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Towards optimal model evaluation: 
enhancing active testing 
with actively improved estimators
JooChul Lee *, Likhitha Kolla  & Jinbo Chen 

With rapid advancements in machine learning and statistical models, ensuring the reliability of these 
models through accurate evaluation has become imperative. Traditional evaluation methods often 
rely on fully labeled test data, a requirement that is becoming increasingly impractical due to the 
growing size of datasets. In this work, we address this issue by extending existing work on active 
testing (AT) methods which are designed to sequentially sample and label data for evaluating pre-
trained models. We propose two novel estimators: the Actively Improved Levelled Unbiased Risk 
(AILUR) and the Actively Improved Inverse Probability Weighting (AIIPW) estimators which are derived 
from nonparametric smoothing estimation. In addition, a model recalibration process is designed for 
the AIIPW estimator to optimize the sampling probability within the AT framework. We evaluate the 
proposed estimators on four real-world datasets and demonstrate that they consistently outperform 
existing AT methods. Our study also shows that the proposed methods are robust to changes in 
subsample sizes, and effective at reducing labeling costs.

Machine learning algorithms and statistical models in recent years have provided innovative solutions across 
various domains including disease risk prediction and diagnostic image  classification1–3. Alongside model devel-
opment, assessment of model performance using test data is essential to foster  implementation4,5. In real-world 
settings, model evaluation has traditionally required a fully labeled dataset, overlooking the limiting factors of 
costs and human effort required for outcome labeling. To circumvent this issue, a small batch of the test dataset 
can be sampled at the trade-off of reduced statistical power for model evaluation. Hence, statistical methods for 
model evaluation aimed at improving estimation efficiency with limited labeled data are critical. To this end, we 
focus on building sampling strategies to sequentially select subsets of data for labeling and developing efficient 
estimators for model performance metrics.

Recent work has proposed sampling methods to optimally select subsets of data for model evaluation when 
outcomes are not  measured6,7. Sawad et al.6 proposed sampling distributions minimizing the asymptotic vari-
ance of an estimator for F-measures. Kossen et al.7 considered sampling distributions based on the cross-entropy 
loss for classification models and the squared error loss for regression models. Yilmaz et al.8 devised sampling 
distributions minimizing the asymptotic mean squared error of an estimator for predictive accuracy metrics. 
These methods rely on unknown prediction models that pertains to the main interest of the study. One approach 
to deal with this limitation is to use pre-trained models as substitutes for the unknown models. In this approach, 
sampling efficiency can be compromised if the trained models provide less accurate predictions. Active  testing7 
(AT) has been proposed as a promising solution to these challenges. AT is a sampling strategy where subsets 
of data are selected for labeling in an iterative manner and characteristics of the previously selected subsample 
inform the selection of the next set.

Here is a general outline of the AT algorithm with a pre-specified initial sampling probability π0 to evaluate 
a trained model g(·) . For the sth sampling step, 

1 assign a sampling probability, π s−1 , updated at the (s − 1) th step, to each data point in the remaining unla-
beled test data. Then a subsample of subjects is selected and their outcomes are labeled based on π s−1.

2 Use the labeled data obtained from the 1st to the sth step for calculating the performance metrics to assess 
g(·).

3 Build an updated version of the model, denoted gs(·) , using the labeled data. Then derive a sampling prob-
ability π s based on gs(·).

4 Continue iterating through the steps until a pre-specified stopping criterion is met.
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This AT algorithm allows the selection of informative subsets of data to efficiently estimate model performance 
metrics, compared with random selection of  subsets7. In this algorithm, the performance of AT depends on two 
key factors: the estimation approach for the performance metrics in the second step and the updating approach 
for the sampling probability in the third step.

In AT, the distribution of the labeled data differs from that of the unlabeled data due to the selective sampling. 
This sampling bias leads to biased estimation of the model performance metrics. To remove this bias, Farquhar 
et al.9 proposed the levelled unbiased risk (LUR) estimator for learning with a general form of loss functions 
under sequential selective labeling. Kossen et al.7 adopted the LUR estimator for estimating model performance 
metrics in AT. This method employs adjusted inverse probability weightings (IPW) during sequential sampling 
steps to counteract the statistical bias in the target function.

Motivated by the missing data literature where replacing true sampling weights by well-estimated weights can 
improve estimation efficiency of IPW  estimators10,11, we propose two actively improved (AI) estimators for model 
performance metrics in this work. These estimators are developed using estimated weights from nonparametric 
smoothing estimation (see Fig. 1). Our contributions in this paper are as follows: 

1 We propose the AI levelled unbiased risk (AILUR) estimator, which is constructed by replacing the true 
sampling weights in the LUR estimator with estimated weights. The second proposed method, the AI inverse 
probability weight (AIIPW) estimator, is constructed based on the estimated probability that a subject is ever 
included in the labeled data throughout the sampling steps. Compared with the AILUR method, AIIPW is 
memory-efficient since it does not need to store the true sampling weights throughout the labeling process, 
as long as the sampling probabilities are a function of g(·).

