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The invasive land flatworm 
Arthurdendyus triangulatus 
has repeated sequences 
in the mitogenome, extra‑long 
cox2 gene and paralogous nuclear 
rRNA clusters
Romain Gastineau 1*, Claude Lemieux 2, Monique Turmel 2, Christian Otis 3, Brian Boyle 3, 
Mathieu Coulis 4,5, Clément Gouraud 6, Brian Boag 7, Archie K. Murchie 8, Leigh Winsor 9 & 
Jean‑Lou Justine 10

Using a combination of short‑ and long‑reads sequencing, we were able to sequence the complete 
mitochondrial genome of the invasive ‘New Zealand flatworm’ Arthurdendyus triangulatus 
(Geoplanidae, Rhynchodeminae, Caenoplanini) and its two complete paralogous nuclear rRNA gene 
clusters. The mitogenome has a total length of 20,309 bp and contains repetitions that includes two 
types of tandem‑repeats that could not be solved by short‑reads sequencing. We also sequenced for 
the first time the mitogenomes of four species of Caenoplana (Caenoplanini). A maximum likelihood 
phylogeny associated A. triangulatus with the other Caenoplanini but Parakontikia ventrolineata 
and Australopacifica atrata were rejected from the Caenoplanini and associated instead with the 
Rhynchodemini, with Platydemus manokwari. It was found that the mitogenomes of all species of the 
subfamily Rhynchodeminae share several unusual structural features, including a very long cox2 gene. 
This is the first time that the complete paralogous rRNA clusters, which differ in length, sequence and 
seemingly number of copies, were obtained for a Geoplanidae.

Keywords Arthurdendyus, Invasive flatworm, Mitogenome, Short- and long-reads sequencing, Tandem 
repeats, Paralogous rRNA

Arthurdendyus triangulatus (Dendy, 1894) is commonly referred to as the ‘New Zealand flatworm’, indicating 
its origin from the Southern Hemisphere (Fig. 1). This species of terrestrial flatworm (Geoplanidae) has earned 
a poor reputation as an invasive species and predator of native earthworms in north-western  Europe1. Whether 
the dispersal of this species resulted from a single or several introductions is still  debated2,3. Nevertheless, A. 
triangulatus is now well established in Great Britain and Ireland and has been recorded from as far as the remote 
Faroe  Islands4–9. Because it develops well under temperate  climates10, it has the potential to disperse among 
several other European  countries11,12.
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Arthurdendyus triangulatus is known for its predatory activity on lumbricid  earthworms9,13–16. Given all the 
environmental consequences that this might  have17–20, A. triangulatus has been included in the European list of 
Invasive Alien Species of Union concern. Transport or release of live specimens of A. triangulatus has thus been 
banned in the European Union to help prevent further dispersal.

Arthurdendyus triangulatus is not the only species of terrestrial flatworm that has become invasive in 
Europe and  beyond21–38. Invading species of terrestrial flatworms are represented by several subfamilies of the 
Geoplanidae, among which some belong to the Rhynchodeminae, the subfamily that includes A. triangula
tus25,26,30,39 within the tribe Caenoplanini. A similarly case concerns the genus Caenoplana Moseley, 1877 that 
now has species present in Europe, with probable unsuspected and underestimated  biodiversity21,40–44. In Table 1, 
a summary of the currently accepted classification is provided.

Since the pioneering work by Solà et al.48, the first to include the description of the complete mitogenome 
of a geoplanid, i.e., that of Obama nungara (Carbayo, Álvarez-Presas, Jones & Riutort, 2016), several other 
species have been similarly investigated  phylogenomically31,49–54. Amongst these results, one peculiar feature 
that was noticed was the presence of an unusually long cox2 gene among the three species of Rhynchodeminae 
 studied50–52, namely Platydemus manokwari de Beauchamp, 1963, Parakontikia ventrolineata (Dendy, 1892) and 
Australopacifica atrata (Steel, 1897). To our knowledge, this feature has not been observed in other Metazoa. The 
extra-length in the cox2 sequence has no known role, and beyond the three species already studied before this 
work, its distribution among Rhynchodeminae was  unknown50–52.

Another peculiarity not restricted to Rhynchodeminae, but also observed in two families of the superfamily 
Geoplanoidea (Table 1), is the presence of two paralogous clusters encoding the nuclear rRNA  genes40,54–57. 
Aside from representing a biological trait that deserves deeper studies, the existence of these divergent nuclear 
rRNA gene clusters may be problematic for molecular barcoding and phylogenetic analyses based on nuclear 
rRNA genes.

In the current study, we assembled the complete mitochondrial genome of A. triangulatus by using a 
combination of short- and long-reads sequencing technologies. Our data also enabled us to obtain for the first 
time the complete sequences of the two paralogous rRNA gene clusters for a geoplanid. The A. triangulatus 
mitochondrial genes were used to produce a molecular phylogeny that included four distinct species of 
Caenoplana, namely Caenoplana variegata (Fig. 2a), Caenoplana coerulea (Fig. 2b), Caenoplana decolorata 
(Fig. 2c) and Caenoplana sp. “brown’ (Fig. 2d), for which we also sequenced mitogenomes, although the 
completion of these genomes will be discussed later. In addition, the mitochondrial data were used for a broad 
comparison of the extra sequence present in the cox2 gene.

