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Fe3O4@SiO2@CSH+VO3
− as a novel 

recyclable heterogeneous 
catalyst with core–shell structure 
for oxidation of sulfides
Ula Zuhair Ismael Al‑Zubaidi 1, Kiumars Bahrami 1,2* & Minoo Khodamorady 1

Iron nanoparticles, with low toxicity and many active sites, are among the materials that not only 
reduce waste along with green chemistry but also increase the separation power and recover the 
catalyst from the reaction environment. In this study, first, the surface of iron nanoparticles was 
silanized, and in the next step, the complex of chitosan HCl.VO3 was placed on the surface of  Fe3O4 
 (Fe3O4@SiO2@CSH+VO3

−). This nanocatalyst is a novel, recoverable, and potent nanocatalyst with 
high selectivity for the oxidation of sulfides to sulfoxides. Various physicochemical techniques such 
as IR, XRD, TGA, SEM, EDX, mapping, TEM, and VSM were used to affirm the well synthesis of the 
catalyst. Oxidation of sulfides in the presence of hydrogen peroxide as a green oxidant and in ethanol 
was catalyzed by the  Fe3O4@SiO2@CSH+VO3

−. All sulfoxides were achieved with high efficiency and 
in a short time. The notable privileges of this method include facile and economic catalyst synthesis, 
proper catalyst durability, great performance, simple catalyst isolation, good recovery capability, at 
least up to 5 times without an index drop in catalytic power.
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Despite their excellent activity and high selectivity, homogeneous catalysts have disadvantages such as difficult 
separation and lack of reusability. In recent decades, researchers have increasingly focused on heterogenizing 
homogeneous catalysts through various  processes1. Heterogeneous catalysts do not have the problem of separa-
tion and recovery. Today, the stabilization of the homogeneous part of the catalyst on the surface of different 
solid substrates such as zeolite, MAF, boehmite, iron nanoparticles, polymers, etc. is one of the most common 
methods for heterogenization that has been  reported2–8. Heterogeneous nanostructures possess many active sites, 
a high specific surface area, tunable physical properties, and excellent catalytic properties due to the presence 
of nano-sized particles.

Until now, various solid substrates such as SBA-159–11,  alumina12, Silica  nanoparticles13,  Fe3O4  NPs14,15, MCM-
4116,  polymers17,  boehmite18–20, graphene  oxide21,22, nano  fibers23,  CoFe2O4  ferrites6 have been used to hetero-
genize homogeneous catalysts. Some of these substrates, such as ionic liquids, polymers, and heteropoly acids, 
are  expensive24–26. Among the solid supports used, iron nanoparticles are very popular as catalysts in synthetic 
chemistry due to their unique and numerous  properties27–29. Among the iron oxides,  Fe3O4 or magnetite is of 
interest to researchers because it has a high active surface, low toxicity, acceptable cost, good stability, and the 
ability to be easily separated from the environment with an external  magnet1,30,31.

The synthesis of sulfoxides through the selective oxidation of sulfides using transition metals is considered 
one of the important and valuable reactions, both from industrial perspectives and in laboratory  synthesis32,33. 
Sulfoxides serve as highly valuable structural frameworks in the synthesis of biologically and chemically active 
molecules, including flavors, drugs, germicides, and  more34. By reviewing the scientific literature, one can high-
light the importance of these compounds in enzyme activation, drug synthesis, agricultural chemistry, and their 
utility as  solvents35. According to researchers, selective oxidation in the presence of safe, green, environmen-
tally friendly, inexpensive, and highly efficient oxidants is of paramount importance. Thus far, a multitude of 
oxidants have been employed for the oxidation of sulfides, many of which are not only hazardous and toxic but 
also tend to produce over-oxidation  products36,37. Today, in line with green chemistry principles, environmental 

OPEN

1Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67144-14971, 
Iran. 2Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah 67144-14971, 
Iran. *email: kbahrami2@hotmail.com; k.bahrami@razi.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-58552-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8175  | https://doi.org/10.1038/s41598-024-58552-3

www.nature.com/scientificreports/

compatibility, enhancing atom economy, and reducing over-oxidation, numerous research studies focusing on 
the use of hydrogen peroxide  (H2O2) have been reported.  H2O2 is a mild, cost-effective oxidizer with high oxygen 
content that produces only water as the sole  byproduct38,39.