2 To maximize the benefit of AT, we propose a model re-calibration process to update the sampling probability, 
tailored for the AIIPW estimator (see the “Methods” section). Based on the proposed estimators for model 
performance metrics and this re-calibration process, we propose a practical AT algorithm. We empirically 
demonstrate that the proposed algorithm outperforms the existing AT method across various real-world 
datasets. Moreover, we show that it is robust to variations in subsample size and the number of sampling 
steps.

Methods
Fashion MNIST data
The Fashion-MNIST dataset is a collection of 70,000 grayscale images, each measuring 28 × 28 pixels. The images 
are divided into ten unique categories, such as ‘shirt’ and ‘bag’, with each category containing 7000 images. This 
balance is crucial for fair machine learning training. The dataset is split into 60,000 training data and 10,000 
testing data. The Fashion MNIST dataset is available at https:// github. com/ zalan dores earch/ fashi on- mnist. To 
mimic model training outlined in Kossen et al.7, we selected 250 data points from the training data of 60,000 using 
stratified sampling to obtain equal sizes across 10 categories. We built a ResNet-18 model to classify categories 
of clothing using the training data of size 250. Then we evaluated its performance using the test data.

CIFAR-10 data
The CIFAR-10 dataset is a collection of 60,000 color images, each measuring 32× 32 pixels. These images are 
evenly distributed across ten categories such as ‘airplane’ and ‘dog’, with 6000 images in each. The dataset is par-
titioned into two sets: 50,000 images for training and 10,000 images designated for testing. The CIFAR-10 dataset 

Figure 1.  Overview of the proposed active model evaluation. For the sth sampling step, (a) select a subsample 
among the remaining unlabeled data to label their outcomes. (b) Conduct the kernel smoothing estimation 
to obtain estimated weights based on the remaining unlabeled data and the labeled data accumulated from 
the 1st to the sth sampling step. (c) Compute model performance metrics using the estimated weights and the 
accumulated labeled data.

https://github.com/zalandoresearch/fashion-mnist
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can be accessed at https:// www. cs. toron to. edu/% 7Ekriz/ cifar. html. A ResNet-18 model for image classification 
was trained using the training data and then its performance was assessed on the test data.

Drug consumption data
The drug consumption dataset holds information on 1,885 respondents, each characterized by 12 attributes. 
These include personality measures for neuroticism, extraversion, agreeableness, impulsivity, and sensation 
seeking. Other demographic details provided are education level, age, gender, country of residence, and ethnicity. 
Participants also provided information on their consumption of 18 drugs, both legal and illegal, such as alcohol, 
cannabis, and cocaine. Notably, a fictitious drug named ‘Semeron’ was added to spot those exaggerating their 
drug use. For each drug, there are seven possible usage labels, ranging from ‘Never Used’ to ‘Used in Last Day’. 
We used 12 attributes as predictors and usage of the Semeron drug as the outcome. We randomly selected 150 
data points to build a random forest classifier for the usage of the Semeron drug, and used the remaining data 
as test data for model evaluation. The dataset can be accessed freely at https:// archi ve. ics. uci. edu/ datas et/ 373/ 
drug+ consu mption+ quant ified.

Non-alcoholic fatty liver disease (NAFLD) data
The non-alcoholic fatty liver disease (NAFLD) dataset is composed of EHR from patients seen at the University 
of Pennsylvania. 300 patients and 635 patients were identified as biopsy-confirmed and imaging-confirmed 
NAFLD cases, respectively. 2805 patients who were not diagnosed by NAFLD were derived from the Penn 
Medicine Biobank database as control subjects. 41 variables, including demographics, laboratory measurements, 
and medication were considered as predictors in the model. For missing value imputation, we used the mean 
for continuous variables, and the mode for categorical variables. To consider the real world setting where the 
distribution of test data differs from one of the training data, we created two datasets: a training dataset with EHR 
records from 300 biopsy-confirmed NAFLD cases and 1000 controls; and a testing dataset with EHR records from 
635 imaging-identified cases and the remaining 1905 controls. We built a random forest classifier for NAFLD 
using the training dataset and validate it’s performance using the testing dataset.

Trained models to be assessed
For the Fashion-MNIST and CIFAR-10 datasets, we normalized the pixel values on each training image to a 
range between 0 and 1, and built the ResNet-18 models using the codes shared in Kossen et al.7. We employed 
a stochastic gradient descent optimizer with a learning rate of 0.1, weight decay of 5 × 10−4 , and momentum 
of 0.9. The batch size was set to 128, and we used a cosine annealing schedule for the learning rate. For Drug 
consumption data and NAFLD, we trained random forest classifiers using the ‘randomForest’  package12 in the 
R programming language. We treated the training datasets as inaccessible data during model evaluation and 
considered the test datasets as unlabeled data.

