
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10629  | https://doi.org/10.1038/s41598-024-58553-2

www.nature.com/scientificreports

Exact solitary wave propagations 
for the stochastic Burgers’ 
equation under the influence 
of white noise and its comparison 
with computational scheme
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In this manuscript, the well-known stochastic Burgers’ equation in under investigation numerically 
and analytically. The stochastic Burgers’ equation plays an important role in the fields of applied 
mathematics such as fluid dynamics, gas dynamics, traffic flow, and nonlinear acoustics. This study 
is presented the existence, approximate, and exact stochastic solitary wave results. The existence 
of results is shown by the help of Schauder fixed point theorem. For the approximate results the 
proposed stochastic finite difference scheme is constructed. The analysis of the proposed scheme 
is analyzed by presented the consistency and stability of scheme. The consistency is checked under 
the mean square sense while the stability condition is gained by the help of Von-Neumann criteria. 
Meanwhile, the stochastic exact solutions are constructed by using the generalized exponential 
rational function method. These exact stochastic solutions are obtained in the form of hyperbolic, 
trigonometric and exponential functions. Mainly, the comparison of both numerical and exact 
solutions are analyzed via simulations. The unique physical problems are constructed from the 
newly constructed soliton solutions to compare the numerical results with exact solutions under the 
presence of randomness. The 3D and line plots are dispatched that are shown the similar behavior by 
choosing the different values of parameters. These results are the main innovation of this study under 
the noise effects.

Keywords Stochastic Burgers’ equation, Proposed SFD scheme, Analysis of the scheme, Exact stochastic 
solutions, GERF method

In recent years, physics, climatic dynamics, biology, economics, geophysics, and other subjects have made exten-
sive use of the significance of randomness in modelling, analysing, complex media, and simulations. The differen-
tial equations (DEs) which are containing the random fluctuations under time are called stochastic (SDEs)1,2. The 
SDEs or stochastic partial differential equations (SPDEs) are suitable mathematical modeling for complex systems 
under multiplicative time noise. The SPDEs are very crucial to deal with numerically and analytically as  well3,4. 
There are many mathematical techniques are developed to explore the SPDEs for the approximate solution and 
exact solution as well. Iqbal et al. proposed the stochastic forward Euler scheme and stochastic Crank–Nicolson 
scheme to investigate approximate solutions for nonlinear stochastic NWS  equation5. The NSFD scheme is pro-
posed by Arif et al. and computed the numerical results for stochastic Reaction–Diffusion Nonlinear Chemical 
 Model6. Raza et al. also applied the NSFD scheme to investigated the stochastic dengue epidemic  model7. Kovács 
proposed the backward Euler scheme to gained approximated results for the stochastic Allen–Cahn  equation8. 
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Recently, yasin et al. proposed the stochastic standard finite difference  scheme9, stochastic forward Euler differ-
ence  scheme10, NSFD  scheme11 and analyzed these techniques are consistency or stable.

Finding the exact solutions of SPDEs are also a difficult task while some researchers are working on that. 
Mohammed et al. investigated the soliton solutions for the Fractional Stochastic Kraenkel–Manna–Merle 
Equations using the mapping  approach12, by applying the F-expansion method he explored the solitary wave 
 solutions13. He considered the stochastic shallow water wave equations and gained the soliton solutions via He’s 
iterational  approch14,15. Albosaily et al. investigated the exact solutions for the fractional stochastic Fokas–Lenells 
equation by applying the modified mapping  method16. Shaikh et al. applying the F-expansion method to investi-
gated the stochastic Konno–Oono system under the noise  effect17 and also investigated the solitary wave struc-
tures for the stochastic Nizhnik–Novikov–Veselov (SNNV)  system18. Assiri et al. worked on the optical solitary 
waves solutions for the third order dispersive Schrödinger  equation19 and Khan et al., worked on the optical 
soliton solutions for the new generalized nonlinear Schrödinger  equation20. Ali et al., constructed the solitary 
wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony  system21, Chahlaoui et al., analyzed the 
soliton solution, modulation instability and sensitive analysis to fractional nonlinear Schrödinger model with 
Kerr Law  nonlinearity22 and Ali et al., constructed the exact soliton solutions and stability analysis for the (3+ 
1)-dimensional nonlinear Schrödinger  model23.

Burgers’ equation, a famous partial differential equation, is crucial to the study of applied mathematics in the 
areas of fluid dynamics, gas dynamics, traffic flow, and nonlinear acoustics, among  others24. Although a force is 
given to the mathematical model, the deterministic Burgers’ equations do not perform any chaos, hence they 
cannot adequately explain turbulence. If the force is changed to one that is random, the outcomes are completely 
different. Otherwise, all deterministic Burgers’ equation solutions converge to distinct stationary spots as time 
increases  indefinitely25. Due to the presence of certain additional forces, such as turbulent dynamics and instabil-
ity, we must generalize Burgers’ equation by taking more factors into consideration. In the Ito sense, the stochastic 
Burgers’ equation with multiplicative noise is considered as  follows26:

where ν is positive constants and βt is the multiplicative time noise of standard Wiener process β(t) . There are 
many analysis are done on the classical Burgers’ equation but the stochastic version of the Burgers’ equation 
is investigate by some researchers analytically. Mohammed et al. investigated the exact solutions by using the 
exp(−φ(µ))-expansion method and G′/G-expansion  method25,26. Numerically approach namely as Galerkin 
approximation is done by Blomker et al.27, Kutluay et al. find the numerical solutions for the one-dimensional 
Burgers equation by using the explicit and exact-explicit finite difference  methods28. Xie et al. used reproducing 
kernel function to obtained the numerical solution of one-dimensional Burgers’  equation29.

