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Deep learning assists in acute 
leukemia detection and cell 
classification via flow cytometry 
using the acute leukemia 
orientation tube
Fu‑Ming Cheng 1,6, Shih‑Chang Lo 2,6, Ching‑Chan Lin 1, Wen‑Jyi Lo 1, Shang‑Yu Chien 2, 
Ting‑Hsuan Sun 2 & Kai‑Cheng Hsu 2,3,4,5*

This study aimed to evaluate the sensitivity of AI in screening acute leukemia and its capability 
to classify either physiological or pathological cells. Utilizing an acute leukemia orientation tube 
(ALOT), one of the protocols of Euroflow, flow cytometry efficiently identifies various forms of acute 
leukemia. However, the analysis of flow cytometry can be time‑consuming work. This retrospective 
study included 241 patients who underwent flow cytometry examination using ALOT between 2017 
and 2022. The collected flow cytometry data were used to train an artificial intelligence using deep 
learning. The trained AI demonstrated a 94.6% sensitivity in detecting acute myeloid leukemia (AML) 
patients and a 98.2% sensitivity for B‑lymphoblastic leukemia (B‑ALL) patients. The sensitivities of 
physiological cells were at least 80%, with variable performance for pathological cells. In conclusion, 
the AI, trained with ResNet‑50 and EverFlow, shows promising results in identifying patients with AML 
and B‑ALL, as well as classifying physiological cells.

Flow cytometry is a technique used to analyze the physical and chemical properties of individual cells in a 
heterogeneous population. This highly sensitive and versatile technology has a broad range of applications, 
including immunology, and cell  biology1. Euroflow, established in 2006, is a consortium of European laboratories 
collaborating to standardize flow cytometry  techniques2. By harmonizing protocols, reagents, and analysis tools, 
Euroflow enhances flow cytometry’s accuracy, reproducibility, and comparability for research and clinical appli-
cations. Acute leukemia orientation tube (ALOT) is one of the most common protocols of Euroflow, designed 
for screening acute leukemia, including AML, B-ALL, and T-ALL.

However, the analysis of flow cytometry is time-consuming work. Moreover, the bias of interpretation is hard 
to avoid with gating manually in different physicians or technicians.

In recent years, AI has emerged as a promising approach to enhance flow cytometry  analysis3–6. Most existing 
AI relies on traditional machine learning. Deep learning is a machine learning technique that relies on artificial 
neural networks with multiple layers, enabling the extraction of complex features and patterns from large data-
sets. The application of deep learning in flow cytometry has the potential to improve the efficiency of analysis 
and avoid the bias of interpretation.

Here, we present a deep learning application in flow cytometry produced by the acute leukemia orientation 
tube (ALOT) protocol established by Euroflow.
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Methods
IRB
The study was approved by the Ethics Review Board of the China Medical University Hospital ethics committee, 
under the IRB number CMUH111-REC2-137. The requirement for informed consent was waived by the com-
mittee. In addition, our research adhered to the principles set forth in the Declaration of Helsinki.

Protocol of acute leukemia orientation tube
The acute leukemia orientation (ALOT) panel and instrument setting protocol were modified from the Euro-
Flow Standard Operating Procedure (SOP)2. Both peripheral blood and bone marrow samples were obtained 
from patients in the Department of Hematology and Oncology, China Medical University Hospital. Samples 
were stained with the following eight antibodies, CyCD3-Pacific Blue (UCHT1, BD Biosciences), CD45- KrO 
(J.33,Beckman Coulter), CyMPO-FITC (2C7, Cytognos, BD Biosciences), CyCD79a-PE (HM57, Cytognos, BD 
Biosciences,), CD34-PerCP-Cyanin5.5 (8G12, BD Biosciences), CD19-PECyanin7 (J3-119, Beckman Coulter), 
CD7-APC(124-1D1, eBioscience), and SmCD3-APCH7(SK7, BD Biosciences). Data were acquired by BD FAC-
Suite software in a BD FACSLyric TM cytometer equipped (both from BD Biosciences) according to the manu-
facturer’s instructions and EuroFlow SOP. Each acquired data was exported as a Flow Cytometry Standard file 
(FCS) containing up to 250,000 events. Each event represents a cell with 12 channels of cell information including 
strength of eight antibodies, forward scatter-A, forward scatter-H, side scatter-A, and side scatter-H.