Figure 1.  A live specimen of the invasive land flatworm Arthurdendyus triangulatus in a garden in Northern 
Ireland. Note the presence of a cocoon near the head. Unscaled—specimens typically measure 7–10 cm in 
length. Photograph by A. K. Murchie.
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Results
Assembling mitogenomes using short reads
For each of the five species examined, a large linear contig with all conserved mitochondrial genes was found 
following short-reads assemblies. In the case of Caenoplana spp., overlapping sequences were found at the ends of 
these contigs after their assembly or following their treatment with Consed, sometimes displaying polymorphisms 
or single nucleotide misalignments. Two interpretations are possible: (a) the mitogenomes of Caenoplana spp. 
are complete or (b) they might also contain several repeats at one or both of their ends, making their real sizes 
uncertain. In the case of A. triangulatus, the retrieved 15,716 bp contig after assembly showed no overlapping 
sequences at its ends; however, the use of the addSolexaReads.pl function of Consed in conjunction with data-
mining of the contigs file led to the discovery of six small contigs that could be merged into a circular mitogenome 
of 18,059 bp. However, coverages of these contigs varied extensively, ranging from 66 to 282X. This suggested 
the presence of repetitions that cannot be resolved using short reads. As indicated in the Material and Methods, 
the 15,716 bp contig was later used as a database for filtering long reads.

Processing the long‑reads sequencing data
The basic statistics of the long-reads that were obtained before and after selection of the sequences specific to 
the mitogenome and nuclear rRNA gene clusters of A. triangulatus are indicated in Supplementary Table 1.

The assembly of the reads selected using the mitochondrial reference resulted in two contigs. The first one 
corresponded to the mitogenome; it was 20,281 bp long with a coverage of 40X and was detected by Flye as a 

Table 1.  A simplified outline of the classification of the superfamily Geoplanoidea. Only some genera are 
listed, and only species with detailed data on the mitogenome are shown; however, all subfamilies and tribes 
are listed. Based on the phylogeny of Sluys et al.45 with addition of the newly described subfamily  Timyminae46. 
The species formerly known as Humbertium covidum is mentioned here as Vermiviatum covidum following 
the recent reclassification of Bipaliinae (2023)47. All the species indicated are included in the multigene 
phylogeny presented below. *Our results contradict the inclusion of Australopacifica and Parakontikia within 
the Caenoplanini; both are close to Platydemus (Rhynchodemini).

Superfamily GEOPLANOIDEA

Family DUGESIIDAE

 Genus Dugesia—including Dugesia constrictiva, D. japonica, D. ryukyuensis

 Genus Girardia—including Girardia sp.

 Genus Schmidtea—including Schmidtea mediterranea

Family GEOPLANIDAE

 Subfamily BIPALIINAE

  Genus Bipalium—including Bipalium kewense, B. vagum, B. adventitium, B. admarginatum

  Genus Diversibipalium—including Diversibipalium multilineatum, D. mayottensis

  Genus Vermiviatum—including Vermiviatum covidum

 Subfamily MICROPLANINAE

  Genus Microplana

 Subfamily RHYNCHODEMINAE

  Tribe Rhynchodemini

   Genus Rhynchodemus

   Genus Platydemus—including Platydemus manokwari

  Tribe Caenoplanini

   Genus Caenoplana—including Caenoplana variegata, C. coerulea, C. decolorata, Caenoplana sp. “brown”

   Genus Arthurdendyus—including Arthurdendyus triangulatus

   Genus Australopacifica—including Australopacifica atrata*

   Genus Parakontikia—including Parakontikia ventrolineata*

  Tribe Anzoplanini

   Genus Anzoplana

  Tribe Eudoxiatopoplanini

   Genus Eudoxiatopoplana

  Tribe Pelmatoplanini

   Genus Pelmatoplana

 Subfamily GEOPLANINAE

  Genus Amaga—including Amaga expatria

  Genus Obama—including Obama nungara

 Subfamily TIMYMINAE

  Genus Timyma
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sequence that can be circularised. The second contig was 752 bp long with a coverage of 10X and could not be 
identified. After the three iterations of Pilon and subsequent corrections, the final size of the mitogenome was 
20,309 bp.

The assembly of the reads selected using the nuclear rRNA gene reference resulted in three contigs. The longest 
was 39,450 bp long with a coverage of 781X, followed by a 21,307 bp contig with a coverage of 141X. As reported 
below, our analysis indicated that they represent polymers of two different versions of the rDNA cluster. The 
last contig was 14,571 bp long with a coverage of 38X. Because Megablast queries showed that it belonged to an 
earthworm, probably from the genus Eisenia Malm, 1877, it was considered prey DNA.