The advantages of stochastic finite difference scheme are, such as it is easy to compute, it is time efficient, high 
efficient computers are required for implicit methods and for forward method low efficient computers can be 
used. While the GERF method is the technique that will provided us the Dark, Bright, combined and periodic 
function solutions. In this study, we investigate the stochastic Burgers equation under the effect of noise. The 
solutions to the SPDEs cannot be found in the classical theory of PDEs. The creation of a theory that explains 
the physical behavior of randomness in classical PDEs is urgently needed. For the existence of results under the 
Banach space, A-priori bounds are guaranteed. The Schauder fixed point theorem is used to demonstrate the 
existence results. Furthermore, we propose an NSFD scheme for the numerical results. It is important that the 
scheme is consistent and stable. So, we check the consistency of the scheme under the mean square sense while 
the stability condition is gained by Von-Neumann criteria. Moreover, the stochastic exact solitary wave solu-
tions are extracted by using the GERM method. The motivation of this study is that we compare the numerical 
results with exact solitary wave solutions by unique physical problems. The numerical results are successfully 
compared with exact solitary wave solutions and almost they will give us the same results. These results are the 
main innovation of this study under the noise effects.

Theorem 1 Wiener process and Itô integral: The Brownian motion β(t) is said to be stochastic process {β(t)}t≥0 if 
it satisfy the following  properties30 

1. β(0) = 0 with probability 1.
2. β(t) is the continuous function of t ≥ 0.
3. β(t2)− β(t1) and β(t4)− β(t3) are independent increments for all 0 ≤ t1 < t2 ≤ t3 < t4.
4. β(t2)− β(t1) , β(t4)− β(t3) has normal distribution N(0, (t2 − t1), (t4 − t3)).

5. E

[

βt

]

= 0 for each value t ≥ 0.

6. E

[

β2
t

]

= t for each value t ≥ 0.

7. E

[

β(t)− β(s)

]

= 0.

8. E

[

(β(t)− β(s))2
]

= t − s.

Lemma 1 Itô stochastic integral: The square property of an Itô integral is 
∫ t

0 σtdβ(t) has the following property

(1)ϒt +ϒϒx = νϒxx + σϒβt ,
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Existence result
Here, we focus on the existence of result for the stochastic Burgers’ equation by applying the Schauder fixed point 
theorem. The Schauder fixed point theorem is stated  as31;

Theorem 2 Suppose ϒ be continuous mapping a Banach space C and a closed convex subset B have self mapping 
and if ϒ(B) is relatively compact. Then ϒ has at one fixed point in B .

So, we convert Eq. (1) into operator form by using the heat kernels and simply voltera integral equation as 
the inversion of the PDE Eq. (1) such as

here we take a0 as a integration constant usually that is taken as a initial condition. Equation (3) serve as a fixed 
point operator Eq. (1) and any fixed point of Eq. (3) is the solution not only for this Eq. (3) but also the solutions 
of original Eq. (1) as well. To, show the existence of result for the Eq. (1) we shall apply the fixe point theorem 
which is stated such as

Theorem 3 Suppose a Ball B in the Banach space C which is closed and convex subset of C . Also, suppose a continu-
ous function ϒ that will be satisfy these two condition as follows

• ϒ : B → B,
• ϒ is relative compact,

thus ϒ has at least of fixed point in Ball B.
Now, apply this result on Eq. (3), we suppose the space of continuous function with it suprimum norm and 

a Ball B with is defined as

For the first condition self mapping

⇒ Equation (3) is taking the form

where ϒ is positive function while �ϒxx� ≤ κ1 , �ϒx� ≤ κ2 and we suppose that �β̇(ρ)� = κ3 is bounded noise.

For the second condition (Relative compactness) we consider the images ϒi and its pre-images ϒi then fixed 
point is by specified t∗ , we can easily verified that

where Hϒ is positive constant. While ϒi is equi-continues. Hence the Ball Bτ (̟) is relatively compact. Hence 
by Schauder fixed point theorem at least one solution is exist in the interval,

The Fig. 1 id plot for the condition ρ which is gain for the length of contraction in Eq. (8) using the param-
eters values such as α = 0.01, ν = 0.5, κ1 = 0.5, κ2 = 2, κ3 = 0.3, σ = 0.2. This figure show the length on the 
contraction mapping which show the bound in interval C ∈ [0, ρ].

Proposed SFDS
This current sections, is deals with the propose finite difference scheme (SFDS). We approximate the continuous 
function ϒ(x, t) with approximate solutions ϒd

c  and its derivatives such as

(2)E

∣

∣

∣

∣

t
∫

0

σtdβ(t)

∣

∣

∣

∣

2

=
t

∫

0

E

∣

∣

∣

∣

σt

∣

∣

∣

∣

2

dt.

