investigation, in order to 
increase yield, people increased the use of pesticides, chemical fertilizers and organic fertilizers, thus bringing 
Cd into the soil and increasing the accumulation of soil Cd. Therefore, S3 can represent the agricultural source.

S4 interpretation
The explanation of S4 was mainly As (89.5%). In this study, the average value of As in the soil of the whole region 
was 0.90 times of its corresponding background value, indicating that the impact of human activities was limited 
(Table 1). In addition, the mean PF value of As showed relatively low pollution (Fig. 4), which confirmed that 
the concentration of soil As in this study area was dependent on natural sources. Previous studies have reported 
that As in soil may be an indicator of soil parent  material59. However, anthropogenic input of As includes 
agricultural activities, such as the application of organic and chemical fertilizers and sewage  irrigation60, and 
industrial  emissions61,62.

Combined with GMD results (Fig. 6), S4 had the highest spatial correlation with TK (q = 0.058, P < 0.01), OM 
(q = 0.058, P < 0.01) and  X3 (q = 0.046, P < 0.05), and TK, OM and  X3 represents the natural influencing factors. 
Therefore, S4 can represent the natural source.

Significance of multi‑source interpretation
On the one hand, since soil PTEs comes from both natural sources and human activities such as agriculture, 
transportation, and industry, PF, PLI, geoaccumulation index and other methods can only quantify the pollution 
level of soil PTEs, but can’t quantify the contribution of soil PTEs. On the other hand, the source of soil PTEs 
in a given region is not fixed and will change over time, and the emission intensity of different sources will also 
be different. In this case, the receptor model is very useful for analysis the source of soil PTEs, especially in the 
absence of detailed information about the source of emissions. However, use receptor models to identify source 
of soil PTEs must be interpreted based on previous research experience. However, the combination of receptor 
models (APCS-MLR, PMF, UNMIX) and GMD can solve this puzzle and explain the origin of soil PTEs more 
effectively.

In order to further explain the source factors from the receptor model, this study considers the influencing 
factors such as soil TP, TK, TN, OM, pH, elevation, slope, and distance from the sampling point to the river 
as natural pollution sources; the influencing factors such as the distance from the sampling point to industrial 
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land and road as industrial pollution sources and traffic pollution sources; the distance from the sampling point 
to the residential land and the number of population were considered as domestic pollution sources; land use 
was considered as agricultural pollution sources. GMD was used to identify the main influencing factors of soil 
PTEs source factors. GMD results can effectively define the source factors obtained by the receptor model, which 
specific pollution sources were natural, industrial pollution, traffic, domestic, agricultural and other pollution 
sources, or were affected by multiple pollution sources together. Overall, this integrated approach provides a 
deep understanding of the multiple sources of soil PTEs pollution and a better definition of pollution factors.

Conclusions
With the rapid development of industry and agriculture, PTEs pollution in farmland soil has become increasingly 
serious. In this study, receptor model and GDM were combined to quantitatively analyze the driving factors of 
soil PTEs in the central zone of Chengdu Plain, Sichuan Province. Except As, the PTEs content in soil was higher 
than the corresponding soil background value in Sichuan Province. APCS-MLR model can fit the observed and 
predicted PTEs values of most soils in the study area well, and was an ideal receptor model. The APCS-MLR 
model was used to identify four potential pollution sources, including traffic-industrial pollution source S1 (Cu 
(82.7%), Pb (61.6%), Zn (75.3%), Cr (91.9%) and Ni (89.4%)), domestic-transportation pollution source S2 (Hg 
(60.9%)), agricultural sources S3 (Cd (57.7%)) and natural sources S4 (As (89.5%)). GDM results showed that 
Distance from first grade highway, population, land utilization, and TK content contributed the most to S1, S2, 
S3, and S4, which helped explain the source factors derived from the receptor model.

In fact, soil potentially toxic element accumulation was a complex process, which was affected by many envi-
ronmental factors. In the next research, more environmental factors affecting soil PTEs accumulation should be 
considered, such as precipitation, Gross Domestic Product (GDP), fertilizer amount, soil parent material, etc., 
and the spatial correlation between the influencing factors and the source factors should be deeply analyzed. At 
the same time, a comprehensive study and analysis of inventory data such as traffic emissions, fertilizer consump-
tion, industrial emissions, and atmospheric subsidence were carried out to verify the results of the combination 
of receptor model and GDM.

Data availability
The authors declare that all data supporting the findings of this study are available within the article.
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