Characteristics of the A. triangulatus and Caenoplana spp. mitogenomes
The five mitogenomes are all colinear with sizes ranging from 16,557 to 20,309 bp in size (Table 2), but as 
exemplified by our analyses of the A. triangulatus mitogenome, the genome sizes estimated for the Caenoplana 
spp. might have been underestimated. As suggested for O. nungara48 and illustrated here for A. triangulatus, 
geoplanids might display repetitions in their mitogenome that may not be resolved by short-reads sequencing. 
The cumulated length of all coding sequences in A. triangulatus is 14,336 bp, meaning that more than a quarter 

Figure 2.  Live specimens of the four species of Caenoplana sequenced here. A, Caenoplana variegata, specimen 
MNHN JL144, hologenophore; photograph by Jean-Lou Justine. B, Caenoplana coerulea, specimen from the 
same population (same garden) as specimen MNHN JL194; photograph by Damien Michalski. C, Caenoplana 
decolorata, specimen PT426 illustrated in the original description of the  species42; photograph by Eduardo 
Mateos. D, E, Caenoplana sp. “brown’, specimens from Martinique. D, specimen MNHN JL413, E, specimen 
MNHN JL399; photographs by Mathieu Coulis. All photographs, unscaled; live specimens measure 5–10 cm in 
length.
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of the mitogenome is constituted by non-coding DNA. Using tandem repeat finder, we identified in the large 
non-coding part two conserved patterns with a noticeable number of repetitions. One has a consensus size of 
67 bp with 98% match and was found 9 times. The second is longer and more conserved, being 182 bp long with 
99% match and also present in 9 copies (Fig. 3).

The specific features previously reported for the mitogenomes of  Rhynchodeminae52 were all found among 
the mitogenomes of A. triangulatus and Caenoplana spp. They all display a 32-bp overlap between ND4L and 
ND4, the ND5 gene is terminated by the presence of tRNA-Ser, and the cox2 gene is of unusual length. As already 
observed for some other  Geoplanidae31,50–52, no tRNA-Thr gene could be identified in the mitogenomes of the 
species studied here with the exception of C. coerulea. For this species, a D-Loop missing tRNA was found at a 
position congruent with other species in which this tRNA was found. As in Soo et al.54, it was possible to find 
the completely conserved TGT  anticodon of a putative tRNA-Thr between the 16S rRNA gene and cytochrome 
b genes in the other species. However such tRNA would once again have a poorly conserved structure (no 
cloverleaf shape and missing D- and T-loops) and therefore was not annotated as such for any of these species. 
It is noteworthy that for A. triangulatus, it was possible to find two putative tRNA-Phe with a cloverleaf shape. 
One was found in a place congruent with all other geoplanids, which is between ND4 and cox1. The second was 
found between tRNA-Leu and tRNA-Asn, which is where tRNA-Thr has been found among some other species. 
Pending further information, this second tRNA-Phe was not annotated.

The extra sequence present in cox2
The amino acid alignment of the cytochrome c oxidase subunit II proteins is presented as LOGO (Fig. 4) The 
alignment stops and the expansion fragment starts after a conserved 6 amino acid pattern (surrounded by a 
red box in Fig. 4). The less-conserved region that follows, between positions 136 and 286, is due to substantial 
discrepancies in lengths and sequences in the Rhynchodeminae. The alignment resumes just before the 
C-terminal domain of the protein (highlighted by a green box on the figure), which contains, among others,the 
CuA binding site. It starts with a very conserved aspartate-serine dipeptide among all Geoplanidae, with a 
tyrosine residue mostly conserved thereafter.

The alignment was trimmed to include only the amino-acid residues comprised between the hepta- and 
dipeptide described above (Fig. 5). The length of this region was calculated for each species plus O. nungara and 
B. kewense and the resulting values were found to be highly similar among the rhynchodemins, ranging from 
142 to 150 amino acids (Table 2). Only 11 residues are conserved among all the eight species of Rhynchodeminae 
examined. From the N-terminal to C-terminal portion, they consist of two cysteine residues separated by two 
non-conserved amino-acids, a phenylalanine, an alanine, a lysine, an asparagine, a proline, a glycine, a leucine-
tyrosine dipeptide and finally a lysine. It should be noted that the extra sequence in the middle region of cox2 is 
not the only factor accounting for the greater length of the protein among rhynchodemins. The protein is also 
longer at the C-terminal part. Although this applies to all rhynchodemins, it is especially true for C. coerulea. 
There was no sign of a premature termination because of the presence of a tRNA, as opposed to the ND5 gene 
for example. We are not ruling out a mistake of assembly that would have altered the canonical stop codon, but 
based on our software and sequencing data, we could not find evidence of this. Sequencing more specimens of 
C. coerulea should help to answer this question.

The mitochondrial protein phylogeny
The model of evolution returned by ModelTest-NG was the MTZOA + I + G4 + F for the llikelihood maximum 
(ML) phylogeny. The inferred phylogenetic tree revealed very high support at most of its nodes (Fig. 6). It 
unambiguously associates A. triangulatus with Caenoplana spp., but clearly distinguishes this clade from the 
other group of rhynchodemins represented by Pl. manokwari, Pa. ventrolineata and Au. atrata.