(3)ϒ(x, t) = ϒρ(x, t) = a0 +
∫ t

0
(νϒxx(x, ρ)− ϒ(x, ρ)ϒx(x, ρ)+ σϒ(x, ρ)β̇(ρ))dρ,

(4)B(̟) = {a0, a0 ∈ [0, ρ], �ϒ� ≤ τ }.

(5)ϒ : B(̟) → B(̟),

(6)�ϒ� ≤ �a0� +
∫ t

0
(ν�ϒxx� + �ϒ��ϒx� + σ�ϒ��β̇(ρ)�)dρ,

(7)�ϒ� ≤ α + ρ(νκ1 + τκ2 + στκ3) ≤ τ ,

(8)ρ ≤ τ − α

νκ1 + τκ2 + στκ2
.

(9)�ϒi(t)−ϒi(t
∗)� ≤ Hϒ |t − t∗|,

(10)
[

0,min

(

τ − α

νκ1 + τκ2 + στκ2

)]

.
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here we suppose k = �t and h = �x that are the are time and space stepsizes respectively. Substituting these 
values in the Eq. (1) and obtained the SFDS as follows

where γ = �t
�x

 and α = ν�t

�x2
 . So, this is the required SFDS for the Eq. (1).

Consistency of scheme
This current section, deals with the consistency of the proposed finite different scheme, which is proved by the 
help of mean square  sense32,33.

Theorem 4 The proposed SFDS is consistency for ϒ in Eq. (12) is shows the consistency with the Eq. (1) in the 
mean square sense.

Proof We take a operator B(ϒ) =
∫ (d+1)�t

d�t
(ϒ)ds for the smooth function ϒ(x, t) . So, apply this operator on 

Eq. (1) and get the expression as follows

the above relations can be written by the mean square sense as follows

(11)ϒt ≈
ϒd+1
c −ϒd

c

k
, ϒx ≈

ϒd
c+1 −ϒd

c

h
, ϒxx ≈

ϒd
c+1 − 2ϒd

c +ϒd
c−1

h2
,

(12)ϒd+1
c = α

(

ϒd
c−1 + ϒd

c+1

)

+ (1− 2α)ϒd
c + γ

(

ϒd
c

)2

− γϒd
c ϒ

d
c+1 + σϒd

c

(

β(d+1)k − βdk

)

,

(13)
B(ϒ)dc = ϒ(c�x, (d + 1)�t)−ϒ(c�x, d�t)+

∫ (d+1)�t

d�t

ϒ(d�x, s)ϒx(d�x, s)ds

− ν

∫ (d+1)�t

d�t

ϒxx(d�x, s)ds − σ

∫ (d+1)�t

d�t

ϒ(d�x, s)dβ|s ,

(14)

B|dc (ϒ) = ϒ(c�x, (d + 1)�t)−ϒ(c�x, d�t)+ �t

�x
ϒ(c�x, d�t)(ϒ((c + 1)�x, d�t)

−ϒ(c�x, d�t))− ν

�x2
(ϒ((c + 1)�x, d�t)− 2ϒ(c�x, (d + 1)�t)

+ϒ((c − 1)�x, d�t))+ σϒ(c�t, d�x)(β(d+1)�t − βd�),

Figure 1.  Length of continuity for ρ.
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using the property of Ito integral we obtain

∣

∣

∣

∣

B(ϒ)dc − B|dc (ϒ)

∣

∣

∣

∣

→ 0 as c → ∞ , d → ∞ . Hence proposed scheme is consistent with the Eq. (1).   

�

Stability of scheme
This current section, deals with the Linearized stability analysis of the proposed finite different  scheme32–34. The 
differential equation is replaced by ϒc,d as

substituting this into the scheme and obtained the amplification factor as

here δ is taken a constant. Hence this is the necessary condition for stability of our proposed scheme.

Theorem 5 The proposed SFDS (12) is unconditionally stable with (d + 1)�t + T.

Proof The Von-Neumann criteria it applying to prove the stability of the proposed SFD scheme. So, we linearized 
the Eq. (12) such as

putting the Eq. (17) in the above expression and obtain

here, ϒ is the independent from the state of Wiener process so we obtain

hence, 1− 4 sin2
(

ρ�x
2

)

≤ 1 and σ = δ then we obtain

Hence the proposed scheme is unconditionally stable.   �

(15)

E

∣

∣

∣

∣

B(ϒ)dc − B|dc (ϒ)

∣

∣

∣

∣

2

≤ E

∣

∣

∣

∣

∫ (d+1)�t

d�t

ϒ(d�x, s)ϒx(d�x, s)− �t

�x
ϒ(c�x, d�t)(ϒ((c + 1)�x, d�t)

−ϒ(c�x, d�t))ds

∣

∣

∣

∣

2

− 4Eν2
∣

∣

∣

∣

∫ (d+1)�t

d�t

ϒxx(d�x, s)+ 1

�x2
(ϒ((c + 1)�x, d�t)

− 2ϒ(c�x, (d + 1)�t)ds

∣

∣

∣

∣

2

− 4σ 2
E

∣

∣

∣

∣

∫ (d+1)�t

d�t

(ϒ(d�x, s)− ϒ(c�t, d�x))dβ|s
∣

∣

∣

∣

2

,

(16)

E

∣

∣

∣

∣

B(ϒ)dc − B|dc (ϒ)