Problem setup and LUR estimator
Let Y be a outcome variable and X be the p dimensional vector of covariates. Let g(X) denote a model trained 
by an external data. In this work, we aim to evaluate the performance of the model g(X) using a loss function 
of model performance metrics,

Depending on the definition of L (·) , the quantity M can represent performance metrics such as the mean 
squared error, cross-entropy, and Akaike information criterion. We assume that a test data for the model evalu-
ation includes only observations of X , {Xi , i = 1, ...,N} where Xi ’s are independent and identically distributed. 
Data for Y, however, is not available. Since it is infeasible to annotate all outcomes in the test data for large N, 
AT selects a subset of the test data to label the outcomes.

In the active testing algorithm, the already labeled subsample in the previous steps can be treated as sampled 
with probability 1 for the next sampling steps since it, along with the newly labeled subsample, is utilized for 
model validation. Let δsi  indicate whether the ith data point is selected for labeling at the sth sampling or not 
( δsi = 1 : labeled; δsi = 0 : unlabeled). Let π{gs(Xi), δ

s−1
i } ≡ δs−1

i + (1− δs−1
i )P{δsi = 1|gs(Xi)} denote the sam-

pling probability for the ith patient where 0 < π{gs(Xi), δ
s−1
i } ≤ 1 . If the ith data point is selected in the previous 

steps, π{gs(Xi), δ
s−1
i = 1} = 1 as it should be automatically included in the labeled test data. We therefore can 

include labeled data points from the 1st to the (s − 1) th sampling into the labeled test data at the sth sampling 
step. If the ith data point is in the remaining unlabeled test data (i.e., δs−1

i = 0 ), we perform sampling with the 
sampling probability P{δsi = 1|gs(Xi)} under Poisson sampling scheme. Let n∗s  be the newly labeled data size at 
the sth sampling from the remaining unlabeled data. Then, the cumulative labeled data size after performing the 
sth sampling is 

∑N
i=1 δ

s
i =

∑N
i=1 δ

s−1
i + n∗s  . The labeled test data would consist of the already labeled data from 

the previous sampling steps and newly labeled data at the sth sampling step. Under Poisson sampling scheme, 
labeled data size n∗s  is random with E(n∗s ) = ns . The data available after the sth sampling can be represented as 
{δsi , δ

s
i Yi ,Xi , i = 1, ...,N}.

In the AT setting, the distribution of labeled data is not the same as that of the unlabeled data due to selective 
labeling. To remove this sampling bias, the LUR  estimator9 at the sth step is an existing method to achieve the 
unbiased estimation of M using the labeled data,

(1)M ≡ E[L {g(X),Y}].

https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://archive.ics.uci.edu/dataset/373/drug+consumption+quantified
https://archive.ics.uci.edu/dataset/373/drug+consumption+quantified
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where the weight wj = N(N − s)/{(N − j)(N − j + 1)} is adjusted in each sampling to remove the statistical 
bias for M . However, such estimators based on true inverse probability weighting (IPW) may be inefficient since 
the estimation variability for M can be inflated if data points are selected with small sampling  probabilities13.

AILUR estimator
Recall that the sampling probability at the sth sampling step is π{gs(Xi), δ

s−1
i } = δs−1

i + (1− δs−1
i )P{δsi = 1|gs(Xi)} . 

We know that π{gs(Xi), δ
s−1
i = 0} = P{δsi = 1|gs(Xi)} is the sampling probability at the sth sampling used for 

acquiring the new labeled data from the remaining unlabeled test data. For building the AILUR estimator, we 
focus on estimating P{δsi = 1|gs(Xi)} . Using the introduced notation, we can express the new labeled data as 
{δsi (1− δs−1

i )(Xi ,Yi), δ
s
i , i = 1, ...,N} , and the remaining unlabeled test data as {(1− δs−1

i )Xi , i = 1, ...,N} . We 
consider an kernel smoothing estimator for P{δsi = 1|gs(Xi)},

where Kb is a kernel function with a bandwidth b. Let π̂{gs(Xi), δ
j−1
i } = δs−1

i + (1− δs−1
i )P̂{δsi = 1|gs(Xi)} be 

the estimator for π{gs(Xi), δ
s−1
i } . By replacing π(·) in the Eq. (2) with π̂(·) , we propose the AILUR estimator of 

M at the sth step,

By the property of nonparametric kernel smoothing estimation for P{δsi = 1|gs(Xi)} , we have that the difference 
between π(·) and π̂(·) can be very small under some regularity assumptions. We hence show that M̂AILUR is an 
asymptotically unbiased estimator of M.