Data
This study conducted a retrospective analysis dataset from China Medical University Hospital, spanning the 
period between 2017 and 2022. We included FCS files produced by ALOT protocol. FCS files without diagnosis 
are excluded.

Model training and validation
We split the data into training and testing sets. The training subset contributed 80% of the total data and the 
testing subset made up the remaining 20% of the data. For cross-validation purposes, the training set was further 
divided into five folds. Our artificial intelligence training process consists of three phases.

In phase I, we introduced FCS files, which contained up to 250,000 events with 12 channels and the diagnoses 
of each patient within the training set. We utilized the ResNet-50 model as our training mechanism, aiming to 
assess see how the proposed AI identifies patients’ diseases based on 12 channels’ data.

In phase II, we segregated the FCS files manually based on cell types, which resulted in distinct FCS files, 
each containing a single cell type. Every event in new FCS files still had 12 channels as those in phase I. We then 
inputted these new FCS files and the labels of the cell type. In this phase, we employed the EverFlow model, 
described in the later section, to train AI’s capability to recognize each cell type.

In phase III, we utilized the AI, previously trained in phase II by EverFlow, to analyze each patient’s cellular 
composition initially. Subsequently, the composition, either with or without the 12 channels, along with the 
diagnoses of each patient were introduced into the AI training. ResNet-50 was chosen as the training model of 
phase III to train AI to identify patients’ diseases.

ResNet‑50
ResNet-50 is a deep residual neural network architecture, which is effective for image classification  tasks7. It is a 
50-layer deep neural network that is capable of achieving state-of-the-art performance on a variety of computer 
vision tasks. ResNet-50 was used in phases I and III of our artificial intelligence training to identify patients’ 
diseases.

EverFlow
In phase II, we designed a multi-level network architecture called EverFlow to recognize each kind of cell. 
EverFlow is a versatile and advanced multi-level network architecture specifically designed for analyzing data 
from FCS measurements. The EverFlow architecture features a sophisticated combination of three Conv1d lay-
ers (convolutional layers), three BatchNorm1d layers (batch normalization layers), and two MaxPool1d layers 
(max-pooling layers), integrated with the activation function ReLU and an Adaptive Average Pooling layer to 
optimize the computational resources, enhance the precision of the analysis, and adapt to the dynamic nature 
of flow cytometry data.

EverFlow also introduces a architectural component, the Flow Block, which combines Conv1d, BatchNorm1d, 
MaxPool1d, and ReLU layers. The Flow Block significantly improves the network’s ability to discern complex 
features and patterns within the FCS data, leading to improve overall efficiency and performance of the model 
for flow cytometry analysis tasks (Fig. 1). By concatenating multiple Flow Blocks, EverFlow efficiently encap-
sulates hierarchical data representations, delivering exceptional outcomes across various flow cytometry data 
analysis applications.

K‑fold cross‑validation
We used K-fold cross-validation to evaluate the performance of our artificial intelligence model in all three 
phases. The K we used in this study is five. K-fold cross-validation is a technique used in machine learning to 
evaluate the performance of a model on a limited dataset. The dataset is split into k equally sized folds, and the 
model is trained and tested k times. Each fold is used once as the test set and the remaining folds are used as the 
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training set. By using k-fold cross-validation, it is possible to obtain a more accurate estimate of model perfor-
mance and avoid overfitting the training data 9.

Results
Data
This study conducted a retrospective analysis that included a total of 241 patient datasets from China Medical 
University Hospital, spanning the period between 2017 and 2022. The dataset was divided into five distinct groups 
for analysis purposes. These groups consisted of 41 patients diagnosed with AML, 43 patients with B-ALL, 60 
patients with complex conditions requiring further analysis (potentially indicating myelodysplastic syndrome 
or being insignificant, 64 patients with normal findings in flow cytometry, and 34 patients with other diseases, 
including T-ALL, B-cell lymphoma, T-cell lymphoma, myeloma, and hemophagocytic lymphohistiocytosis. 
All three phases of our AI training utilized the above data, and the results are presented separately as follows:

Phase I
In this phase, a total of 185 patients’ datasets were included in both the training sets and validation sets using the 
method of five-fold cross-validation. An additional 56 patients’ dataset was employed for testing. Each patient’s 
data consisted of 12 channels listed in the protocol of acute leukemia orientation. The accuracy of recogniz-
ing AML was 91.1% (51/56), demonstrating a sensitivity of 80.0% (8/10), and a specificity of 93.5% (43/46). 
Furthermore, the accuracy of recognizing B-ALL stood at 94.6% (53/56), demonstrating a sensitivity of 90.91% 
(10/11) and a specificity of 95.6% (43/45). More detailed information is displayed in Table 1. Both sensitivity 
and specificity of AML and BALL are promising.