∣

∣

∣

∣

2

≤
∫ (d+1)�t

d�t

E

∣

∣

∣

∣

ϒ(d�x, s)ϒx(d�x, s)− �t

�x
ϒ(c�x, d�t)(ϒ((c + 1)�x, d�t)

−ϒ(c�x, d�t))ds

∣

∣

∣

∣

2

− 4ν2
∫ (d+1)�t

d�t

E

∣

∣

∣

∣

ϒxx(d�x, s)− 1

�x2
(ϒ((c + 1)�x, d�t)

− 2ϒ(c�x, (d + 1)�t)ds

∣

∣

∣

∣

2

− 4σ 2

∫ (d+1)�t

d�t

E

∣

∣

∣

∣

(ϒ(d�x, s)−ϒ(c�t, d�x))ds

∣

∣

∣

∣

2

.

(17)ϒc,d = G(t)ei(ρx),

(18)E ≤ 1+ δ�t,

ϒd+1
c = α

(

ϒd
c−1 + ϒd

c+1

)

+ (1− 2α)ϒd
c + σϒd

c

(

β(d+1)k − βdk

)

,

G(t +�t)eiρx =
(

α

(

e−iρ�x + eiρ�x

)

+ (1− 2α)+ σ

(

β(d+1)k − βdk

))

G(t)eiρx ,

(19)E

∣

∣

∣

∣

G(t +�t)

G(t)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

1− 2α + 2α

(

1− 2 sin2
(

ρ�x

2

))∣

∣

∣

∣

2

+
∣

∣

∣

∣

σ

∣

∣

∣

∣

2(

β(d+1)k − βdk

)

,

(20)E

∣

∣

∣

∣

G(t +�t)

G(t)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

1− 2α + 2α(1− 2 sin2(
ρ�x

2
))

∣

∣

∣

∣

2

+ |σ |2�t,

(21)E

∣

∣

∣

∣

G(t +�t)

G(t)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

1− 4 sin2(
ρ�x

2
))

∣

∣

∣

∣

2

+ |σ |2�t,

(22)E

∣

∣

∣

∣

G(t +�t)

G(t)

∣

∣

∣

∣

2

≤ 1+ δ�t.
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Stochastic exact solutions
This current section, deals with the stochastic exact solitary wave (ESW) solutions for the stochastic Burgers’ 
equation. We applying the wave transformation such  as35,36

where � is deterministic function, l is amplitude of wave, c is the speed of light and σ is the noise strength. The 
derivatives are taking as follows

where σ
2

2 �(ρ) is referred to the Itô term. Substituting these values into the Eq. (1) and get

Now, we take the expectation on Eq. (24) such as

Therefore E(eδZ) for every δ is real number and Z is the standard normal random variable, the identity 

E(eσβ(t)) = e
σ2

2 t . So, Eq. (25) takes the form

where � is a polynomial and ′ = d
dρ

 . To, reduce the order of the Eq. (27) integrate it once and get

GERF method
The generalize exponential rational function (GERF)  method37,38 is use to construct the exact stochastic solutions 
for the stochastic Burgers’ equation. The general solution of the Eq. (27) is taken in the following form

where a0 , ak and bk are the constants, and

To, obtained the value of N we applying the homogeneous balancing principle on highest derivative �′ and 
nonlinear term �2 and get N = 1 . Putting this value into (28) it can be expressed in the following polynomial.

Family of solution 1
If we choose [A1,A2,A3,A4] = [−1,−1, 1,−1] and [B1,B2,B3,B4] = [1,−1, 1,−1] , then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (31) into the Eq. (27), the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = 2lν, a1 = 2lν, b1 = 0, c = 2l2ν, , the singular stochastic soliton solution 
is obtained for Eq. (1) such as,

(23)ϒ(x, t) = �(ρ)eσβ(t)−
σ2

2 t , where ρ = lx − ct,

dϒ

dt
=
(

−c�′ + σ�βt −
σ 2

2
�+ σ 2

2
�

)

eσβ(t)−
σ2

2 t ,

dϒ

dt
=l�′eσβ(t)−

σ2

2 t ,

d2ϒ

dt2
=l2�′′eσβ(t)−

σ2

2 t ,

(24)−c�′ + l��′eσβ(t)−
σ2

2 t − νl2�′′ = 0.

(25)−c�′ + l��′
E(eσβ(t))e−

σ2

2 t − νl2�′′ = 0.

(26)−c�′ + l��′ − νl2�′′ = 0,

(27)−c�+ l

2
�2 − νl2�′(ρ) = 0.

(28)�(ρ) = a0 +
N
∑

k=1

akJ(ρ)
k +

N
∑

k=1

bkJ(ρ)
−k ,

(29)J(ρ) = A1e
B1ρ + A2e

B2ρ

A1e
B1ρ + A2e

B2ρ
.

(30)�(ρ) = a0 + a1J(ρ)+
b1

J(ρ)
.

(31)�(η) = − cosh(ρ)

sinh(ρ)
.

