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Single-cell RNA sequencing (scRNA-seq) technology has been widely used to study the differences 
in gene expression at the single cell level, providing insights into the research of cell development, 
differentiation, and functional heterogeneity. Various pipelines and workflows of scRNA-seq analysis 
have been developed but few considered multi-timepoint data specifically. In this study, we develop 
CASi, a comprehensive framework for analyzing multiple timepoints’ scRNA-seq data, which provides 
users with: (1) cross-timepoint cell annotation, (2) detection of potentially novel cell types emerged 
over time, (3) visualization of cell population evolution, and (4) identification of temporal differentially 
expressed genes (tDEGs). Through comprehensive simulation studies and applications to a real multi-
timepoint single cell dataset, we demonstrate the robust and favorable performance of the proposal 
versus existing methods serving similar purposes.

In recent years, the emergence of the single-cell RNA sequencing (scRNA-seq) technique has enabled research-
ers to study cellular compositions and transcriptomic profiles with unprecedented precision. After finishing the 
preprocessing and quality control steps, the downstream analysis of scRNA-seq data includes dimension reduc-
tion, unsupervised clustering, differential expression analysis and so on. The popular pipelines for these analyses 
include scran1, Seurat2, and SINCERA3. Recently, a number of supervised cell type annotation algorithms which 
can potentially identify novel cells have been developed, including scmap4, CHETAH5, and singleR and CAMLU6. 
In addition to recognizing the cell types, detecting differentially expressed genes (DEGs) is another common 
task in scRNA-seq analysis and lots of methods have been developed for this task. Simple statistical tests (i.e., 
the t-test and the Wilcoxon Rank Sum test) are used in pipelines such as Seurat. But more complex model-based 
frameworks have been shown to achieve better performance, e.g., DESeq27 and MAST8.

Although many existing methods have been developed, almost all of them focus on analyzing data collected 
from cross-sectional studies, i.e., the scRNA-seq experiments are performed on samples collected at a single 
time point. In the setting of studying disease development and progression, following patients for a period of 
time and collecting data from continuing experiments is actually a natural choice. Recent years have witnessed 
a growing number of multi-timepoint studies. For example, Ravindra et al. studied the SARS-CoV-2 infection 
by performing scRNA sequencing experiments on infected human bronchial epithelial cells at four time points 
to track patients’ immune responses to the virus9. In another study, Zhang et al. followed patients with ovarian 
cancer for five years and collected tissue samples before and after chemotherapy to study their stress-promoted 
chemoresistance10. Multi-timepoint scRNA-seq experiments provide a powerful tool for studying the dynamics 
of gene expression in individual cells and how it changes in response to various stimuli or disease conditions. 
At present, there are no available computational tools to comprehensively analyze multiple timepoints’ scRNA-
seq data. Most of the current transcriptomic single-cell studies with the design of different timepoints still use 
methods and workflows, such as Seurat2, which do not specifically take the time changes into consideration. 
Ramazzotti et al. proposed a framework called LACE that processes Single-cell mutational profiles, which are 
generated by calling variants from scRNA-seq data collected at different time points11. However, LACE specifi-
cally focuses on building somatic mutational profiles and reconstructing longitudinal clonal tree in tumor cells, 
and is not a general framework designed for multi-timepoint scRNA-seq data.

There are several reasons why cross-timepoint data can be more challenging to analyze compared with cross-
sectional data. First, samples from the same subject are likely to be correlated. The information from previous 
time points are generally helpful for analyzing the data from later time points, and this should be considered for 
information borrowing. Such correlation also complicates differential signal detection. Second, new cell types 
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may emerge over the experimental course. Ignoring the potential for new cell types can lead to inaccurate cell 
annotation and misleading results. Such newly emerged cells may also be the key to disease progression and 
treatment outcome, and thus they should be highlighted in the analysis procedures. Third, the single cell data 
are usually collected gradually over a long period of time. It is preferable for the analysis pipeline to take such 
collection schedules into consideration, when able, to allow for stepwise analysis and the incorporation of future 
data without changing the current results dramatically.