Phase II
We have identified FCS files corresponding to a diverse patient pool: 10 patients diagnosed with AML with CD34-
positive, 10 patients with AML with CD34-negative, 10 patients with B-ALL with CD34-positive, 10 patients 
with B-ALL with CD34-negative, 10 patients with B-cell lymphoma, 10 patients with normal findings and ten 
patients with T-lymphoblastic leukemia. We conduct a manual gating procedure on these files, subdividing them 

Figure 1.  EverFlow progress on a multi-level network architecture which includes three Conv1d layers 
(convolutional layers), three BatchNorm1d layers (batch normalization layers), and two MaxPool1d layers (max-
pooling layers). Additionally, we utilize the activation function ReLU and an Adaptive Average Pooling layer. 
This combination optimizes the computational resources required by EverFlow, enhances the analysis efficacy, 
and caters to the growing demands of modern networks. For training, we leverage the Ranger  optimizer8 with a 
learning rate of 5E−3. The training process typically converges within 75 epochs.

Table 1.  The testing results of Phase I; abbreviations: AML = acute myeloid leukemia, B-ALL = B-acute 
lymphoblastic leukemia.

Disease F1 Accuracy Sensitivity Specificity

Normal 60.0% 78.6% (46/56) 69.2% (9/13) 81.4% (35/43)

AML 76.2% 91.1% (51/56) 80.0% (8/10) 93.5% (43/46)

B-ALL 87.0% 94.6% (53/56) 90.91% (10/11) 95.6% (43/45)

Complex 44.4% 73.2% (41/56) 42.9% (6/14) 83.3% (35/42)

Other disease 54.6% 91.1% (51/56) 37.5% (3/8) 100% (48/48)
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according to cell type, which in turn led to the creation of distinct FCS files, each embodying a singular type of 
cell. These new FCS files were included as our training and testing data. (Table 2.) EverFlow was selected as the 
training model in this phase. In the testing data, the AI identified normal cells with an accuracy of over 80% for 
most cell types (Fig. 2). To identify the pathologic cells, the efficacy is various with different types of cells. Both 
AML and B-ALL with CD34-positive were well recognized by AI in 64.4% and 62.6%. The properly identifying 

Table 2.  The number of each cell type to train AI and to test AI; Abbreviations: lym = lymphocyte, 
neu = neutrophil, mono = monocyte, ery = erythrocyte, NK = Nature killer, CD34+ M = CD34+ myeloid cell, 
CD34+ B = CD34+ B-precursor, AML = acute myeloid leukemia, B-ALL = B-acute lymphoblastic leukemia, 
T-ALL = T-lymphoblastic leukemia, BCLPD = B-cell chronic lymphoproliferative disorder.

Cell type B lym T lym Neu Mono Ery Eos NK CD34 + M

Number of Training 21,659 154,384 1,239,472 110,491 168,531 19,543 25,784 10,049

Number of Testing 12,370 51,928 388,069 22,001 26,206 5766 4328 1268

Testing/training 36.6% 25.2% 23.8% 16.6% 13.5% 22.8% 14.3% 11.2%

Cell type CD34+ B debris AML, CD34+ AML, CD34− B-ALL, CD34+ B-ALL, CD34- T-ALL BCLPD

Number of Training 3971 729,473 1,131,283 963,743 1,123,584 1,145,780 968,724 486,071

Number of Testing 906 93,099 263,669 506,688 270,430 299,910 206,789 71,828

Testing/training 18.6% 11.3% 18.9% 34.5% 19.4% 20.8% 17.6% 12.9%

Figure 2.  The rates of cells properly identified by AI; Abbreviations: AML = acute myeloid leukemia, 
B-ALL = B-acute lymphoblastic leukemia, BCLPD = B-cell lymphoproliferative disorder, NK = nature killer, 
T-ALL = T-lymphoblastic leukemia.
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rate in AML with CD34-negative dropped to 32.0% and the rate in B-ALL CD34-negative is only 18.5%. Only 
14.6% of cells of B-cell lymphoma are properly identified by the AI (Fig. 3).