AIIPW estimator
One challenge to construct the estimators in the Eqs. (2) or (3) requires the information of all true sampling 
weights (or estimated weights) used throughout the sampling, which increases memory costs. We propose the 
AIIPW estimator to alleviate the problem. To build the estimator, we first investigate the conditional expectation 
of the indicator on X , E{δsi |g(X)} . By iterative double expectation, we have

Using the true weight, we can construct an IPW estimator of M,

However, the estimator still depends on historical sampling probabilities. To avoid this, we construct an kernel 
smoothing estimator to replace E{δsi |g(X)},

By replacing Ê{δsi |g(X)} in the Eq. (4) with Ê{δsi |g(X)} , we propose the AIIPW estimator of M at the sth step,

AIIPW for M is memory-efficient since the estimator at the sth step does not rely on all true sampling weights (or 
estimated weights) used throughout the first step to the sth step, π{gj(Xi), δ

j−1
i } (or π̂{gj(Xi), δ

j−1
i } ) for j = 1, ..., s.

(2)M̂
LUR
s =

1

sN

s∑

j=1

wj

N∑

i=1

δ
j
iL {g(Xi),Yi}

π{gj(Xi), δ
j−1
i }

,

P̂{δsi = 1|gs(Xi) = z} =

∑N
i=1 δ

s
i (1− δs−1

i )Kb{g
s(Xi)− z}

∑N
i=1(1− δs−1

i )Kb{gs(Xi)− z}

(3)M̂
AILUR
s =

1

sN

s∑

j=1

wj

N∑

i=1

δ
j
iL {g(Xi),Yi}

π̂{gj(Xi), δ
j−1
i }

,

E{δsi |g(X)} =

{
P{δ1i = 1|g(X)}, if s= 1,

E{δs−1
i |g(X)} + P{δsi = 1|g(X)}

∏s−1
j=1 [1− P{δ

j
i = 1|g(X)}], if s > 1.

(4)M̃
IPW =

1

N

N∑

i=1

δsiL {g(Xi),Yi}

E{δsi |g(X)}
.

(5)Ê{δsi |g(Xi) = z} =

∑N
i=1 δ

s
i Kb{g(Xi)− z}

∑N
i=1 Kb{g(Xi)− z}

(6)M̂
AIIPW
s =

1

N

N∑

i=1

δsiL {g(Xi),Yi}

Ê{δsi |g(Xi)}
.
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Algorithm 1.  Actively improved model evaluation algorithm.

Active model evaluation algorithm
Specifying the sampling probability in the active testing is important to acquire more informative labeled data 
for improvement of estimation efficiency. Using expected true loss conditional on X is one approach for driving 
sampling probabilities when the outcome is unlabeled, P{δs = 1|X} ∝ E[L {g(X),Y}|X]7. The expected loss is 
larger, the corresponding data points are more likely to be selected for labeling. For example, for binary clas-
sification models, we can consider the expected cross-entropy function conditional on X,

By replacing the true P(Y = 1|X) with g(·) , the sampling probability can be approximated. Since the performance 
of sampling depends on prediction accuracy of the trained model, we consider model re-calibration with the 
labeled data {δsi , δ

s
i Yi ,Xi , i = 1, ...,N} using the estimating equation

where h(·) is an arbitrary function (e.g., h = {1+ exp(−θg(Xi)})}
−1 for a logistic regression and h = θg(Xi)} 

for a linear regression). We can also conduct re-calibration of multinomial logistic regressions in form of the 
Eq. (7) (see Appendix). Let θ̂s be the solution of the Eq. (7) and h{θ̂sg(Xi)} be the re-calibrated model. Based 
on the re-calibrated model h{θ̂sg(Xi)} , we update the sampling probability. Algorithm 1 provides a summary of 
our general framework.

Extension to predictive accuracy metrics
We now focus on evaluating classification models using a general form of predictive accuracy metrics,

The quantity D is varied depending on the definition of d1 and d2 such as the true positive rate, false positive rate, 
positive predictive value, and F1 score (see Table 1).

Based on the labeled data {δsi , δ
s
i Yi ,Xi , i = 1, ...,N} and the estimated weights from the Eq. (5) after labeling 

at the sth sampling, we can construct the AIIPW estimator of the metrics D,

P(δs = 1|X) ∝ P(Y = 1|X) log g(X)+ {1− P(Y = 1|X)} log {1− g(X)}.

(7)
N∑

i=1

δsi g(Xi)[Yi − h{θg(Xi)}]

Ê{δsi |g(X)}
= 0,

(8)D ≡
E[d1{g(X),Y}]

E[d2{g(X),Y}]
.