To address these challenges, we develop a comprehensive framework specifically to analyze scRNA-seq data 
from multi-timepoint experiments. Similar to other pipelines, the first step of our method is to annotate cell 
labels. But our method allows for information borrowing from earlier time points, as well as step-wise analysis. 
Our framework implements a neural network classifier to assign cell labels in a supervised way, and it can achieve 
high accuracy in the cross-timepoint setting. Nevertheless, one challenge faced by all the supervised annotation 
methods is identification of the novel cell type, which is defined as a cell type that is not present in the initial 
or earlier time points and that only exists in the newer collections. Along with the supervised annotation, we 
propose and implement a novel methodology pipeline in the framework to identify new cell types that have 
emerged over time. Once the annotation is done, we provide visualizations to illustrate the cell population evolu-
tion. Additionally, we add one key downstream analysis, temporal differential expressed gene (tDEG) detection, 
to our framework. The aim is to identify genes with wildly increasing/decreasing behavior over time and with 
different changing patterns from group to group. For example, our framework is able to select the genes whose 
expression increases over time for responders but decreases over time for non-responders. The whole framework 
is named the Cross-timepoint Analysis of Single-cell RNA sequencing data (CASi) method.

Methods and materials
An overview of CASi
An overview of the whole CASi pipeline are presented in Fig. 1. CASi takes scRNA-seq data collected from dif-
ferent timepoints as the input. To simplify the discussion, we consider an scRNA-seq dataset collected at three 
time points: t0 , t1 , and t2 . Assuming t0 data is pre-labeled, i.e., t0 data is provided with cell types, the labels can be 
obtained using existing unsupervised or supervised approaches for cross-sectional data. The first step of CASi 
is to perform a supervised annotation for unlabeled data t1 and t2 using an artificial neural network classifier. 
However, if the labels for the t0 data are not provided, CASi instead will perform an unsupervised clustering 
and use the clustering number as the cell type labels for t0 data. Then the classifier can be trained with t0 data 
and applied to annotate t1 and t2 data. Here we prefer an artificial neural network over other machine learning 
methods because a few recent works12,13 showed its superior accuracy and favorable computational performance 

Figure 1.   An overview of the CASi framework. The input is scRNA-seq data from different timepoints’ 
experiments. CASi mainly consists of three steps: (1) cross-time points cell annotation, (2) detection of potential 
novel cell types, (3) identification of temporal differentially expressed genes.
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in the task of cell type annotation. Additionally, besides analyzing the transition from t0 to t1 and t0 to t2 , CASi 
allows to analyze the transition from t1 to t2 as well. Timepoint of interest is subjective to users’ selection in the 
framework. If they are interested in the transition from t1 to t2 , they could input the t0 data and unlabeled t1 
data first, then combine the original t0 data and the labeled t1 data which will the output of CASi, and use this 
combined t0/t1 cells and unlabeled t2 cells as the new inputs to re-do the analysis. In this way, users will be able 
to look into the transition from t1 to t2.

The second step of CASi is to identify any novel cell type that have emerged over time. When data of interest 
is collected from tumor samples, it is highly possible that the tumor cells will differentiate and new cell types (e.g., 
a distinct subclone of tumor cells) might appear. Assuming the cells of t1 and t2 data are a mixture of known and 
unknown cell types, we have designed a computational pipeline to distinguish these new cell types from existing 
cell types. The pipeline starts with a feature selection procedure to select a smaller set of informative features, 
followed with a dimension reduction procedure to better extract information from these features. Many previous 
works use large correlation as a criterion to identify the same cell type, such as scmap4, CHETAH5, NeuCA14, 
SingleR15, etc. Here we use the two-sample t-test to compare the correlations between features in known cell 
types and features in unknown cell types, and thus we are able to identify novel cells. Intuitively, after using the 
neural network to assign cell types for t1 and t2 data, if the cells actually belong to a new, unknown cell type, the 
levels of similarity with the known cell types will be lower than all of the other cells. Additionally, it should be 
noted that, CASi allows for the detection of multiple novel cell types. We achieve this by providing users with 
both the cluster-labeled UMAP (Uniform Manifold Approximation and Projection) plot and the correlation-
labeled UMAP plot, which visually, directly reveals the possibility of multiple novel cell types when the UMAP 
plots indicate different levels of correlation.

The final step of CASi is to perform differential analysis tailored to multi-timepoint scRNA-seq data. We 
combine a generalized linear model with iterative feature selection to select genes that have apparent increasing/
decreasing behavior over time and genes that behave differently along time in different groups.