Phase III
In this phase, similar to phase I, a total of 185 patients’ datasets were included in both the training sets and vali-
dation sets using the method of five-fold cross-validation. An additional 56 patients’ dataset was employed for 
testing. The inputted data consisted of cell compositions of each patient with or without 12 channels.

Without 12 channels, the accuracy of recognizing AML was 89.2% (50/56), demonstrating a sensitivity of 
90.0% (9/10), and a specificity of 89.1% (44/46). The accuracy of recognizing B-ALL was 98.2% (55/56), demon-
strating a sensitivity of 90.91% (10/11) and a specificity of 100% (45/45). With 12 channels, the accuracy of rec-
ognizing AML was 94.6% (53/56), demonstrating a sensitivity of 90.0% (9/10), and a specificity of 95.7% (44/46). 
The accuracy of recognizing B-ALL stood at 98.2% (55/56), demonstrating a sensitivity of 90.9% (10/11) and a 
specificity of 100% (45/45) Tables 3. and 4. Combining outcomes from phase I and Phase III, our AI effectively 
identified patients with AML or B-ALL using data from either the 12 channels of FCS files, cell composition, 
or a combination of both. The performances are nearly identical; however, the AI appears to perform optimally 
when provided with information from both 12 channels and cell composition.

Figure 3.  With EverFlow, trained in Phase II, we can efficiently classify cells type. The left side of this figure 
shows an outcome from manually gating, with dots of different color representing various cell types. The right 
side of this figure presents an outcome generated by Everflow. Two outcomes are highly similar to each other.

Table 3.  The testing results of Phase III with cell label only.

Disease F1 Accuracy Sensitivity Specificity

Normal 64.5% 80.4% (45/56) 76.9% (10/13) 81.4% (35/43)

AML 75.0% 89.3% (50/56) 90.0% (9/10) 89.1% (41/46)

B-ALL 95.2% 98.2% (55/56) 90.91% (10/11) 100% (45/45)

Complex 50.0% 82.1% (46/56) 35.7% (5/14) 97.6% (41/42)

Other disease 75.0% 92.9% (52/56) 75% (6/8) 95.8% (46/48)

Table 4.  The testing results of Phase III with cell labels and data of 12 channels.

Disease F1 Accuracy Sensitivity Specificity

Normal 60.0% 78.6% (44/56) 69.2% (9/13) 81.4% (35/43)

AML 85.7% 94.6% (53/56) 90.0% (9/10) 95.7% (44/46)

B-ALL 95.2% 98.2% (55/56) 90.9% (10/11) 100.0% (45/45)

Complex 41.7% 75.0% (42/56) 35.7% (5/14) 88.1% (37/42)

Other disease 75.0% 92.9% (52/56) 75.0% (6/8) 95.8% (46/48)
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Discussion
ResNet-50 was chosen for the training in Phase I and Phase III of our project. This decision was made because 
it showed excellent performance in Phase I. In this phase, we tried out several models, which included CNN, 
SEResNet-50, SEResNext50, ResNext50_32 × 4d, and Efficientnet-B4. Even though all these models did well, 
ResNet-50 was the best in terms of speed and accuracy. Therefore, we chose ResNet-50 for Phase III as well.

However, for Phase II, we found that ResNet-50 wasn’t the right fit. In this phase, we used AI to identify dif-
ferent types of cells, which was quite different from Phase I and Phase III where AI was used to spot diseases. 
Because of this, using ResNet-50 for training AI in Phase II led to overfitting, even though it worked well in 
Phase I and Phase III. So, we came up with EverFlow, a simpler model that we created specifically to analyze 
FCSs in Phase II.

Our AI effectively identified patients with AML or B-ALL. Despite its impressive performance, the AI still 
faced difficulties in correctly identifying one patient with AML and one with B-ALL. The AML patient, whom 
the AI failed to identify, had AML cells with CD34-negative. In the context of ALOT, these CD34-negative 
AML cells may not have the specific marker required for accurate identification. This could lead to confusion 
and inaccuracies, even when categorizing the cells manually. The AI classified this patient as a complex case 
requiring further analysis. Strictly, all patients with AML are successfully identified ultimately. In a similar vein, 
the AI failed to accurately identify a patient with B-ALL whose cells were also CD34-negative. These cells can 
easily be misclassified as B-cell lymphoma in a clinical setting, which is precisely the mistake made by the AI. In 
conclusion, AI may have limitations in identifying pathological cells that are CD34-negative, a task that can be 
challenging even when performed manually.