(32)ϒ1(x, t) =
(

2lν − 2lν coth
(

lx − 2l2νt
))

eσβ(t)−
σ2

2 t .
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Set 2 The unknown constants are a0 = 2lν, a1 = 0, b1 = 2lν, c = 2l2ν , the dark stochastic soliton solution is 
obtained for Eq. (1) such as,

Family of solution 2
If [A1,A2,A3,A4] = [−i, i, 1, 1] , [B1,B2,B3,B4] = [i,−i, i,−i] , then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (34) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = 2ilν, a1 = 2lν, b1 = 0, c = 2il2ν, the stochastic SWS of Eq. (1) is 
obtained as,

Set 2 The unknown constants are a0 = −4ilν, a1 = 2lν, b1 = −2lν, c = −4il2ν, the stochastic SWS is obtained 
for Eq. (1) such as,

Family of solution 3
If [A1,A2,A3,A4] = [1, 0, 1, 1] , [B1,B2,B3,B4] = [1, 0, 1, 0] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (37) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = 2lν, a1 = −2lν, b1 = 0, c = l2ν, the stochastic exponential function 
solution is obtained for Eq. (1) such as,

Family of solution 4
If [A1,A2,A3,A4] = [1− i, 1+ i, 1, 1] , [B1,B2,B3,B4] = [i,−i, i,−i] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (39) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = (−2− 2i)lν, a1 = 2lν, b1 = 0, c = −2il2ν , the stochastic SWS is 
obtained for Eq. (1) such as,

Set 2 The unknown constants are a0 = (−2+ 2i)lν, a1 = 2lν, b1 = 0, c = 2il2ν, the stochastic SWS is obtained 
for Eq. (1) such as,

Family of solution 5
If [A1,A2,A3,A4] = [−3,−1, 1, 1] , [B1,B2,B3,B4] = [1,−1, 1,−1] then Eq. (29) changes into,

(33)ϒ2(x, t) =
(

2lν − 2lν tanh
(

lx − 2l2νt
))

eσβ(t)−
σ2

2 t .

(34)�(ρ) = − sin(ρ)

cos(ρ)
.

(35)ϒ3(x, t) =
(

2ilν − 2lν tan
(

lx − 2il2νt
))

eσβ(t)−
σ2

2 t .

(36)ϒ4(x, t) =
(

−2lν tan
(

lx + 4il2νt
)

+ 2lν cot
(

lx + 4il2νt
)

− 4ilν
)

eσβ(t)−
σ2

2 t .

(37)�(ρ) = exp(ρ)

exp(ρ)+ 1
.

(38)ϒ5(x, t) =
(

2lν − 2lνelx−l2νt

elx−l2νt + 1

)

eσβ(t)−
σ2

2 t .

(39)�(ρ) = sin(ρ)+ cos(ρ)

cos(ρ)
.

(40)ϒ6(x, t) =
(

2lν sec
(

lx + 2il2νt
)(

sin
(

lx + 2il2νt
)

+ cos
(

lx + 2il2νt
))

+ (−2− 2i)lν
)

eσβ(t)−
σ2

2 t .

(41)ϒ7(x, t) =
(

2lν sec
(

lx − 2il2νt
)(

sin
(

lx − 2il2νt
)

+ cos
(

lx − 2il2νt
))

+ (−2+ 2i)lν
)

eσβ(t)−
σ2

2 t .

(42)�(ρ) = − sinh(ρ)− 2 cosh(ρ)

cosh(ρ)
.
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Substituting Eq. (30) with the help of Eq. (42) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = −2lν, a1 = 0, b1 = −6lν, c = 2l2ν, the stochastic soliton solution is 
obtained for Eq. (1) such as,

Set 2 The unknown constants are a0 = 2lν, a1 = 2lν, b1 = 0, c = −2l2ν, the stochastic soliton solution is 
obtained for Eq. (1) such as,

Family of solution 6
If [A1,A2,A3,A4] = [−1, 0, 1, 1] , [B1,B2,B3,B4] = [0, 1, 0, 1] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (45) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = c2
l
, a1 = 2lν, b1 = 0, c = l2ν − c2, the stochastic exponential function 

solution is obtained for Eq. (1) such as,

Family of solution 7
If [A1,A2,A3,A4] = [1, 0, 1, 1] , [B1,B2,B3,B4] = [1, 0, 1, 0] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (47) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = 2lν, a1 = 2lν, b1 = 0, c = 2l2ν, the dark stochastic soliton solution is 
obtained for Eq. (1) such as,

Set 2 The unknown constants are a0 = −4lν, a1 = 2lν, b1 = 2lν, c = −4l2ν, the stochastic soliton solution 
is obtained for Eq. (1) such as,

Family of solution 8
If [A1,A2,A3,A4] = [2− i, 2+ i, 1, 1] , [B1,B2,B3,B4] = [i,−i, i,−i] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (50) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = (4+ 2i)lν, a1 = 0, b1 = −10lν, c = 2il2ν, the stochastic SWS of Eq. 
(1) is obtained as,

Set 2 The unknown constants are a0 = (−4− 2i)lν, a1 = 2lν, b1 = 0, c = −2il2ν, the stochastic SWS of Eq. 
(1) is obtained as,

(43)ϒ8(x, t) =
(

−
6lν cosh

(

lx − 2l2νt
)

− sinh
(

lx − 2l2νt
)

− 2 cosh
(

lx − 2l2νt
) − 2lν

)

eσβ(t)−
σ2

2 t .