Artificial neural networks (ANNs)
Denote the scRNA-seq expression matrix of the training data by X0 where X0 is a p by n0 matrix with p being 
the total number of measured genes and n0 is the number of cells, and the corresponding training cell label, Y0 , 
is a n0 by 1 vector. Similarly, denote the expression matrix of the testing data by X1 , which has dimensions p by 
n1 and the labels by Y1 . After the standard min-max normalization, we select the top 2000 most variable genes 
from X0 and the same set of features from X1 . Next, using Keras16, an open-source software library that provides 
a Python interface for artificial neural networks, we train a neural network model with one input layer, one 
output layer, and three hidden layers:

The parameter set θ = {W0,W1, · · · ,W3,β0,β1, · · · ,β3,β out ,W out } will be estimated during the training 
process. And zl for l = {1, 2, 3} are the hidden neurons with corresponding weight W1 , and bias β1.σ(·) is the 
activation function, which can be a sigmoid, a rectified linear unit (ReLU), a hyperbolic tangent, etc. We choose 
to use the ReLU function in our hidden layers because the neural networks based on an ReLU function are gen-
erally easier to train and can avoid the vanishing gradient problem during optimization17; it is mathematically 
expressed as σReLU(x) = max(x, 0) . The SoftMax function will be used in the output layer. This is because the 
number of output categories is more than two, and it converts the values of the output layer into the predicted 
probabilities of each label. The number of neurons in the three hidden layers is selected as {256, 128, 64} . The 
model is trained using a stochastic gradient descent (SGD)-based algorithm with the mean squared error loss 
function L
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2 . We use Adam as the optimization algorithm18, and the mini-batch 
training strategy19, which randomly trains a small proportion of samples and validates the rest of the samples 
in each iteration to improve training efficiency. By monitoring the loss, we implement the early stopping rule in 
Keras to avoid overfitting. Once the model performance stops improving for a couple epochs, the training process 
will stop. Additionally, to further prevent the overfitting issue, we add a dropout step with the dropping rate of 
0.4 for each hidden layer to randomly drop units from the neural network during training.

Identify novel cell types
Let Yk , k = {1, . . . ,K − 1,K} be the cell labels, and YK is the novel cell type that only appears in the testing data 
X1 . Then when annotating the cells in X1 , all YK cells will be wrongly labeled as Yk , k = {1, . . . ,K − 1} by the 
neural network classifier. To address this issue, we design a pipeline. For each cell type, we implement an iterative 
clustering step using the Louvain algorithm20. We iterate over a series of resolution parameters and the algorithm 
stops only when the cell population is clustered into two clusters. Then we apply t-test on these two clusters using 
cell-type-specific correlations. If passing the t-test, the cluster with smaller correlation values will be considered 
‘suspicious’ (novel) cells. The key idea of this pipeline is that the similarity (correlation) of the new/unknown cell 
type with the known cell types will be different (usually smaller), which can be captured by the two-sample t-test. 
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The final cell identities of the identified new cell types will be confirmed with external biological knowledge and 
expert opinions.} In detail, the pipeline consists of the following steps: 

1.	 Reduce dimension:
	   XYk

0[2000×n0]

UMAP
−→ UYk

[20×n0]
, XYk

1[2000×n1]

UMAP
−→ VYk

[20×n1]
, k = {1, . . . ,K − 1}

2.	 Obtain the mean of UMAP vectors for each cell type:

	   mYk

[20×1] =

∑

UYk

[20×n0]
n0

, k = {1, . . . ,K − 1}
3.	 Obtain the Pearson correlation between cells in X1 and the mean:
	   rY

k

[1×n1]
= corr

(

VYk

[20×n1]
,mYk
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)

, k = {1, . . . ,K − 1}

4.	 Re-cluster each cell type in X1 into two groups using the Louvain algorithm20:
	   XYk

1[2000×n1]

Louvain
−→ X

Yk ,group 1
1 ,X

Yk ,group 2
1 , k = {1, . . . ,K}

5.	 For each cell type Yk apply two-sample t test to the two groups of cells using their cell type-specific correlation 
values. If significant, we will designate the group of cells that has a smaller mean correlation as the potential 
new cell type.

6.	 For each cell type Yk , the t-test will assign a small group of cells as the new cell type. And in the end, we 
combine those significant groups of cells and annotate them as the new cell type YK.