Chitosan is a polysaccharide polymer derived from waste generated in seafood processing industries. It is 
worth noting that chitosan ranks as the second most abundant biopolymer on earth  after cellulose. Chitosan is 
a polysaccharide polymer derived from waste generated in seafood processing industries. It is worth noting that 
chitosan ranks as the second most abundant biopolymer on earth  after  cellulose40. Chitosan can be commercially 
obtained through acetylation of chitin in alkaline medium.

Vanadium is one of the transition metals in the third row of the periodic table, exhibiting various coordina-
tion numbers. It is abundantly present on the earth’s  surface, surpassing the quantities of copper and palladium, 
and is associated with fewer adverse effects on the environment compared to many other  metals41–43. Up to now, 
various catalytic systems based on transition metals and hydrogen peroxide have been explored for the conver-
sion of sulfides to sulfoxides. Unfortunately, these systems suffer from disadvantages such as environmental 
hazards, complicated reaction procedures, long reaction times, low efficiency, and the use of expensive  reagents44.

So far, heterogeneous catalysts such as: VMOP-845,  Zr12-NBC46, VO-TAPT-2,3-DHTA  COF47, Ti(SO4)2@
GOF48,  Br3-Fe3O4

49 Zr(IV)/imine@Fe3O4
50, CuNPs/NC51 and  FeLGDC-AP@GO52 have been reported for the oxida-

tion of sulfides. Based on the materials mentioned, the need for the synthesis and design of heterogeneous nano-
catalysts that are inexpensive, environmentally compatible, recoverable, stable, and highly active is consistently 
a concern among researchers. In this study, a novel nano-heterostructure was synthesized by placing chitosan 
complexed with  VO3.HCl on the surface of silicified iron nanoparticles. This synthesized structure exhibited 
excellent activity and selectivity in converting sulfides to sulfoxides at room temperature in the presence of 
methanol and hydrogen peroxide, serving as a safe and environmentally friendly oxidant.

Experimental
Material and methods
The materials used in this study include  FeCl3, NaOH,  FeCl2, EtOH,  CH2Cl2, tetraethyl orthosilicate (TEOS), 
chitosan (CS), HCl and  NH4VO3, all of which were purchased from Merck without purification. The FT-IR spec-
tra were recorded using a Shimadzu IR-470 spectrophotometer. TGA spectra were obtained using the STA504 
device in the temperature range of 25–1000 °C, with the temperature increasing by 10 °C every minute during 
the analysis. Results from EDX-mapping analyzes were recorded with a Brucker TESCAN equipped with a 
SAMX Detector. FESEM images were acquired using a TESCAN MIRA3 at various magnifications. The magnetic 
strength of the catalyst was determined using a VSM apparatus from Magnatis Kavir Kashan Company. TEM 
images were captured using a CM 120 instrument from the Netherlands with a maximum voltage of 100 KV. 
X-ray diffraction patterns were prepared using a JEOL-JDX-8030 instrument (30 KV, 20 mA).

Synthesis of  Fe3O4 NPs
Iron nanoparticles were synthesized based on the method mentioned in scientific  reports15,19.

Silanization of the surface of  Fe3O4 NPs
To silanize the surface of iron nanoparticles, 0.5 g of iron nanoparticles were dispersed in 25 mL of a mixture 
containing water and ethanol in a volume ratio of 1:8. Then, 1 mL of ammonia solution was added to the disper-
sion. After a few minutes, 1 mL of tetraethyl orthosilicate (TEOS) was added to the mixture, which was then 
stirred for 12 h at room temperature. Upon completion of the reaction time, the nanoparticles were collected 
using a strong magnet, washed with water and ethanol, and finally dried in an oven at 50 °C.