Table 1.  Examples for representative predictive accuracy metrics at a risk cutoff c.

Measure d1(z1, z2) d2(z1, z2)

True positive rate I(z1 > c)z2 z2

False positive rate I(z1 > c)(1− z2) (1− z2)

Positive predictive value I(z1 > c)z2 I(z1 > c)

Negative predictive value I(z1 < c)(1− z2) I(z1 < c)

F1 score I(z1 > c)z2 I(z1 > c)+ z2
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For example, the AIIPW estimator for the true positive rate from the Eq. (9) can be presented as

where c is the risk cutoff.

Results
We evaluated the efficiency of the AILUR and AIIPW estimators and the proposed method for updating sam-
pling probabilities using four different datasets: Fashion-MNIST14, CIFAR-1015, Drug  Consumption16, and Non-
alcoholic fatty liver disease (NAFLD) from the Penn Medicine Biobank database. Kossen et al.7 used ResNet-18 
models developed with the Fashion-MNIST and CIFAR-10 datasets to investigate the performance of the LUR 
estimator within the AT framework. To compare our proposed methods with LUR under a similar setup, we 
utilized these models for both the Fashion-MNIST and CIFAR-10 datasets. Fehrman et al.16 and Wu et al.17 
considered random forest models for the prediction of drug consumption and fatty liver disease, respectively. 
We selected these models to evaluate their performance using the Drug Consumption and NAFLD datasets.

Entropy sampling, an ad-hoc sampling strategy based on the cross-entropy function, is generally competitive 
with other sampling strategies. In this paper, we consider expected cross-entropy  function7 conditional on X as 
the sampling probability at each sampling step for binary outcomes,

and for multi-class outcomes,

where C is the number of classes in Y, X is a vector of predictors, and g(·) and gc(·) are trained models to be 
evaluated. We need to consider a replacement, gs(·) , for replacing the true probabilities P(Y = 1|X) in the equa-
tion (10) (or P(Y = c|X) in the equation (11)) at the sth sampling step. We consider three different alternatives: 
the original model g(·) (“Ori”) (or gc(·) for multi-class classification model), random forest models (“RF”), and 
the proposed re-calibrated models (“Rec”). In addition, we provide results under the uniform sampling prob-
ability (“Uniform”). We considered AIIPW with Ori and Rec since the sampling probability in these schemes is 
derived as a function of the trained model g(·)(see more details in Methods section). The names and details for 
the combinations of methods are described in Table 2. Details on experiments and alternative sampling functions 
for the Eqs. (10) and  (11) are provided in the Appendix.

Comparison of efficiency for the proposed estimators and methods for updating sampling 
probability
To assess the efficiency of the proposed estimator using the alternative sampling function based on Rec, we first 
compared AILUR-Rec and AIIPW-Rec with LUR-Rec. We considered 10 sampling steps, a subsample size of 100 
at each step, and 1000 repetitions. Estimates from the full test data were set as the benchmark metrics to compare 
against. Figure 2 displays the average of the cross-entropy loss and the average of the square root of the mean 
squared error (MSE) for the cross-entropy loss on Fashion-MNIST, CIFAR-10 and Drug Consumption datasets.

(9)D̂
AIIPW
s =

∑N
i=1 δ

s
i m1{g(Xi),Yi}/Ê{δ

s
i |g(X)}∑n

i=1 δ
s
i m2{g(Xi),Yi}/Ê{δ

s
i |g(X)}

.

T̂PR
AIIPW

s =

∑N
i=1 δ

s
i I{g(X) > c}Yi/Ê{δ

s
i |g(X)}∑N

i=1 δ
s
i Yi/Ê{δ

s
i |g(X)}

,

(10)P(δs = 1|X) ∝ P(Y = 1|X) log g(X)+ {1− P(Y = 1|X)} log {1− g(X)},

(11)P(δs = 1|X) ∝

C∑

c=1

P(Y = c|X) log {gc(X)},

Table 2.  Names and details for the combinations of the methods used in the numerical studies. LUR, AILUR 
and AIIPW refer to the levelled unbiased risk estimator, the actively improved levelled unbiased risk estimator, 
and the actively improved inverse probability weighting estimator, respectively. Ori, RF, and Rec denote the use 
of the original model, the random forest models, and the proposed re-calibrated models, respectively, when 
updating the sampling probability.