Identify temporal differentially expressed genes (tDEGs)
For each gene in the dataset of interest, we build a negative binomial GLM model using a log link function. The 
negative binomial model is a generalization of the Poisson model such that the count Yi still adopts a Poisson, 
but the expected count µ∗

i  is a gamma-distributed random variable with mean µi and constant scale parameter 
ω , i.e., the mean and variance are not equal anymore. Mathematically, the count Yi follows a negative-binomial 
distribution21:

where the expected value is E(Yi) = µi and the variance is V(Yi) = µi + µ2
i /ω.

The covariates that we put into the GLM model are the time variable, the strata of interest (e.g., the response 
status), and the interaction term of time and strata as independent variables, and the gene expression count is Yi . 
Note that for the existing methods, including DESeq27, MAST8, and the Wilcoxon Rank Sum test offered by the 
FindMarker() function in Seurat, only one binary covariate (i.e., the strata of interest) can be used in the analysis. 
This means that multiple covariates and the interaction term are not under consideration when finding tDEGs. 
And when we fit the negative binomial GLM model, both the regression coefficients and ω will be estimated by 
the method of maximum likelihood. For each model, the p-value of each term is obtained from testing the null 
hypothesis of its coefficient being equal to zero. Then for all genes, we extract the interaction terms’ p-values and 
use the Bonferroni correction to account for multiple-test effect.

Evaluation metrics
Assuming three time points: t0 , t1 , t2 , to evaluate the cell annotation step, we use two metrics, accuracy and 
adjusted rand index (ARI), when comparing with other methods for the cell annotation step. The accuracy is 
defined as (number of correctly labeled cells at time t1 and t2 ) / (total cell number of t1 and t2 data). And ARI 
is a widely used metric to evaluate clustering performance. Rand Index looks at similarities between any two 
clustering methods and ARI is the corrected-for-chance version of the Rand index22. In this study, the existing, 
supervised clustering methods to compare with include scmap4, CHETAH5, and scPred23.

For the detection of tDEGs step, we use true discovery rate (TDR) to assess our method’s performance. TDR 
is a measure of accuracy when multiple hypotheses are being tested at once and mathematically equals to (1-false 
discovery rate). The existing, differential expression analysis methods to compare with include DESeq27, MAST8, 
and the Wilcoxon Rank Sum test offered by the FindMarker() function in Seurat2.

Results
Simulation study
The simulation data are generated by assuming three sampling time points: t0 , t1 , t2 . To fully evaluate our 
method, we designed three scenarios: 1) t0 , t1 , and t2 data contain the same cell types but with different cell 
type compositions; 2) a cell type in t0 disappears in t1 and t2 data, i.e., t0 data have one more cell type than t1 
and t2 data; 3) a new cell type appears in t1 and t2 data, i.e., t1 and t2 data have one more cell type than t0 data. 
We obtain a publicly available dataset of peripheral blood mononuclear cells (PBMC)24, containing more than 
60,000 sorted cells from eight immune cell types. We randomly extract cells from five cell types and use different 
cell type compositions for different scenarios. Detailed settings of these three scenarios can be found in the 
supplementary file.

CASi facilitates cross time points cell annotation with high accuracy
CASi is suitable when data of interest are collected from multiple timepoints as it borrows information across 
time points and allows for accurate cell annotation when data becomes gradually available. Using the neural 
network classifier, CASi achieves a high accuracy when mapping the cell labels of the initial time point onto later 
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time points. The accuracy and ARI of each scenario based on 200 Monte Carlo experiments are shown in Fig. 2. 
It can be observed that, for scenario 1 and 2, our method has the highest accuracy and the highest ARI, but the 
advantage is not significant when compared to the scPred method. For scenario 3, we report the performance 
of CASi-n, which refers to only the neural network classifier, and the performance of CASi, which refers to the 
neural network classifier in alignment with the identify-novel-cell pipeline. As we expected, the disappearance 
of one cell type (scenario 2) does not affect the classifier’s performance, while the appearance of one novel cell 
type (scenario 3) causes trouble to the classifier. After our pipeline identifies and labels the novel cells, both the 
accuracy and the ARI improve significantly, and CASi demonstrates state-of-art performance when novel cell 
types appear. For scenario 3, we vary the setting of scenario 3 and use different cell types as the novel cell type. 
In Panel C, we report the accuracy of these settings and observe a similar pattern that CASi outperforms other 
existing methods.