Immobilization of chitosan hydrochloride on the surface of  Fe3O4@SiO2
Chitosan hydrochloride was obtained by dissolving chitosan in 20 cc of a 1% hydrochloric acid solution under 
stirring at 1000 rpm. Subsequently, 0.5 g of silanized iron nanoparticles was added to this solution, and the 
mixture was refluxed for 24 h. The synthesized  Fe3O4@SiO2@CS.HCl was easily collected using a strong magnet 
and rinsed at 60 °C.

Formation of  Fe3O4@SiO2@CSH+VO3
−

To synthesize the final catalyst, 0.1 g of ammonium metavanadate  (NH4VO3) was added to 0.5 g of  Fe3O4@SiO2@
CS.HCl nanoparticles in ethanol. The mixture was refluxed at room temperature for 24 h. After the desired time, 
the resulting nanoparticles were easily collected using a strong magnet and washed several times with ethanol 
and water. Finally, they were dried at 50 °C to produce  Fe3O4@SiO2@CSH+VO3

− (Fig. 1).

A general procedure for the synthesis of sulfoxides
A mixture of 30% hydrogen peroxide (0.4 mL) and sulfide (1 mmol) was added to a round-bottom flask contain-
ing  Fe3O4@SiO2@CSH+VO3

− (0.05 g). The resulting mixture was vigorously stirred in ethanol at ambient tempera-
ture. The progress of the reaction was monitored by TLC. Upon completion of the reaction, the nanocatalyst was 
easily removed using a powerful external magnet. The products were then extracted by adding water and ethyl 
acetate. After evaporation of the organic solvent, the desired sulfoxides were obtained with high purity (Fig. 2).
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Results and discussion
Catalyst characterization
Figure  3 shows the FT-IR curves of  Fe3O4NPs (blue curve),  Fe3O4@SiO2 (red curve),  Fe3O4@SiO2@
CSH+VO3

− (green curve). In blue curve, peaks appearing at 440.1 and 621.5  cm−1 can be attributed to Fe–O in 
cubic structure of  Fe3O4 NPs. The stretching vibration of OH groups in iron nanoparticles appeared at 3415.3 
 cm−1. In all the curves, the bending vibration of OH (water) has appeared in the region of 1640–1645  cm−1. In 
the FT-IR of  Fe3O4@SiO2 NPs (red curve), in addition to the peaks related to Fe–O in the range of 446.5–616.3 
 cm−1, the stretching vibration of Si–O has appeared at 1054.4  cm−1. Also, OH stretching vibrations related to 
TEOS (Tetraethyl orthosilicate) and  Fe3O4 NPs are observed in 3413.3 and 3462.5  cm−1, respectively. In FT-IR of 
 Fe3O4@SiO2@CSH+VO3

− (green curve), peaks appearing at 464.4 and 631.9  cm−1 indicate the presence of Fe–O 
in the nanocatalyst structure and the successful synthesis of iron  nanoparticles15,19. The presence of V–O can be 
confirmed by the vibrational frequency at 521.5  cm−1, also three frequencies in the regions of 794.2, 851.4 and 
935 are assigned to polymeric vanadate  groups53. The two peaks appearing at 1091 to 1220  cm−1 are related to the 
Si–O bond, which indicates the synthesis of the core–shell structure of silanized  Fe3O4@SiO2  NPs54. The presence 
of chitosan in the nanocatalyst structure is proved by the strong symmetric stretching frequency of the N–H 
group at 1409.5  cm−114,55. Based on the Fig. 3 stretching absorptions of methylene and methyl groups appeared 
in the region of 2850 and 2940  cm−1. The vibration observed at 1629.6  cm−1 can be related to the bending fre-
quency of the hydroxyl group in the structure of chitosan, water and  Fe3O4  NPs15,19,35. The stretching vibrations 
related to the OH groups in iron nanoparticles appeared at 3419.2  cm−1 and the OH group of water molecule in 
the structure of nanocatalyst appeared at 3425.5  cm−1.