Method Estimator for performance metrics Model used for sampling probability Figure

LUR-Ori LUR estimator Original model g(·) Figures 3, 5 and 6

LUR-Rec LUR estimator Re-calibrated model Figures 5 and 6

LUR-RF LUR estimator Random forest Figures 5 and 6

AILUR-Ori AILUR estimator Original model g(·) Figures 3, 4 and 5

AILUR-RF AILUR estimator Random forest Figures 3, 4 and 5

AILUR-Rec AILUR estimator Re-calibrated model Figures 2, 3, 4 and 5

AIIPW-Ori AIIPW estimator Original model g(·) Figures 4, 5 and 6

AIIPW-Rec AIIPW estimator Re-calibrated model Figures 2, 3, 4, 5 and 6
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As more labeled data accumulated, the cross-entropy loss estimates for all methods approached the bench-
mark values. AIIPW-Rec consistently outperformed LUR-Rec across every sampling step for all datasets with 
respect to MSE. In the initial step, the MSEs for AIIPW-Rec were 0.178 for Fashion-MNIST, 0.113 for CIFAR-
10, and 0.135 for Drug Consumption, compared to LUR’s MSEs of 0.523, 0.115, and 0.237, respectively. After 
the tenth sampling step, AIIPW-Rec’s MSEs for Fashion-MNIST, CIFAR-10, and Drug Consumption reduced 
to 0.070, 0.024, and 0.032 respectively, compared to LUR-Rec’s MSEs of 0.092, 0.030, and 0.057. AILUR-Rec 
provided similar MSE values to LUR-Rec for CIFAR-10, while it performed better than LUR-Rec for Fashion-
MNIST and Drug Consumption, showing performance comparable to AIIPW-Rec.

Next, we investigated the efficiency of three approaches (Ori, RF, and Rec) for updating the sampling probabil-
ity. The MSE results are shown in Fig. 3. Applying AILUR-RF to the Fashion-MNIST dataset yielded decreasing 
MSEs of 0.186 at the first sampling step, 0.084 at the fifth step, and 0.076 at the tenth step. This trend was closely 
followed when AIIPW-Ori was applied to the Fashion-MNIST dataset, with the MSEs of 0.193 at the first step, 
0.097 at the fifth step, and 0.081 at the tenth step. AIIPW-Rec fell behind from the second to the sixth sampling 
step, but it achieved the lowest MSE at the tenth step (0.178 at the first, 0.103 at the fifth and 0.070 at the tenth). 
When the proposed estimators were applied to the CIFAR-10 dataset, AILUR-RF provided the MSE (0.102) at 
the first sampling step, which is similar to that of AIIPW-Ori (0.105) and lower than that of AIIPW-Rec (0.113). 
From the second sampling step and onwards, AIIPW-Rec yielded the lowest MSEs, compared with AIIPW-Ori 
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Figure 2.  The averaged cross-entropy loss and the averaged square root of the mean squared error (MSE) using 
(a) Fashion-MNIST, (b) CIFAR-10, and (c) Drug consumption datasets. The estimates at each sampling step 
were calculated using the accumulated labeled data.
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and AILUR-RF. The MSEs for AIIPW-Rec at the tenth sampling step was 0.027, trailed by the AILUR-RF’s value 
of 0.032, and the AIIPW-Ori’s value of 0.040. AIIPW-Rec maintained the superiority with the lowest MSE of 
0.024 at the last sampling step, with AILUR-RF’s 0.029 and AIIPW-Ori’s 0.035. For the Fashion-MNIST and 
CIFAR-10 datasets, AILUR-RF demonstrated better performance than both AILUR-Ori and AILUR-Rec. All 
methods applied to the Drug Consumption dataset showed comparable MSE trends across the sampling steps, 
with the MSEs of 0.135, 0.139, and 0.145 at the first sampling step; 0.060, 0.057, and 0.056 at the fifth sampling 
step; and 0.032, 0.035, and 0.033 at the tenth step for AIIPW-Rec, AILUR-RF, and AIIPW-Ori, respectively. For 
the Drug Consumption dataset, Ori, RF, and Rec, when applied with the AILUR method, exhibited comparable 
MSE trends across the sampling steps.

Extension of the proposed estimators to predictive accuracy metrics and comparison of their 
efficiency
We applied our proposed methods to estimate common predictive accuracy metrics, including true positive 
rate (TPR), positive predictive value (PPV), and F1 score. We then assessed their estimation efficiency for the 
predictive accuracy metrics, considering different alternative sampling functions. Using the NAFLD dataset, We 
considered a total of five sampling steps, each with a subsample size of 100. The corresponding estimates derived 
from the full test data served as benchmark values against (TPR: 0.600, PPV: 0.450, F1 : 0.500). Figure 4 presents 
the averages and MSEs of TPR, PPV, and F1 at risk cutoffs corresponding to the false positive rate of 0.25. All 
methods produced accuracy metric estimates close to benchmark values. Across all sampling steps, datasets, 
and performance metrics, AIIPW and AILUR yielded lower MSEs compared with LUR, with only exception 
being for the estimation of PPV when the sampling probability was updated based on RF (Fig. 4). AIIPW-Rec 
outperformed LUR-Rec for all metrics, achieving the MSEs of 0.1 for TPR, 0.045 for PPV, and 0.055 for F1 in 
the first sampling step, compared with LUR-Rec’s corresponding values of 0.12, 0.07, and 0.08, respectively. This 
trend continued into the last sampling step with MSEs of 0.04 for TPR, 0.02 for PPV, and 0.02 for F1 , as opposed 
to 0.05, 0.04, and 0.04, respectively, for LUR-Rec. In general, AIIPW-Rec showed superior performance for TPR, 
while both AIIPW-Rec and AIIPW-Ori outperformed other methods for PPV and F1 in terms of MSE.