In phase II, our AI only identified 64.4% AML cells and 62.6% B-ALL cells that were positive for the CD34 
marker. Despite these percentages, the AI, which was trained on cell composition, was still able to identify all 
patients with either CD34-positive AML or CD34-positive B-ALL. Moreover, some cells like basophils could not 
be identified in ALOT tube may be misrecognized as other cells by AI. This suggested that the AI only needed 
to identify a subset of pathological cells to make a correct diagnosis. Even with a lower sensitivity of 32.0% for 
CD34-negative AML cells and 18.5% for CD34-negative B-ALL, the AI maintained a robust performance in 
patient identification. This performance was, at a minimum, comparable to that of a human, as we discussed in 
the previous section.

Myelodysplasia syndrome also referred to as preleukemia, another disease that clinicians aim to detect using 
flow cytometry. However, ALOT was designed primarily for screening acute leukemia and the sensitivity for 
detecting myelodysplasia syndrome remained uncertain. Another protocol established from Euroflow, named 
acute myeloid leukemia/myelodysplasia syndrome tube (AML/MDS) which utilizes a far more complex set of 
antibodies, is created for the diagnosis of myelodysplasia syndrome. In our study, we classified patients showing 
possible signs of myelodysplasia syndrome as complex cases who were recommended for additional tests with 
AML/MDS tubes. Within the context of ALOT, the AI struggled to screen these patients with a top sensitivity 
of merely 42.9%. The current priority of our group is finding effective ways to train AI to identify these patients.

The analysis of flow cytometry typically involves identifying cells based on their expression of specific markers, 
which is then compared to the expressions in other cells within the same patient. In phase II of our AI train-
ing, we amalgamated identical cell types from various patients. This approach, however, resulted in the loss of 
certain information within individual patients. The consequences of this information loss on the AI’s ability to 
correctly identify cells remain uncertain. A more thorough investigation is necessary to determine the potential 
impact of this issue.

In addition to AML and B-ALL, ALOT is also designed for detecting T-ALL. However, patients with T-ALL 
are relatively less common compared to patients with AML and patients with B-ALL, and in this study, we were 
only able to include 11 patients with T-ALL. The limited number of T-ALL cases presents a challenge for adequate 
AI training or further testing to accurately identify patients with T-ALL.

Despite this limitation, in phase II, where the AI is trained to distinguish pathological cells from normal cells, 
the AI was able to identify T-ALL cells with a sensitivity of 97.7%. This performance was much better than that of 
AML, CD34-positive, and B-ALL, CD34-positive which achieved sensitivities of 64.4% and 62.6% respectively. 
This result is logical, given that T-ALL cells, which are CD45-negative, can be more readily differentiated from 
normal T cells that are invariably CD45-positive. In contrast, pathological AML, CD34-negative, and B-ALL, 
CD34-negative cells can be easily mistaken for physiological cells, a factor we have noted previously. Therefore, 
given the effectiveness of AI in recognizing T-ALL cells, we anticipate that AI could also be successful in iden-
tifying patients with T-ALL.

Although the sample size employed in this study is relatively limited, the performance of the trained AI in 
detecting disease and classifying cell types remains promising. The results indicate the benefit of including a 
larger dataset in future and investing in other protocols of Euroflow.

Comparing to manual gating which take five to ten minutes to analysis an ALOT FCS file, it only takes less 
than one minute with AI assistance. It saves time efficiently.

There are three features that distinguish our AI from previous studies. First, our training is based on deep 
learning, while most previous studies relied on traditional machine learning technique. Second, our training 
focuses on analyzing Euroflow, which is highly standardized and reproducible. Lastly, our AI is trained specifi-
cally to detect acute leukemia, while other AIs are trained to identify a variety of diseases.”

Conclusion
The AI, trained with ResNet-50 and EverFlow, shows promising results in identifying patients with AML and 
B-ALL, as well as classifying physiological cells. Nonetheless, there remain unmet needs that necessitate further 
investigation.
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Data availability
All data generated in this study are included in this published article and its supplementary information files. 
The data supporting the findings of this study are available upon request. For access, please contact the corre-
sponding author, Kai-Cheng Hsu.
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