CASi addresses possibility of novel cell types appeared in later time points
CASi uses the levels of similarity between the known cell types and new cells to identify potential novel cell types 
that may have appeared at later time points. The full pipeline of identifying novel cells is described in the Method 
section. We provide users with the UMAP plots displaying cell type clusters and the UMAP plots displaying the 
correlation. Fig. 3 shows the UMAP plots of t1 data. In the left figure, t, the purple group represents novel cells 
that appeared in t1 . And we can see that, in the right figure, the correlation between this new cell type and the 
existed cell type is very low. The UMAP clustering of t1 data cell labels, the UMAP clustering of t2 data cell labels, 
the UMAP clustering of t2 data highlighting the novel cell type, and the UMAP clustering of t2 data showing 
correlation levels can be found in the supplementary file (Figure 2∼5). Here for scenario 3 in our simulation, 
we only assign one new cell type. When > one new cell type appears in later time points, users will be able to 
recognize them separately as new cells will be clustered into multiple groups on the UMAP plots.

Figure 2.   Results of PBMC simulation study based on 200 repetitions. CASi-naive (CASi-n) refers to only the 
neural network classifier without our follow-up pipeline. (A) accuracy of the cross-time points cell annotation. 
(B) ARI of the cross-time points cell annotation. (C) accuracy of scenario 3 using different cell types as the new 
cell types emerged in t1 and t2.
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Figure 3.   UMAP plots of the PBMC simulation study: intuition behind identifying novel cell types. The 
left figure is the clustering that highlights the novel cell type group, and the right figure is the clustering of 
correlation levels between existing cell types in t0 data and new cell types in t1 data.

Figure 4.   Fish plots of scenario 3 in which a novel cell type appears. We use B cells as the novel cell type which 
shows in green. The first figure is the ground truth of cell population and CASi is able to annotate the cells with 
high accuracy compared with other methods.
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CASi provides visualization of cell type evolution over time
To track the changes of the complex cell population, an appropriate form of visualization is of importance. We 
use a combination of UMAP and fish plots to illustrate the dynamic changes in the cell type proportions over 
time. Traditional UMAP/scatter plots visually show how separable the clusters/cell types are using selected 
features. The fish plot developed by Miller et al. is a relatively new tool displaying changes in populations of cells 
over time25, which is a great tool to visualize the temporal cellular proportion evolution. In fish plots, each color 
represents one cell type; the first plot in Fig. 4 shows the true cell type population of Scenario 3, where a novel 
cell type appears in t1 and t2 . We can see that the CASi prediction is highly similar to the ground truth and able to 
identify most novel cells, while other methods either only identify a small portion of novel cells (CHETAH) or fail 
to capture any novel cells (scPred and scmap, the scmap result can be found in the supplementary file, Figure 6).

CASi identifies tDEGs with high TDR
A natural interest in multi-timepoint scRNA-seq data analysis is to detect genes that change vividly over time, 
and different groups might have different changing directions. We refer to this kind of gene as tDEGs. We 
randomly select 2000 genes and 900 monocyte cells from the PBMC dataset. Among 2000 genes, 300 genes 
are randomly selected to be tDEGs. We design three levels of time effect: weak, medium, and strong. Detailed 
procedures of how we assign tDEGs can be found in the supplementary file. Figure 5 shows that for all three 
time effect levels, CASi has the highest TDR at different thresholds, which means that CASi is able to capture 
tDEGs at the greatest extent. When the time effect increases, the TDR of CASi increases as well, but the TDR of 
other methods decreases.

A real‑world multi‑timepoint dataset
We apply CASi to a real-world mantle cell lymphoma (MCL) dataset26 where all patients received ibrutinib, 
the current standard of care treatment for MCL, but responded differently to the treatment. Three patients 
are ibrutinib-responsive (patients V, C, and D) and two patients are non-responsive (patients B and E). The 
MCL dataset requires cross-timepoint analysis: it includes measurements of 21 specimens collected at baseline, 
during treatment, and/or at disease remission/progression. Since the number of measurements and the timing 
of measurements vary from patient to patient, we manually binarize the time variable into two groups: pre-
treatment and post-treatment, which also aligns with the analysis in the original paper of the MCL data.