Table 2.  Accession number, size of the mitogenomes, sizes of the cox2-encoded protein and of their central 
elongation fragment for all species of Rhynchodeminae available. The last two lines show O. nungara 
(Geoplaninae) and B. kewense (Bipaliinae) for comparison.

Species Accession number Size of the mitogenome (bp) Size of the cox2 encoded protein
Size of the elongation fragment in the cox2 encoded 
protein

Arthurdendyus triangulatus OR835203 20,309 446 aa 146 aa

Caenoplana variegata JL144 OR835205 16,557 456 aa 148 aa

Caenoplana decolorata JL150 OR835204 17,722 458 aa 150 aa

Caenoplana sp. ‘brown’
JL410 OR835206 17,236 448 aa 147 aa

Caenoplana coerulea JL194 OR835207 18,621 505 aa 148 aa

Platydemus manokwari MT081580 19,959 452 aa 147 aa

Parakontikia ventrolineata MT081960 17,210 433 aa 142 aa

Australopacifica atrata OM456243 16,513 434 aa 146 aa

Bipalium kewense MK455837 15,666 225 aa 0 aa

Obama nungara KP208777 14,909 259 aa 0 aa
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Nuclear rRNA gene clusters
Using long-reads sequencing, it was possible to obtain the complete sequences of two paralogous nuclear 
rRNA gene clusters for A. triangulatus. Similarly to what was already suspected for Bipalium admarginatum 
de Beauchamp,  193354, these clusters showed different coverages after assembly (Table 2), suggesting that their 
numbers of copies in the nuclear genome are noticeably different. When submitted to a Megablast analysis, 
the 18S rRNA gene version from the ‘high coverage’ cluster (HCC, OR797297) was found to correspond to 
type II (99.77% identity with AF033044), while the ‘low coverage’ cluster (LCC, OR797296) corresponded to 
type I (99.44% identity with AF033038). The sequence identity between the HCC and LCC versions of the 18S 
rRNA gene was 93.68%. For comparison, an alignment between the partial 18S genes of two different species 
of Geoplaninae, Obama burmeisteri (Schultze & Muller, 1857) Carbayo et al., 2013 (DQ666004) and Obama 
anthropophila Amaral, Leal-Zanchet & Carbayo, 2015 (KP962341)58,59 returned 96.13% identity, illustrating that 
the differences between two species might be lower than between the two clusters of the same species.

Figure 3.  The mitogenome of Arthurdendyus triangulatus MNHN JL513. The colour boxes represent the 
different types of genes. The grey circle indicates the GC content. The grey boxes represent the extent of the 
two types of tandem repeats contained by the mitogenome. The position, length and secondary structure of the 
tandem repeats are indicated on the figure. The green colour of the dots indicates bases that could pair.
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The two paralogous rRNA gene clusters of A. triangulatus also display distinct versions of the internal 
transcribed spacers 1 and 2 (ITS1 and ITS2), as well as distinct versions of the 5.8S rRNA gene. The sequence 

Figure 4.  LOGO representation of the alignment of the Cox2 proteins obtained from several geoplanids and 
reference sequences downloaded from the Conserved Domains Database (all listed in Supplementary Table 2). 
The two coloured boxes indicate the conserved domains before (red box) and after (green box) the alignment 
breaks because of the extra-length displayed by rhynchodemins.
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divergence between the ITS versions is substantial, with identities below 60%. It is also worth noting that the ITS1 
size differs greatly between the two clusters (335 bp and 1207 bp for the LCC and HCC clusters, respectively). 
A difference in ITS length has also been observed for Schmidtea mediterranea Benazzi, Baguña, Ballester & del 
Papa,  197557, the only species of the superfamily Geoplanoidea for which both versions of the ITS sequences 
were available prior to our study. All existing ITS references for A. triangulatus2,3 aligned with the HCC version 
of the ITS1-5.8S-ITS2 sequence. Note that the haplotypes detected in A. triangulatus by Roberts et al.3 should 
not be mistaken for HCC and LCC, as rather, they represent inter-individual variabilities.

In addition, there are two distinct versions of the 28S gene in A. triangulatus (Table 3). Their sequences differ 
at their 3’ ends. The two 28S gene sequences can align to a certain point, which corresponds to the 3’ end of the 
version found in the LCC cluster. Beyond this point, they diverge; however, when aligned against the reference 
sequence from Mus musculus (see below in Material & Methods), the 28S gene sequence present in the HCC 

Figure 5.  The extra-length in the Cox2 protein of rhynchodemins. The conserved amino-acid found among all 
taxa are indicated by rectangles. Screen capture of the alignment.

Figure 6.  Maximum likelihood phylogenetic tree obtained from concatenated alignments of mitochondrial 
proteins using the MTZOA + I + G4 + F model of evolution and after 1,000 ultrafast bootstrap replicates. The 
names of subfamilies and tribes are indicated. Arthurdendyus triangulatus appears in a strongly supported clade 
with all species of Caenoplana. Australopacifica atrata and Parakontikia ventrolineata are rejected from this clade 
and instead associated with Platydemus manokwari.