(44)ϒ9(x, t) =
(

2lνsech
(

2l2νt + lx
)(

− sinh
(

2l2νt + lx
)

− 2 cosh
(

2l2νt + lx
))

+ 2lν
)

eσβ(t)−
σ2

2 t .

(45)�(ρ) = − 1

exp(ρ)+ 1
.

(46)ϒ10(x, t) =
(

c2

l
− 2lν

elx−t(l2ν−c2) + 1

)

eσβ(t)−
σ2

2 t .

(47)�(ρ) = − sinh(ρ)

cosh(ρ)
.

(48)ϒ11(x, t) =
(

2lν − 2lν tanh
(

lx − 2l2νt
))

eσβ(t)−
σ2

2 t .

(49)ϒ12(x, t) =
(

−2lν tanh
(

4l2νt + lx
)

− 2lν coth
(

4l2νt + lx
)

− 4lν
)

eσβ(t)−
σ2

2 t .

(50)�(ρ) = sin(ρ)+ 2 cos(ρ)

cos(ρ)
.

(51)ϒ13(x, t) =
(

(4+ 2i)lν −
10lν cos

(

lx − 2il2νt
)

sin
(

lx − 2il2νt
)

+ 2 cos
(

lx − 2il2νt
)

)

eσβ(t)−
σ2

2 t .
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Family of solution 9
If [A1,A2,A3,A4] = [1, 2, 1, 1] , [B1,B2,B3,B4] = [1, 0, 1, 0] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (53) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = 4lν, a1 = 0, b1 = −4lν, c = l2ν, the stochastic exponential function 
solution is obtained for Eq. (1) such as,

Set 2 The unknown constants are a0 = −4lν, a1 = 2lν, b1 = 0, c = −l2ν, the stochastic exponential function 
solution is obtained for Eq. (1) such as,

Family of solution 10
If [A1,A2,A3,A4] = [2, 1, 1, 1] , [B1,B2,B3,B4] = [1, 0, 1, 0] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (56) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = −2lν, a1 = 0, b1 = 4lν, c = l2ν, the stochastic exponential function 
solution is obtained for Eq. (1) such as,

Set 2 The unknown constants are a0 = 2lν, a1 = −2lν, b1 = 0, c = −l2ν, the stochastic exponential function 
solution is obtained for Eq. (1) such as,

Family of solution 11
If [A1,A2,A3,A4] = [1, 1, 1, 1] , [B1,B2,B3,B4] = [0, 0, 1,−1] then Eq. (29) changes into,

Substituting Eq. (30) with the help of Eq. (59) into the Eq. (27) the set of equations is obtained. Using Math-
ematica to solve this set of equations will yield the following unknown constants such as:

Set 1 The unknown constants are a0 = − 1
7 (26lν), a1 =

2
7

√
13lν, b1 = 4

7

√
26lν, c = 1

7

(

−4
√
2l2ν − 21l2ν

)

, 
the stochastic exponential function solution is obtained for Eq. (1) such as,

(52)ϒ14(x, t) =
(

2lν sec
(

lx + 2il2νt
)(

sin
(

lx + 2il2νt
)

+ 2 cos
(

lx + 2il2νt
))

+ (−4− 2i)lν
)

eσβ(t)−
σ2

2 t .

(53)�(ρ) = exp(ρ)+ 2

exp(ρ)+ 1
.

(54)ϒ15(x, t) =



4lν −
4lν

�

elx−l2νt + 1
�

elx−l2νt + 2



eσβ(t)−
σ2

2 t .

(55)ϒ16(x, t) =





2lν
�

el
2νt+lx + 2

�

el
2νt+lx + 1

− 4lν



eσβ(t)−
σ2

2 t .

(56)�(ρ) = exp(ρ)

exp(ρ)+ 1
.

(57)ϒ17(x, t) =





4lν
�

elx−l2νt + 1
�

2elx−l2νt + 1
− 2lν



eσβ(t)−
σ2

2 t .

(58)ϒ18(x, t) =



2lν −
2lν

�

el
2νt+lx + 2

�

el
2νt+lx + 1



eσβ(t)−
σ2

2 t .

(59)�(ρ) = 2

exp(−ρ)+ exp(ρ)
.
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Results and discussion
This section presents the results that are extracted successfully by the numerical and analytical techniques and 
their graphical comparison as well. The numerical solutions are gained from the proposed SFD scheme (12) and 
compared with different stochastic ESW solutions that are successfully constructed by using the GERF method. 
These solutions are verified with the help of Mathematica 11.1. The different forms of solutions are constructed 
in the form of hyperbolic, trigonometric, and exponential function solutions.