X-ray diffraction technique was used to determine the crystalline structure of the synthesized nanocatalyst 
(Fig. 4). The peaks appearing at 2theta 15.21, 18.41, 23.86, 28.51, 33.46, 34.41, 49.86, 51.51, 60.51, 65.81, and 
68.16 indicate the excellent binding of ammonium vanadate on the surface of silanized magnetic  nanoparticles56. 
Diffraction peaks appearing at 30.41 (220), 35.51 (311), 43.91 (400), 53.91 (422), 57.71 (511) and 63.36 (440) 
confirms the cubic structure for iron nanoparticles (JCDPS card no, 19–0629)57. In order to obtain the size of 
the particles, the Debye Scherrer Eq. (1) was used. After calculations, the particle size was obtained in the range 
of 15 to 72 nm.

here, D is the crystallite size, K is the shape factor, calculated for spherical particles is 0.98, K = 1.54 A◦ for Cu 
and β is full width at half maxima of the highest peak in radian.

(1)D = K�/β Cosθ

Figure 1.  Catalyst synthesis steps.
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Figure 2.  Oxidation of sulfides using  Fe3O4@SiO2@CSH+VO3
−
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The morphology and shape of synthesized nanoparticles were scrutinized by FESEM analysis. FESEM illus-
trations of  Fe3O4 NPs, silanized iron nanoparticles and heterogeneous nanocatalyst are shown in Fig. 5a–c. 
Nanoparticles in all photos are almost uniformly distributed and have a relatively spherical structure with a size 
of 40–80 nm. After binding the chitosan-HCl.VO3 complex on the surface of  Fe3O4@SiO2, there was no change 
in the morphology of the nanoparticles. TEM analysis was used to acknowledge the core–shell shape of magnetic 
nanocatalyst and estimate the exact size of the particles. Figure 5d reveals the core–shell structure of nanopar-
ticles and the average particle size is betwixt 30–40 nm. Figure 5e displays the TEM image after  5th use of the 
catalyst. Based on this picture the structure of the catalyst was maintained after several runs. Also, the catalyst 
was analyzed by FESEM after 5 consecutive usages, and as can be seen, the morphology of the nanocatalyst has 
been completely preserved (Fig. 5f).

To confirm the successful synthesis of the nanocatalyst and to verify the presence of all the essential elements 
in its structure, the Energy Dispersive X-ray (EDX) technique was employed. (Fig. 5g). The EDX image illustrates 
the successful synthesis of nanoparticles and the excellent dispersion of all key elements such as Fe, Si, O, N, C, 
V, and Cl within the structure of modified iron nanoparticles with CS.VO3.HCl. Additionally, mapping analysis 
confirmed the proportional presence of Fe, N, O, C, V, Cl, and Si in the structure of the nanocatalyst (Fig. 5h). 
Furthermore, vanadium is effectively positioned on the surface of nanoparticles modified with chitosan.

The VSM pattern of  Fe3O4@SiO2@CSH+VO3
− was displayed in Fig. 6. The obtained magnetic strength is 20 

emu/g, which due to covering the surface with TEOS and chitosan, the obtained magnetic strength indicates the 
easy separation of the nanocatalyst from the reaction mixture.

The thermal stability of the synthesized nanocatalyst was assessed using the TGA technique over a tempera-
ture range of 30–1000 °C. (Fig. 7). The TGA curve reveals several stages of weight reduction. Approximately 2% 

Figure 3.  FT-IR curves of  Fe3O4NPs (blue curve),  Fe3O4@SiO2 (red curve),  Fe3O4@SiO2@CSH+VO3
− (green 

curve).