Table 3.  Accession number and coverage obtained after assembly of the two paralogous clusters of nuclear 
rRNA genes in A. triangulatus. The size of its different components and the percentage of identity between 
paralogous clusters are also indicated.

Accession Coverage 18S ITS1 5.8S ITS2 28S

HCC OR797297 781X Size 1791 bp 335 bp 151 bp 426 bp 3476 bp

LCC OR797296 141X 1791 bp 1207 bp 153 bp 510 bp 3151 bp

Identity 93.68% 57.06% 94.70% 55.58% 89.29%
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cluster correctly aligns over a longer length (336 bp). To estimate the sequence identity between the two 28S 
genes, the gene sequence present in the HCC cluster was trimmed so that its 3’ end coincides with that found in 
the LCC cluster. The D2 variable region is especially poorly conserved, showing only 60.43% identity.

Discussion
With long-reads sequencing technologies becoming more widely available, it is expected that an increasing 
number of complex structures present in mitogenomes will be resolved, whether among  vertebrates60–62 or 
 invertebrates63–69.

In the current case, long-reads allowed us to resolve a nearly 5 kb long region between rrnL and cob containing 
two types of tandem repeats. Of particular interest for our study are the reports from Kinkar et al.64–66 and Oey 
et al.67,68. Using long-read sequencing methods, these authors found that Platyhelminthes such as the trematode 
Schistosoma haematobium (Bilharz, 1852), Schistosoma bovis Sonsino, 1876, Clonorchis sinensis (Cobbold, 1875) 
and Paragonimus westermani (Kerbert 1878) or the cestode Echinococcus granulosus Batsch, 1786 all display 
repeated regions in their mitogenome, with the most complex and longest repeated structure found in some 
strains of S. haematobium. In the latter, the length of the mitogenome ranges from 22.6 to 33.4 kb depending 
on the  specimen66. There are, however, noticeable differences when compared with A. triangulatus. First, the 
position of the repeated region is different. It is located between ND1 and cox1 in S. haematobium and S. bovis 
and between ND5 and cox3 in C. sinensis. The number of tandem-repeat regions may also differ, as is exemplified 
by E. granulosus, in which two regions were found, one large between ND5 and cox3 as in C. sinensis, and one 
shorter between ND5 and ND6. Secondly, the motifs of tandem-repeats might alternate as in P. westermani and 
S. bovis. Finally, in some cases, tRNA could be found between repeated motifs (e.g. S. bovis), which is not the 
case of A. triangulatus.

However, the above-mentioned organisms were not the first Platyhelminthes in which extra-long 
mitogenomes were investigated. Similar to our study, the work of Ross et al.69 on the 27,133 bp mitogenome of 
S. mediterranea uncovered the presence of a long non-coding region, but no mention of tandem-repeats was 
made in this publication. In this case also, the non-coding region was not resolved by long reads but rather by 
PCR amplification and Sanger sequencing. It is noteworthy that a 10-kb difference in the size of this non-coding 
region was observed between a sexual and an asexual specimen, the sexual specimen being the one displaying 
this extra length, which also contains a tRNA-Ser (missing from the asexual type). This order of magnitude 
compares with the observations done on the different specimen of S. haematobium. The non-coding region is 
located between rrnS and ND2 in S. mediterranea, which also differs from A. triangulatus.

Notably, the position of the A. triangulatus mitochondrial non-coding region that is associated with repeated 
structures, corresponds to a portion of the mitogenome of the geoplanid Diversibipalium multilineatum (Makino 
& Shirasawa, 1983) which we previously failed to circularise after assembly. It was indeed impossible to find 
overlapping sequences at its  endings31. The presence of complex repeated structures in D. multilineatum could 
thus not be ruled out. Generally speaking, the presence, structure, and distribution of repeated sequences in 
mitogenomes among Geoplanidae is an open field for investigation. At present, it remains unknown as to which 
taxa contain mitochondrial repeats and whether these are conserved within a species or between closely related 
species. In the future, we may need to investigate some of these species again with long-reads technologies to 
verify our previous findings.

Thanks to the expanded alignment that we performed in the course of this study (Fig. 5), we could identify 
which conserved residues are present in the extension segment of the cox2-encoded protein of Rhynchodeminae. 
Introns in the mitogenomes of Metazoa are rather scarce, especially among  bilaterians70, and we could not 
detect introns in the cox2 gene. One of the explanations for the presence of this extra segment was that it 
could corresponds to an intein, i.e. a self-splicing element in the  protein71. We therefore searched whether the 
conserved residues identified in the extra segment of Cox2 could represent conserved features of inteins as they 
are explicated in the InBase tool (https:// inbase. ligsc iss. com/ iwai/ InBase/ tools. neb. com/ inbase/ index. html) based 
on the works of  Perler71,72 and  Pietrokovski73. The only conserved residues that could be found is a cysteine 
in what would be the predicted N-terminal splicing region and a serine in what would be the C-extein part. 
Nohistidine-asparagine or histidine-glutamine dipeptide was identified at the putative C-terminal splicing site. 
Inteins are rather scarce among Eukaryota and to our knowledge, none has been found in mitochondrial-encoded 
 proteins74. In the absence of more convincing clues regarding the identity of the extra segment in the cox2-
encoded protein of rhynchodemins, this segment should be considered an intrinsic component of the functional 
protein. Deeper investigations would require a proteomic approach to look for the presence of this extension 
in the mature protein, which is beyond the scope of the present work. Importantly, several reports indicate that 
there might be unusual initiation codons in the mitogenome of geoplanids, including  rhynchodemins48,53,75. 
All these peculiarities advocate for more efforts in sequencing that should use long-reads sequencing as much 
as possible. It should also be noted that several tribes of Rhynchodeminae have not yet been sampled, namely 
Eudoxiatopoplanini Winsor, 2009, Anzoplanini Winsor, 2006 and Pelmatoplanini Ogren & Kawakatsu, 1991 
(Table 1). An exploratory study on these organisms to look at the conservation of the cox2 gene extra-length 
would thus be of interest.