We next examined the relative efficiency (“RE”) among the estimators and the updating methods for sam-
pling probability. Let MSEmed,s denote MSE for one of the seven combinations of methods {LUR-Ori, LUR-
RF, LUR-Rec, Uniform, AIIPW-Ori, AILUR-RF, AIIPW-Rec} at the sth step. We assessed the estimation effi-
ciency of the proposed methods across different sampling steps relative to LUR-Ori at the fifth step, defined 
as MSEmed,s/MSELUR-Ori,5 . For instance, RE of AIIPW-Rec at the third sampling step compared to LUR-Ori at 
the fifth sampling step is computed as MSEAIIPW-Rec,3/MSELUR-Ori,5 . Fig. 5a shows RE for the area under the 
receiver operating characteristic curve (AUC) among the seven different methods across five sampling steps. 
The RE values of AIIPW-Rec and AILUR-RF relative to LUR-Ori at the fifth step exceeded one beginning at the 
third sampling step, which requires only 300 data points given 100 points sampled per step. This indicates that 
AIIPW-Rec and AILUR-RF can achieve the MSEs comparable to LUR-Ori at the fifth sampling step while sav-
ing the labeling cost for more than 200 data points (since we considered a subsample size of 100 in each step). 
Additionally, the RE values of AIIPW-Ori and LUR-Rec relative to LUR-Ori at the fifth step surpassed one by the 
fourth batch, and reached 1.234 and 1.518, respectively, by the fifth batch. Uniform sampling also outperformed 
LUR-Ori with the RE value close to 2 by the fifth batch.

Figure 5b presents RE for the area under the precision-recall curve (AUPRC). AUPRC represents a curve 
that plots PPV (y-axis) against TPR (x-axis) across all risk cutoffs. The RE value for AIIPW-Rec relative to 
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Figure 4.  The averaged true positive rate (TPR), positive predictive value (PPV), and F1 score ( F1 ), and the 
averaged square root of the mean squared error (MSE) at risk cutoffs corresponding to false positive rate 0.25 
using NAFLD data. The dashed black lines in the top panel are benchmarks calculated using the fully labeled 
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LUR-Ori at the fifth step surpassed one by the second sampling step and increased to 5.369 by the fifth batch. 
Both AIIPW-Ori and AIIPW-RF crossed the RE value of one at the third batch and attained the RE values of 
2.986 and 1.342, respectively, by the fifth step. The RE values for LUR-RF and Uniform relative to LUR-Ori at 
the fifth step started to exceed one starting at the fourth sampling step and reached the RE values of 1.341 and 
1.981, respectively, by the last step.

Effects of subsample size on estimation for performance metrics
Subsample size may affect accuracy of the kernel smoothing estimation for the actively estimated weights. To this 
end, we examined the effects of different subset sizes at each sampling step on the estimation for model perfor-
mance metrics. Given that the expected total of labeled data size is fixed at 300, we considered three scenarios 
with different combinations of total sampling steps and subsample sizes: (total sampling step, subsample size) 
= (6, 50) , (3, 100), and (2, 150). We focused on the AIIPW-Rec method, which showed superior performance 
compared to other methods in the previous results.

Figure 6 displays the average of the square root of MSE for the cross-entropy loss. Across the four datasets, 
the proposed method demonstrated stable estimation, regardless of the subsample size. The MSE for the Fash-
ion-MNIST dataset is around 0.118 at subsample sizes 50 and 100, which is close to the MSE at subsample size 
150 (MSE: 0.116). For the CIFAR-10 dataset, the MSE is 0.047 at subsample size 50, and the MSEs were nearly 
unchanged as the subsample size increased (0.043 at size 100 and 0.044 at size 150). For the Drug Consumption 
dataset, the MSE started with 0.077 at subsample size 50, and minor fluctuations were observed as the subsample 
size changed (0.075 at size 100 and 0.076 at size 150). Similarly, the NAFLD dataset had the MSE of 0.049 at size 
50, with minor changes to 0.048 and back to 0.049 for sizes 100 and 150, respectively.