Figure 4.  XRD graph of  Fe3O4@SiO2@CSH+VO3
−
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of weight loss is observed in the region of 30–200 °C, which can be attributed to the removal of organic solvents 
and moisture absorbed in the nanocatalyst  structure20,58. A 10% weight loss, attributed to organic groups such 
as chitosan and inorganic groups such as vanadium attached to the surface of iron nanoparticles, occurs in the 
temperature range of 200–400 °C59. Moreover, within the temperature range of 400–1000 °C, a weight loss of 4% 
may indicate the decomposition of the silanized nanoparticles’ structure.

Specific surface area (18.6324 ± 0.2385  m2/g), pore volume (0.060247  cm3/g) and pore size (129.3378 Å) 
were calculated by Brunauer–Emmett–Teller (BET) technique. According to the adsorption and desorption 
diagram, the synthesized nanocatalyst exhibits a type IV isotherm, indicative of the mesoporous structure of 
the nanoparticles (Fig. 8).

Catalytic evaluation
After identifying and confirming the structure of the nanocatalyst introduced in this study, the catalytic efficiency 
of  Fe3O4@SiO2@CSH+VO3

− in the preparation of sulfoxides was evaluated (Table 1). The reaction of benzyl phe-
nyl sulfide with the oxidant  (H2O2) was chosen as the selected reaction to optimize the reaction conditions. The 
impact of key variables such as the amount of catalyst, type of solvent, and amount of oxidant on the reaction 

Figure 5.  (a) FESEM picture of  Fe3O4NPs, (b) FESEM image of  Fe3O4@SiO2, (c) FESEM image of catalyst, (d) 
TEM picture for the  Fe3O4@SiO2@CSH+VO3

−, (e) TEM picture of catalyst after 5th use (f) FESEM image of 
catalyst after 5th run, (g) EDX pattern of  Fe3O4@SiO2@CSH+VO3

−, (h) Elemental Mapping of  Fe3O4@SiO2@
CSH+VO3

−.
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process was thoroughly investigated. Initially, sulfide oxidation was examined in the absence of catalyst and 
oxidant, resulting in no sulfoxide formation. Furthermore, the reaction was conducted with the model in the 
presence of catalyst defects and with the oxidant in ethanol solvent, resulting in approximately 20% product 
formation. The effects of varying the amount of catalyst and the amount of hydrogen peroxide on the product 
percentage in ethanol solvent were then studied. First, the amount of oxidant was optimized. Amounts of 2–4 
mmol of  H2O2 were examined, and the best results were observed with 4 mmol of  H2O2 (Table 1, entry 13). To 

Figure 5.  (continued)

Figure 6.  VSM curve for  Fe3O4@SiO2@CSH+VO3
−.
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optimize the amount of catalyst, 0.025 to 0.07 g of magnetic nanocatalyst were checked (Table 1, entries 10–14). 
Based on the results, the best efficiency (98%) was obtained in the presence of 0.4 mL of hydrogen peroxide and 
0.05 g of catalyst in ethanol solvent and in 1 h (Table 1, entry 13). Next, the synergistic effect of different parts 
of the catalyst and the effect of the structure on the oxidation of sulfide were investigated. As can be deduced 
from the Table 1, entries 21–23, synergistic effects and morphology are not effective on the sulfide oxidation. 
The morphology of different parts is almost spherical (according to FESEM results). Sulfide was oxidized (98%) 
only in the presence of the final catalyst  Fe3O4@SiO2@CSH+VO3

−.
After determining the optimal amount of oxidant and catalyst, the influence of solvent polarity on the extent 

of sulfide oxidation was examined. Solvents with varying polarity, including acetonitrile, water, DMF, toluene, 
chloroform, and solvent-less conditions, were evaluated. Interestingly, in all cases, the desired sulfide was oxidized 
with lower yields compared to ethanol solvent. Additionally, increasing the amount of  H2O2 led to the exclusive 
formation of sulfoxide without the formation of sulfone product.