Exact solitary wave solutions
This subsection, presents the exact solitary wave solutions under the different effects of noise. Numerous real-
world applications, particularly in physics, engineering, and other domains, include solitary waves and solitons 
in the framework of the stochastic Burgers model under noise. A partial differential equation representing the 
development of a one-dimensional random field, the stochastic Burgers equation is a deterministic Burgers 
equation extended by stochastic noise. Solitons are useful for modeling and comprehending turbulence and 
fluid dynamics. When random fluctuations are present, the stochastic Burgers equation with soliton solutions 
aids in forecasting the behavior of waves and disturbances in situations like river flows or ocean currents. Soliton 
solutions may reflect coherent structures or traffic jams in the context of studying traffic flow using the stochastic 
Burgers model. A more accurate depiction of uncertainty and unpredictability in traffic patterns is made pos-
sible by the models incorporation of noise. Solitons are important for studying the interactions and propagation 
of waves in plasma physics. One tool for analyzing the impact of random perturbations on soliton stability in 
plasmas is the stochastic Burgers equation under noise. The Fig. 2 is drawn for the solutions ϒ1(x, t) that with 
provide the dark soliton solution. The Figs. 3 and 4 are drawn for the solutions ϒ3(x, t) and ϒ16(x, t) respectively 
that are clearly provided us the solitary wave solutions. The different 3D, 2D and its corresponding contour plots 
are drawn. These plot are drawn for the different effects of noise by choosing different values of σ . When we 
choose σ zero these solitary wave solutions or soliton solutions are the classical but when we increase the value 
of σ these plots are shows the randomness in there behavior.

Comparison of results
In this subsection, we give a comparison of some newly constructed stochastic exact solutions with the 
SFD scheme. Where σ is the control parameter of Brownian motion, l and ν are unknown constants while 
h is the time step size while k is the space step size. The space step size k = 10−3 is fixed for all plots while 
other parameters are varies for different plots. The newly constructed singular stochastic soliton ϒ1(x, t) in 
Eq. (32) is compare with proposed SFD scheme by selecting the σ = 0.05, l = 4.9, ν = 0.1, h = 50 . By select-
ing these parameters both results are gives us the same behavior graphically in t he 2D and line plots that 
are dispatched in Fig. 5. For the Fig. 6 we consider the ϒ2(x, t) in Eq. (33) and select the parameters such as 
σ = 0.02, l = 0.19, ν = 0.1, h = 2 , while Fig. 7 is drawn for the solution ϒ3(x, t) in Eq. (35) and choose the 
parameters as follows σ = 0.05, l = 0.09, ν = 0.41, h = 10 . The Figs. 8, 9 and 10 are drawn for the exact solu-
tions ϒ6(x, t) , ϒ7(x, t) , ϒ8(x, t) and their corresponding parameters are σ = 0.09, l = 1.9999, ν = 0.5, h = 10 , 
σ = 0.01, l = 1.9, ν = 1.41, h = 20, and σ = 0.01, l = 0.99, ν = 4.41, h = 10 , respectively. At the end considering 
the solution ϒ11(x, t) , ϒ13(x, t) and draw the Figs. 12 and 13 and which are provided us the same behavior for 
the numerical and exact solutions that are clearly shown in 3D and line graphs as well. This study is very helpful 
and fruitful for the dynamical systems under the influence of randomness.

Problem 1
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (32). The Fig. 5 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ1(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

the BCs are as follows,

(60)

ϒ19(x, t) =
�

−26lν

7
+ 2

7

√
26lν

�

e
lx− 1

7 t

�

−4
√
2l2ν−21l2ν

�

+ e
1
7 t

�

−4
√
2l2ν−21l2ν

�

−lx
�

+ 4
√
13lν

7

�

e
lx− 1

7 t

�

−4
√
2l2ν−21l2ν

�

+ e
1
7 t

�

−4
√
2l2ν−21l2ν

�

−lx
�









eσβ(t)−
σ2

2 t .

(61)ϒ(x, 0) = 0.0377345 − 0.0377345 coth(0.19x),

(62)ϒ(0, t) =e−0.0002t(0.0377345 coth(0.00722t)+ 0.0377345),

(63)ϒ(10, t) =e−0.0002t(0.0377345 − 0.0377345 coth(1.9 − 0.00722t)).



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10629  | https://doi.org/10.1038/s41598-024-58553-2

www.nature.com/scientificreports/

Problem 2
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (33). The Fig. 6 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ2(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

the BCs are as follows,

Problem 3
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (35). The Fig. 7 is shown a similar behavior for the computational results with exact solitary wave 

(64)ϒ(x, 0) = 0.0385277 − 0.0385277 tanh(0.19x),

(65)ϒ(0, t) =e−0.0002t(0.0385277 tanh(0.00722t)+ 0.0385277),

(66)ϒ(10, t) =e−0.0002t(0.0385277 − 0.0385277 tanh(1.9 − 0.00722t)).

Figure 2.  The subfigures (a–c) shows the 3D, subfigures (d–f) shows the 2D, and subfigures (g–i) shows the 
contours for the solution ϒ1(x, t) under the different noise strengths.
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solutions ϒ3(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

the BCs are as follows,

Problem 4
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (40). The Fig. 8 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ6(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

(67)ϒ(x, 0) = −0.0793009 tan(0.09x)+ (0.0793009i),

(68)ϒ(0, t) =e−0.00125t((0. + 0.0793009i) tanh(0.006642t)+ (0. + 0.0793009i)),

(69)ϒ(10, t) =e−0.00125t((0. + 0.0793009i)− 0.0793009 tan(0.9 − (0. + 0.006642i)t)).