Within the framework of this study, we obtained for the first time the two complete clusters of rRNA of a 
geoplanid. Several questions remain unanswered, and in some cases, routine protocols might be re-evaluated. 
The origin of these duplications remains unknown, and it is difficult to understand why both variants have been 
conserved. It is also unclear whether or not both clusters would be expressed and transcribed into functional 
rRNA. In their first publication on the topic, Carranza et al.55 had positive results only for the expression of the 
type I rRNA in S. mediterranea. However, in their second article on Schmidtea polychroa (Schmidt, 1861)57, they 
saw that both types might be expressed, although at very low levels for type II.

https://inbase.ligsciss.com/iwai/InBase/tools.neb.com/inbase/index.html
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As noted above, the LCC rDNA cluster of A. triangulatus corresponds to type I while the HCC cluster 
corresponds to type II when comparing with results previously obtained on S. polychroa by Carranza et al.56. 
If the results of Carranza et al.57 on the expression of these two types were extrapolated to A. triangulatus, this 
would mean that the type associated with the highest coverage (thus, the highest number of copies) would be 
the least expressed, which is rather counter-intuitive. Technologies like RNAseq could be used to compare the 
coverage of both rDNA clusters in the genome with the coverages of the RNA they encode.

There are direct consequences of our new findings regarding the use of nuclear rRNA genes for barcoding 
and phylogenetic inference among Geoplanoidea. One can predict that the HCC/type II cluster has statistically 
more chance to be amplified and sequenced than the LCC/type I cluster. This would mean that the least expressed 
and possibly non-functional type would likely be the one amplified.

In case both variants were independently amplified on two specimens of the same species for which no 
reference is available, this would definitely be an issue in terms of molecular barcoding. This would be the case 
especially for the D2 region of the 28S gene, for which there is substantial literature on a wide range of highly 
diverse  Eukaryota76–81. Using this marker poses potential problems with the Geoplanidae as exemplified by the 
very low 60.43% identity between both variants in A. triangulatus. It could introduce a strong bias in any inferred 
phylogeny or lead to inaccurate taxonomic assessment when using molecular barcoding.

Another important issue raised by these paralogous clusters would be the use of the 18S gene in the early 
detection of invasive flatworms in soil by the means of environmental DNA and metabarcoding. Such methods 
are often conducted on other Eukaryota by amplifying the V4 and V9 variable parts of the 18S gene. With 
geoplanids, the protocol would preferably be adapted, or different barcodes (eg. the cox1 gene) used.

The increasing availability of long-reads DNA sequencing technologies will make it possible to study 
paralogous rRNA gene clusters on more species of Geoplanidae and with larger sample sizes. With more complete 
sequences of the two types of nuclear rRNA gene clusters, their rate of evolution could be analysed. In addition, 
long-reads DNA sequencing of additional Geoplanidae would advance our knowledge about the distribution of 
repeats in the mitogenome. We hope to be able to go further in this direction in the near future.

The protocol used for phylogeny (concatenated amino-acid sequences) once again returned robust results. 
Based on the tree presented here, the inclusion of Pa. ventrolineata and Au. atrata in the Caenoplanini is not 
supported by this phylogenetic analysis, corroborating the results previously obtained by other  teams21 from 
partial cox1 and 28S genes. Instead, both species are associated with maximum support to the Rhynchodemini 
(Pl. manokwari ). As with previous  phylogenies31, Geoplaninae and Bipaliinae appear as distinct, highly supported 
clusters. As already stated, many tribes of Rhynchodeminae remain to be sampled (Table 1), and in some cases 
(e.g. the genus Anzoplana Winsor, 2006), there is currently not a single sequence available in GenBank. How 
the results of such an upgraded phylogeny would articulate with the morphological classification is an exciting 
question we hope to address soon.

Material and methods
Biological material
The origins of the specimens used in the course of this study are reported below. All specimens were registered 
in the collections of the Muséum National d’Histoire Naturelle in Paris, France. All were killed by immersion 
in hot water or 95% ethanol.

Arthurdendyus triangulatus: five specimens collected on July 12, 2022, by Brian Boag; Birch Brae, Knapp, 
Inchture, Perthshire, PH14 9RN, Scotland; coordinates: N 56.47005205158123, W -3.1614500498816174. One 
specimen used for molecular analysis; four specimens deposited in MNHN under registration number MNHN 
JL513 (Fig. 1).