After obtaining the optimized conditions, various aromatic and aliphatic sulfides were oxidized in the pres-
ence of hydrogen peroxide and  Fe3O4@SiO2@CSH+VO3

− in ethanol (Table 2). The presented catalyst exhibited 
remarkable performance for the oxidation of sulfides, with the desirable sulfoxide prepared with high efficiency 
and in a relatively short time in all cases. It is noteworthy that aromatic sulfides containing electron-withdrawing 
groups yielded products in longer reaction times and with lower efficiency compared to aromatic sulfides with 
electron-donating groups. Additionally, the method demonstrated exceptional chemoselectivity in the oxidation 
of sulfides, where even in the presence of sensitive alcohol groups, only the sulfide was oxidized while the alcohol 
group remained intact. Furthermore, 2-(benzylthio)-1H-benzimidazole, as a heterocyclic sulfide, produced the 
desired sulfoxide with excellent yield.

The details of sulfide oxidation in the presence of  Fe3O4@SiO2@CSH+VO3
− are as follows (Fig. 9). In the ini-

tial step,  H2O2 can bind to vanadium on the catalyst surface, resulting in the removal of one molecule of water. 
Subsequently, the sulfide, acting as a nucleophile, attaches to the oxygen atom bound to the vanadium, ultimately 
leading to the formation of the  sulfoxide62.

Reusability of the  Fe3O4@SiO2@CSH+VO3
−

One of the prominent objectives in green chemistry is the utilization of nanocatalysts that can be easily recovered 
from the reaction medium. Therefore, the recovery capability of the nanocatalyst in the sulfide oxidation reac-
tion under optimized conditions was examined using a model reaction. After the formation of the sulfoxide, 

Figure 7.  TGA diagram for  Fe3O4@SiO2@CSH+VO3
−

Figure 8.  N2-adsorption–desorption plot of  Fe3O4@SiO2@CSH+VO3
−
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the catalyst was removed from the environment using a magnet, washed with water and ethanol, and then dried 
for subsequent reactions. As shown in Fig. 10, after 5 consecutive uses, a slight decrease in catalytic activity was 
observed, which could be attributed to contamination of the nanocatalyst surface.

EDX and XRD analyses were performed on the nanocatalyst after 5 consecutive uses. It is noteworthy that all 
the main elements can be observed in the EDX Catalyst image after the fifth use (Fig. 11a). As shown in Fig. 11b, 
the structure of the nanocatalyst remains intact with no significant changes observed. In the XRD spectrum, 
all the elements are present, with only variations in the intensity of the peaks, either decreasing or increasing.

Leaching test
Furthermore, a leaching test was conducted to confirm the heterogeneous nature of the prepared  Fe3O4@SiO2@
CSH+VO3

− catalyst for the oxidation of sulfides. In this test, benzyl phenyl sulfide was chosen as the selected 
reaction under optimal conditions. Halfway through the reaction time (30 min), the reaction was halted (yield-
ing 51%), and the catalyst was separated from the reaction mixture using a magnet. Subsequently, the mixture 
was allowed to continue in the absence of the catalyst under stirring, and after a certain period, only a negligible 
increase of about 2% in the yield of sulfoxide was observed. This minimal change in the product quantity con-
firms the heterogeneous nature of the catalyst and indicates the absence of vanadium leaching into the reaction 
medium.

Comparison of catalyst efficiency
To compare the efficiency of the introduced nanocatalyst, several scientific reports were reviewed, all of which 
involve iron nanoparticles modified with different metals or linkers. The results are summarized in Table 3. As 
shown in Table 3, the synthesized magnetic nanocatalyst in this study exhibits superiority over other catalytic 
systems in terms of reaction time and efficiency. Additionally, it is comparable in terms of the amount of oxidant 
and solvent used. Specifically, the oxidation of benzyl phenyl sulfide was compared.