Cross‑timepoint annotation
We again use accuracy and ARI to compare CASi with existing methods. From Fig. 6, in Panel A, we can see 
that when mapping the cell labels of pre-treatment data to the cell labels of post-treatment data, CASi achieves 
the highest accuracy and the highest ARI. The true cell composition of post-treatment and the predicted cell 
composition by CASi are displayed in the supplementary file, Figures 7 and 8, and we can see that the two of 
which are visually identical. In Fig. 6 Panel B, we show UMAP plots of cell types (top) and correlation (bottom). 
The tumor cells are separated into two clusters and the correlation between tumor cells in post-treatment data 
and tumor cells in pre-treatment data are not the same for these two clusters. The cluster with a correlation of 
0.5–1 is more similar to the tumor cells in pre-treatment data, while the cluster with a correlation of 0–0.25 is 
very different from the tumor cells in pre-treatment data. This is a very interesting observation since tumor cells 
appear to be more genetically unstable than normal cells and may evolve over the treatment course. Over time, 
tumor cells divide more rapidly and become less dependent on signals from other cells. This is probably why we 
observe two clusters for post-treatment tumor cells with two levels of correlation.

Figure 5.   True discovery rate of identifying temporal differentially expressed genes. The results are averaged 
based on 200 repetitions. Three simulation settings are being considered here: weak time effect (left), medium 
time effect (middle), strong time effect (right).
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Identification of tDEGs
tDEGs refer to the genes that change vividly over time, and the changing patterns are distinct for different groups. 
We apply CASi and Seurat at the same time to this dataset to find tDEGs. Using p = 0.05 as a cutoff, among a total 
of 1469 genes, CASi identifies 268 tDEGs and Seurat identifies 75 DEGs. There are 21 overlapped genes for tDEGs 
found by CASi and DEGs found by Seurat. CASi is able to identify a few tDEGs that Seurat failed to capture 
their significance. In Fig. 7 Panel A, we illustrate the two top tDEGS identified by CASi but not Seurat, IFITM2 
(the left plot) and IFITM3 (the right plot), and we draw their gene expression patterns for all patients. Patients 
B and E are non-responders and are drawn in blue; patients C, D, and V are responders and are drawn in red. 
Clearly, for responders, the gene expression of the identified genes increases after the ibrutinib treatment, while 
for non-responders, the gene expression decreases after the ibrutinib treatment. This finding is supported by a 

Figure 6.   Annotation results of real-world data application. (A) shows the accuracy (left) and adjusted rand 
index (right) of the supervised clustering step. (B) shows the clustering of cell labels (left) and the clustering 
of correlations between pre-treatment cells and post-treatment cells (right) in which red represents a low 
correlation level.

Figure 7.   Differential expression analysis results of real-world data application. The changing gene expression 
profiles of IFITM2 (left) and IFITM3 (right), which are temporal differentially expressed genes identified by 
CASi but not Seurat. Non-responders are shown in blue; responders are shown in red. Totally opposite patterns 
can be seen for responders and non-responders.
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recent study in which Lee et al. discovered that deletion of IFITM3 in MCL cells reduced competitive fitness and 
proliferation, and the upregulation of IFITM2 might suggest a compensation mechanism for the loss of IFITM327.

Additionally, using the top significant genes selected by CASi, we perform enrichment analysis, which identi-
fies biological pathways that are enriched in this gene list more than just by chance. The results of the Hallmark 
pathway (top) and the Reactome pathway (bottom) are displayed in Fig. 8. For the top two hallmark pathways, 
MYC and oxidative phosphorylation, multiple studies have reported that MYC is frequently expressed in MCL, 
and targeting MYC provide a novel therapeutic strategy for MCL patients28,29; multiple studies have found that 
the MCL cancer cells can be effectively targeted with a small-molecule inhibitor of oxidative phosphorylation 
as a therapeutic strategy30,31. For reactome pathways, several researchers have findings that match our own; for 
example, RNA metabolism pathway is significantly enriched in MCL32 and the ibrutinib resistance of MCL relates 
to the receptors initiating the innate immune system33.

Discussion
Although a series of clustering and annotating methods have been developed for scRNA-seq data, these methods 
mostly focus on cross-sectional studies. A systematic analysis tool designed specifically for cross-timepoint 
scRNA-seq datasets is lacking. With a rapidly growing number of studies conducting experiments at different 
timepoints, there is a great need for methods to analyze multi-timepoint single-cell data. In this study, we present 
CASi, a comprehensive framework to provide a full analysis pipeline for analyzing scRNA-seq data from multi-
timepoint designs, ultimately creating an informative profile of dynamic cellular changes.