Figure 3.  The subfigures (a–c) shows the 3D, subfigures (d–f) shows the 2D, and subfigures (g–i) shows the 
contours for the solution ϒ3(x, t) under the different noise strengths.
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the BCs are as follows,

Problem 5
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (41). The Fig. 9 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ7(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

(70)ϒ(x, 0) = 1.90456 tan(1.9999x)+ (0. − 1.90456i),

(71)ϒ(0, t) =e−0.00405t((0. + 1.90456i) tanh(3.9996t)+ (0. − 1.90456i)),

(72)ϒ(10, t) =e−0.00405t(1.90456 tan(19.999+ (0. + 3.9996i)t)+ (0. − 1.90456i)).

(73)ϒ(x, 0) = 5.32506 tan(1.9x)+ (0. + 5.32506i),

Figure 4.  The subfigures (a–c) shows the 3D, subfigures (d–f) shows the 2D, and subfigures (g–i) shows the 
contours for the solution ϒ16(x, t) under the different noise strengths.
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the BCs are as follows,

(74)ϒ(0, t) =e−0.00005t((5.32506i)− (5.32506i) tanh(10.1802t)),

Figure 5.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.

Figure 6.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.

Figure 7.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.
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Figure 8.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.

Figure 9.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.

Figure 10.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.
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Problem 6
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (43). The Fig. 10 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ8(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

the BCs are as follows,

Problem 7
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (44). The Fig. 11 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ9(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

(75)ϒ(10, t) =e−0.00005t(5.32506 tan(19. − (10.1802i)t)+ (5.32506i)).

(76)ϒ(x, 0) =
(

0.0578492 + 0.173548e1.98x
)−1

,

(77)ϒ(0, t) =
(

0.173548e−17.2889t + 0.0578492e0.00005t
)−1

,

(78)ϒ(10, t) =
(

6.89365× 107e−17.2889t + 0.0578492e0.00005t
)−1

.

Figure 11.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.

Figure 12.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.
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the BCs are as follows,

Problem 8
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (48). Figure 12 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ11(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

the BCs are as follows,

Problem 9
For the comparison of numerical result by proposed SFD scheme (12) with stochastic exact solitary wave solu-
tions Eq. (51). Figure 13 is shown a similar behavior for the computational results with exact solitary wave 
solutions ϒ13(x, t) under the influence of randomness which is clearly shown physically. To, compare numerical 
results we construct the ICs and BCs such as

the BCs are as follows,

(79)ϒ(x, 0) = −8.22152 tanh(2.9x)− 8.22152,

(80)ϒ(0, t) =e−0.00005t(−8.22152 tanh(23.7162t)− 8.22152),

(81)ϒ(10, t) =e−0.00005t(−8.22152 tanh(23.7162t + 29.)− 8.22152).

(82)ϒ(x, 0) = 0.853644 tanh(3.9x)− 0.853644,

(83)ϒ(0, t) =e−0.00045t(0.853644 tanh(3.042t)− 0.853644),

(84)ϒ(10, t) =e−0.00045t(0.853644 tanh(3.042t + 39.)− 0.853644).

(85)ϒ(x, 0) = (−0.0129729 tan(3.9x)− 0.0259459)−1 + (30.8334 + 15.4167i),

(86)

ϒ(0, t) =
e−0.00045t

(

(1.4210854715202005−15 + 7.105427357601002−16i)e116.204t + (−24.6667+ 18.5i)

)

1.e116.204t + (0.6 + 0.8i)
,

(87)

ϒ(10, t) = 1

(0.0322582 + 0.00335672i)e116.205t + (4.336808689942018 ∗ ∧-19− 0.0324324i)e0.00045t
.

Figure 13.  The subfigure (a) shows the 3D behavior of SFD scheme, subfigure (b) shows the stochastic exact 
solitary wave solution while subfigure (c) shows the 2D comparison of SFD scheme with exact solitary wave 
solution.
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Conclusion
This article, is deals the numerical and analytical study for the stochastic Burgers’ equation under the influence of 
time noise. The stochastic Burgers’ equation plays an important role in the fields of applied mathematics such as 
fluid dynamics, gas dynamics, traffic flow, and nonlinear acoustics. The existence of result is successfully shown 
by the help of Schauder fixed point theorem. The length of contraction mapping this define under the condition ρ 
which represents the length of mapping where at least one solution is exist. For the numerical results the proposed 
stochastic finite difference scheme developed. The analysis of proposed scheme under the multiplicative time 
noise is visualized like consistency of the scheme and linearize analysis as well. The consistency is check under 
the mean square sense while the stability condition is gained by the help of Von-Neumann criteria. Meanwhile, 
the stochastic exact solutions are constructed successfully by using the generalized exponential rational function 
method. These stochastic exact solitary wave solutions are obtained in the form of hyperbolic, trigonometric and 
exponential functions. Mainly, in this study we focused on the comparisons of numerical result with stochastic 
exact solitary wave solutions. The ICs and BCs are required to compute the numerical results that are are con-
structed from the newly constructed solitary wave solutions. Some stochastic ESW solutions chosen and compare 
them with proposed stochastic finite difference scheme they will provided us the similar behavior and the effect 
of the randomness is also clearly visualized from the plots. The different 3D, 2D and corresponding contours 
are drawn for the different values of σ . The 3D and line plots are dispatched that are shown the similar behavior 
by choosing the different values of parameters. These results are the main innovation of this study under the 
noise effects. This study is very helpful in the future direction for the researchers to apply the techniques on the 
stochastic NLPDEs. Moreover the comparison of the results is a new direction in the modern era of research.
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