Conclusion
In summary, this research presents the synthesis of a novel heterogeneous magnetic nanocatalyst containing 
a vanadium-chitosan complex through a simple and cost-effective method. The nanocatalyst exhibited selec-
tive conversion of sulfides into sulfoxides under mild conditions with high yield. Notably, minimal leaching of 
vanadium from the catalyst surface was observed, which is environmentally beneficial. Comprehensive analyses 
including IR, XRD, TEM, FESEM, EDX, mapping, TGA, and VSM confirmed the successful synthesis of the 
nanocatalyst. This procedure offers several advantages such as easy catalyst preparation, no requirement for 

Table 1.  Achieving the best reaction conditions for the oxidation of benzyl phenyl sulfide in the presence 
of  Fe3O4@SiO2@CSH+VO3

−. Reaction conditions: Benzyl phenyl sulfide (1 mmol)  H2O2 and  Fe3O4@SiO2@
CSH+VO3

−, in ethanol and 25 °C. a Yields: Isolated yields. b Cat:  Fe3O4 NPs. c Cat:  Fe3O4@SiO2. d Cat:  Fe3O4@
SiO2@CS.

Entry Oxidant (mmol) Catalyst (g) Time (h)/T (°C) Solvent Sulfoxide (%)a

1 – – 12/RT EtOH 0

2 2 – 1/RT EtOH 20

3 2 0.025 1/RT EtOH 50

4 2 0.04 1/RT EtOH 70

5 2 0.05 1/RT EtOH 80

6 2 0.07 1/RT EtOH 86

7 3 0.025 1/RT EtOH 45

8 3 0.04 1/RT EtOH 65

9 3 0.05 1/RT EtOH 85

10 3 0.07 1/RT EtOH 90

11 4 0.025 1/RT EtOH 60

12 4 0.04 1/RT EtOH 75

13 4 0.05 1/RT EtOH 98

14 4 0.07 1/RT EtOH 98

15 4 0.05 1/RT CH3CN 75

16 4 0.05 1/RT H2O 60

17 4 0.05 1/RT DMF 88

18 4 0.05 1/RT Toluene 40

19 4 0.05 1/RT CHCl3 55

20 4 0.05 1/RT – 65

21 4 0.05b 1/RT EtOH 10

22 4 0.05c 1/RT EtOH 15

23 4 0.05d 1/RT EtOH 20
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Table 2.  Oxidation of sulfides into sulfoxides catalyzed by  Fe3O4@SiO2@CSH+VO3
−. Reaction conditions: 

sulfide (1 mmol),  H2O2 (0.4 mL), Catalyst (0.05 g), EtOH, 25 °C.

Entry Sulfoxide Time (h) Yield (%) MpRef (°C)

1 S
CH3

O

1.5 93 29–3035

2 S

O

1 95 69–7135

3 S

O

1 98 121–12335

4
S

O

H3C

1.5 95 122–12460

5
S

O

Br

2 94 141–14361

6
S

O
Br

2 94 13735

7
S
O

Cl

1.5 92 131–13361

8 S

O
NO2

2 92 162–16435

9 S

N

H
NO

2.5 94 171–17335

10 S

O O

OH 2.5 92 110–11235

11 S

O

OH 2 94 150–15235

12
S

O
1.5 95 29–3060
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Figure 9.  A possible mechanism for the oxidation of sulfides in the presence of  Fe3O4@SiO2@CSH+VO3
−

Figure 10.  Ability to recover the catalyst up to at least 5 times for the model reaction.

Figure 11.  EDX pattern (a) and XRD curve (b) for catalyst after 5th run.
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special or harsh conditions, use of inexpensive and readily available raw materials, facile catalyst recovery, sim-
ple separation from the reaction mixture, excellent activity and selectivity, and the potential for catalyst reuse 
without significant loss in catalytic efficacy.

Data availability
Data from this research are available upon sensible request from the corresponding author.
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