The first step of CASi uses the neural network classifier to achieve cross-time points cell annotation with 
high accuracy. And as a supervised learning method, it efficiently avoids the overclustering issue. Overclustering 
often appears in unsupervised clustering. When the total number of cells increases, the cells of one type will be 
separated into two or even more clusters. Using the same scenario settings of the simulation, we compare ARI of 
unsupervised clustering implemented in the Seurat package with ARI of CASi using supervised clustering. The 
results of three scenarios are included in the supplementary file Figure 11. It can be observed that our method’s 

Figure 8.   Enrichment analysis results of real-world data application using 500 temporal differentially expressed 
genes identified by CASi: the hallmark pathway results (top), the reactome pathway results (bottom).
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ARI increases with the cell number increasing, while the Seurat ARI decreases with the cell number increasing. 
This indicates that the supervised clustering method of CASi avoids the overclustering problem.

However, supervised clustering methods also have a universal disadvantage when dealing with novel cell 
types. When the new/unknown cell types appear only in the testing data, the classifier will not be able to 
distinguish them and will assign these cells to an existing but wrong cell type. In continuing experiments, with 
the progression of the tumor, some existing cell types might disappear and some new/unknown cell types that 
are not present at the beginning might appear later. Another innovation of our work is the detection of novel/
unknown cell types that emerge over time. We designed a pipeline using correlation and t-test in a reliable way 
to distinguish novel cell types. We have demonstrated state-of-the-art power in both simulation studies and 
real-world data application compared with existing methods serving a similar purpose.

Differential expression analysis is one of the most common tasks in scRNA-seq studies, and it is also a 
critical step in CASi. Several methods have been proposed to detect DEGs, including BPSC34, MAST8, and 
Monocle35. These methods are designed for two group comparisons using scRNA-seq data, and they may have 
difficulty accounting for the time effect and interaction terms across different timepoints’ scRNA-seq data. 
CASi allows users to detect tDEGs, which refers to genes that express wildly changing behavior over time. To 
find tDEGs, we combine the generalized linear model with iterative feature selection. For each gene, a p-value 
is obtained from the GLM model to indicate evidence of differential expression. We initially started the analysis 
with the generalized linear mixed model (GLMM) to account for subject’s random effect. However, GLMM is 
computationally expensive, and looping through each gene is infeasible in most scenarios. We then turned to 
GLM and have found that the regression analysis results, i.e., the coefficients and p-value, are very similar between 
GLM and GLMM models in the explored settings. Thus, taking into consideration the model complexity and 
the computational cost, we eventually chose GLM to model the multi-timepoint gene expression count data.

There are some scenarios that CASi is not at advantage with existing baselines. First, CASi builds up on the 
artificial neural network. If the initial timepoint’s data is dramatically different from later timepoint’s data, the 
neural network would fail to borrow useful information and could not be very well trained. In this case, CASi, 
which features the supervised clustering, will not be at advantage with existing baselines. And it would better to 
use unsupervised clustering. Additionally, if the users imply that time effect is not strong, for example, even the 
cells are extracted from different time points, patients may be at the status, i.e., nothing really happens to the cells 
over time. In this scenario, it’s not very meaningful to use CASi over other existing methods. Current methods 
can be extended in a few ways. First, the novel cell detection framework may not work well when the novel cell 
is transcriptomically similar to the known cell types. In this scenario, it may be beneficial to incorporate other 
information, such as copy number variation or mutation data, into consideration. Second, the current cell type 
annotation step pools the data from all the samples together for training and applying the neural network. It 
is possible that the cell populations are quite distinct for subjects from different conditions. As a result, it may 
be beneficial to perform the annotation in subjects within the same condition if sample size allows. Finally, 
the current GLM framework can only detect linear effect, i.e., the linear change of gene expression by time or 
the interaction of time and condition. It helps if the model can be extended to allow the detection of nonlinear 
changes.

Data availability
The PBMC Single-cell expression data used for simulation study was obtained from the 10X website (https://​
suppo​rt.​10xge​nomics.​com/)24. The MCL Single-cell expression data used for real-world data application 
was downloaded from the European Genome-Phenome Archive (EGA) database with the accession code 
EGAS0000100501926. Source codes for running CASi and installing the R package are available on GitHub 
(https://​github.​com/​yizhuo-​wang/​CASi).
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