Caenoplana variegata (Fletcher & Hamilton, 1888): two specimens collected on May 6, 2014, by Dhyma 
Gomez; La-Plaine-Saint-Denis, Seine Saint Denis, Metropolitan France. Specimens kept in MNHN under 
registration number MNHN JL144, portion of body used for molecular analysis. The specimen in Fig. 2A is the 
hologenophore.

Caenoplana coerulea Moseley, 1877: one specimen collected on November 7, 2014, by Damien Michalski; 
Arles, Bouches-du-Rhône, Metropolitan France. Specimen deposited in MNHN under registration number 
MNHN JL194, portion of body used for molecular analysis. Note that Álvarez-Presas et al.21 have emphasized 
that C. coerulea is a species complex, based on their molecular work and information from one of us (LW). 
The cox1 gene of our specimen is 100% identical to several sequences in GenBank which were attributed to C. 
coerulea sensu lato morphotype  Ca121. The specimen photographed in Fig. 2B is from the same population (same 
garden) as the hologenophore.

Caenoplana decolorata Mateos, Jones, Riutort, & Álvarez-Presas, 2020: one specimen collected on May 2, 2014, 
by Clément Gouraud; Nantes, Loire, Metropolitan France. Specimen deposited in MNHN under registration 
number MNHN JL150, portion of body used for molecular analysis. The species identification was confirmed 
on the basis of the cox1 gene (GenBank: MW203125)82. Specimen not photographed. The specimen in Fig. 2C 
is specimen PT426 illustrated in the original description of the  species42.

Caenoplana sp. “brown”: three specimens collected February 26, 2019, by Mathieu Coulis; Le Lamentin, 
Martinique, French West Indies; coordinates N 1420001, W-6012222. Specimens deposited in MNHN under 
registration number MNHN JL410, portion of body of one specimen used for molecular analysis. This species is 
currently unnamed but has been called “Brown-striped flatworm” in the 2020 Reference of Wildlife of tropical 
North Queensland; there are records of its presence in Martinique, Florida (USA), and Australia (Queensland); 
the species is believed to be a native of New Caledonia or New Guinea. The specimens illustrated in Fig. 2D,E 
are from the same locality and are deposited in the MNHN as MNHN JL399 and JL413, respectively.
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Short‑reads sequencing and assembly
Arthurdendyus triangulatus was sequenced by the Genomic Analysis Platform (PAG) of the Institute of Integrative 
Biology and Systems at Laval University (Quebec, Canada) (https:// www. ibis. ulaval. ca/ en/ servi ces-2/ genom 
ic- analy sis- platf orm/). In order to minimize contaminations from the digestive tract, tissues from longitudinal 
regions were separated with a scalpel. After having been frozen in liquid nitrogen, tissues were first shredded 
using a vibro-grinding device MM 400 (Retsch) and cells were then transferred in an Eppendorf tube containing 
1.0 mL of lysis buffer prepared with 50 mM Tris–HCl pH 8.0, 200 mM NaCl, 20 mM EDTA, 2.0% SDS and 
20 mg/mL proteinase K. The latter mixture was incubated at 65 °C for 30 min. An equal volume of CTAB buffer 
containing 50 mM Tris–HCl pH 8.0, 1.4 M NaCl, 20 mM EDTA, 2.0% CTAB, 1.0% PVP 40,000 was added to the 
lysate and incubation was pursued for an additional 30 min at 65 °C. The suspension was cooled down for a few 
minutes before 5 µL of RNase A (100 mg/mL) were added; it was incubated at room temperature for 20 min and 
then split in two tubes, the contents of which were extracted twice with an equal volume of chloroform: isoamyl 
alcohol (24:1). Finally, DNA was precipitated with two volumes of EtOH, dried and dissolved in 100 µL of TE 
buffer (10 mM Tris–HCl pH 8.0, 0.1 mM EDTA). A total amount of 20.4 µg DNA was recovered. The distribution 
of the size of fragments in the DNA preparation was determined using the Femto Pulse from Agilent (Santa Clara, 
CA, USA). The library was produced using 500 ng of DNA broken with a Covaris M220 (Covaris, Woburn MA, 
USA) and the NEBNext Ultra II DNA Library Prep Kit Illumina from New England Biolab (Ipswich, MA, USA). 
A total amount of ca. 40 million clean 150 bp paired-end reads was obtained from the NovaSeq 6000 platform 
of Génome Québec (https:// www. genom equeb ec. com/).

The four specimens of Caenoplana spp. were sequenced at the Beijing Genomics Institute (BGI) (Shenzhen, 
China) on a DNBSEQ-G400 platform. Tissues were sent in 95% ethanol and DNA was extracted at the BGI 
facilities following an internal protocol. For C. coerulea and C. variegata, 60 million clean 100 bp paired-end reads 
were obtained per specimen. For C. decolorata and Caenoplana sp. ‘brown’, 40 million clean 150 bp paired-end 
reads were obtained per specimen.