Discussion
AT algorithms have been developed to evaluate pre-trained models without requiring extensive manual labeling 
of test data. This is accomplished by selecting more informative data points for labeling, thereby minimizing 
manual effort and additional costs. We extend existing AT frameworks with two novel estimators constructed 

)b()a(

Sampling step

R
el

at
iv

e 
Ef

fic
ie

nc
y

1 2 3 4 5

0
1

2
3

LUR−Ori
LUR−RF
LUR−Rec
AIIPW−Ori
AIIPW−Rec

AILUR−Ori
AILUR−RF
AILUR−Rec
Uniform

Sampling step

R
el

at
iv

e 
Ef

fic
ie

nc
y

1 2 3 4 5

0
1

2
3

4
5

6

Figure 5.  Relative efficiency (RE) for the area under the receiver operating characteristic curve (AUC) and the 
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Figure 6.  The averaged square root of the mean squared error (MSE) for the cross-entropy loss using fashion-
MNIST, CIFAR-10, drug consumption, and NAFLD data. The expected total labeled data size is fixed at 300, 
and three scenarios are considered with varying total sampling steps and subsample sizes (total sampling step, 
subsample size) = (6, 50), (3, 100), and (2, 150).
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on nonparametric smoothing estimation: AILUR and AIIPW. While the AILUR method requires retaining all 
historically estimated weights from the initial sampling step, the AIIPW method, in contrast, utilizes the cali-
brated weights corresponding to all labeled data as estimated in the most recent sampling step.

Our work demonstrates that both proposed estimators, AILUR and AIIPW, are more efficient than existing 
methods. Using MSE of the cross entropy as a metric for efficiency, we show that MSE of AIIPW was consist-
ently lower than that of LUR across four distinct datasets and across sampling sizes. When considering different 
modeling strategies to update sampling probabilities, AIIPW that utilizes model recalibration outperformed 
AILUR and LUR in terms of efficiency as more labeled data was accumulated by the final sampling step. The LUR 
method employs adjusted inverse probability weightings (IPW) during sequential sampling steps. However, it 
is well known that estimators based on true sampling weights generally suffer from lower estimation efficiency 
when sampling probabilities are very  low13. Moreover, we showed that the performance of the proposed estima-
tors was robust to distinct real-world datasets and stable to variations in subsample size, number of sampling 
steps, performance metrics, and datasets for model evaluation.

Our research contributes to the literature on sample size determination in planning statistical  studies18. In 
the numerical experiments, we assessed RE of AUC and AUPRC by comparing the estimation efficiency of the 
proposed methods relative to LUR (Fig. 5). Notably, both AIIPW and AILUR required fewer labeled data points 
to achieve MSE performance for AUC and AUPRC comparable to that of LUR. These results indicate that using 
AILUR and AIIPW may reduce the sample size requirements or sampling steps for model evaluation when 
compared to the standard AT framework, LUR.

Rigorous evaluation of machine learning and statistical models is critical for their safe use in real world set-
tings. Our framework to evaluate the models in settings with incomplete data will enable the use of more reli-
able and accurate predictive models and increase confidence in analytic tools for decision making. Throughout 
this paper, we considered Poisson sampling to select subsets of data. However, other sampling schemes, such as 
sampling without replacement (SwR), are often used as an  alternative7,9. Although both sampling schemes do 
not select a data point more than once over the sampling steps, sample sizes are fixed under the SwR scheme, 
while they are random under the Poisson sampling scheme. However, the SwR scheme requires the calculation of 
sampling probabilities for different categorical distributions corresponding to a subsample size at each sampling 
step. In contrast, for the Poisson sampling scheme, the sampling probability is calculated once within each sam-
pling step to generate a subsample of an expected subsample size. We applied the proposed algorithm to the four 
datasets under the SwR scheme. The results were similar to those obtained under the Poisson sampling scheme 
(see Supplementary Fig. 1). The estimates were close to the benchmark, and the proposed AIIPW method outper-
formed the LUR method. Further comparative studies between these sampling schemes are left for future work.

An underlying assumption for AT is that test data comes from the same population as the training data. 
However, in practice, predictions generated by trained models may not be directly applicable to the test data due 
to factors such as covariate  shift19–21. A framework of simultaneous active model modification and validation can 
be explored to revise original prediction  models22,23 and provide suitable models to target populations, followed 
by evaluating the revised models.

Data availability
Fashion MNIST data, CIFAR-10 data, and Drug consumption data analysed during the current study are avail-
able at https:// github. com/ zalan dores earch/ fashi on- mnist, https:// www. cs. toron to. edu/% 7Ekriz/ cifar. html, and 
https:// archi ve. ics. uci. edu/ datas et/ 373/ drug+ consu mption+ quant ified, respectively. Non-alcoholic fatty liver 
disease data analysed during the current study is available from the corresponding author on reasonable request.
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