For all five species, short reads were assembled using SPAdes 3.15.583 and a k-mer of 85 for the 100 bp reads 
and a k-mer of 125 for the 150 bp reads.  Consed84 was used to verify the terminal endings of the linear contigs 
corresponding to the mitogenome by using its ‘addSolexaReads.pl’ script.

Long‑reads sequencing and assembly
Long-reads sequencing of the A. triangulatus DNA preparation was performed at the PAG using the Oxford 
Nanopore Technology. First, 3 µg of genomic DNA were treated with the PacBio Short Read Eliminator (SRE_XS) 
Kit (Circulomics/PacBio, Menlo Park, CA, USA). A DNA library was then prepared using the SQK-LSK-109 Kit 
from Oxford Nanopore Technology (Oxford Nanopore, Littlemore, UK) and a fraction containing 700 ng of DNA 
was loaded onto a R9.4 MinION cell that had 1438 active pores. After 24 h of sequencing, the cell was washed 
with a nuclease solution, loaded with the remaining ca. 500 ng of DNA library, and sequencing was resumed for 
a total time of 72 h. Basic statistics of long reads were obtained from  NanoStat85.

The reads presumably assigned to the mitogenome and to the nuclear rRNA gene clusters were selected 
using the mtblaster.py script (https:// github. com/ nidaf ra92/ squir rel- proje ct/ blob/ master/ mtbla ster. py). For the 
mitogenome, the reference sequence for this search was the contig containing all the conserved mitochondrial 
genes that was assembled from short reads. The Blast-based parameters were 90% identity and  1e−150 evalue, 
with maximum size of 35 kb. For the rRNA gene clusters, the reference consisted of the partial sequences of the 
18S (AF033038) and 28S (DQ665953) rRNA genes of A. triangulatus, and the filtration parameters were also 
90% identity and  1e−150 evalue, with a maximal size of 35 kb. The resulting sets of selected reads were assembled 
using Flye 2.9.186 with the—meta option and overlap parameter of 3000 for the mitogenome and 10,000 for the 
rRNA gene clusters. In the case of the mitogenome, the assembly was submitted to three iterations of Pilon 1.2487 
using the pool of short reads previously obtained.

Annotation of mitogenomes
All mitochondrial genes were annotated with the help of  MITOS88 followed by manual curation, using the genetic 
code 9, except for the rRNA genes whose termini were mapped using alignments against published homologs. 
Positions of the tRNA genes were verified with Arwen v.1.289. Repeats in the A. triangulatus mitogenome were 
analysed using Tandem repeats  finder90 and Microsatellite repeats finder (http:// insil ico. ehu. es/ mini_ tools/ micro 
satel lites/? info). Tandem repeats were drawn as explained in Kinkar et al.65. Mitogenome maps were drawn with 
OGDRAW 91.

Annotation of nuclear rRNA gene clusters
Boundaries of the two rRNA gene clusters of A. triangulatus were determined using  Rfam92. In the case of the 
28S rRNA gene, alignments with the reference sequence of Mus musculus Linnaeus, 1758 (NR_003279)93 were 
required.

Alignment of Cox2 proteins
The amino-acid sequences of the predicted proteins encoded by the cox2 genes of A. triangulatus and Caenoplana 
spp. were aligned with the corresponding sequences of other species of Geoplanidae, Platyhelminthes, and 
reference sequences from the Conserved Domains Database (https:// www. ncbi. nlm. nih. gov/ cdd). All accession 
numbers are listed in Supplementary Table 2. The alignment was performed with  MEGA1194. LOGO alignment 
was done on the online LOGO website (https:// weblo go. three pluso ne. com/).

https://www.ibis.ulaval.ca/en/services-2/genomic-analysis-platform/
https://www.ibis.ulaval.ca/en/services-2/genomic-analysis-platform/
https://www.genomequebec.com/
https://github.com/nidafra92/squirrel-project/blob/master/mtblaster.py
http://insilico.ehu.es/mini_tools/microsatellites/?info
http://insilico.ehu.es/mini_tools/microsatellites/?info
https://www.ncbi.nlm.nih.gov/cdd
https://weblogo.threeplusone.com/
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Phylogenetic analysis
The dataset previously used to infer a phylogeny of the  Geoplanidae31,54 based on 21 mitogenome-encoded 
proteins was appended with the five new species examined here plus the recently described Dugesia constrictiva 
Chen & Dong, sp. nov.95. The amino-acid sequences of the individual proteins were first aligned using MAFFT  796 
and trimmed with the -automated1 option of  trimAl97; then, the different protein alignments were concatenated 
using Phyutility 2.7.198. ModelTest-NG v0.1.799 was used to select the best model of evolution, with default option 
for maximum likelihood inference (ML). The ML phylogenetic analysis was performed using IQ-TREE 2.2.0100 
and 1000 ultrafast bootstrap replicates.

Data availability
The mitochondrial genomes are available on Zenodo as fasta and tbl files following this link: https:// doi. 
org/https:// doi. org/ 10. 5281/ zenodo. 10256 232. All sequences have been deposited on GenBank with the accession 
numbers indicated in the text.
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