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The impact of spike timing 
precision and spike emission 
reliability on decoding accuracy
Wilten Nicola 1,2,3,5*, Thomas Robert Newton 1,5 & Claudia Clopath 4

Precisely timed and reliably emitted spikes are hypothesized to serve multiple functions, including 
improving the accuracy and reproducibility of encoding stimuli, memories, or behaviours across 
trials. When these spikes occur as a repeating sequence, they can be used to encode and decode a 
potential time series. Here, we show both analytically and in simulations that the error incurred in 
approximating a time series with precisely timed and reliably emitted spikes decreases linearly with 
the number of neurons or spikes used in the decoding. This was verified numerically with synthetically 
generated patterns of spikes. Further, we found that if spikes were imprecise in their timing, or 
unreliable in their emission, the error incurred in decoding with these spikes would be sub-linear. 
However, if the spike precision or spike reliability increased with network size, the error incurred in 
decoding a time-series with sequences of spikes would maintain a linear decrease with network size. 
The spike precision had to increase linearly with network size, while the probability of spike failure had 
to decrease with the square-root of the network size. Finally, we identified a candidate circuit to test 
this scaling relationship: the repeating sequences of spikes with sub-millisecond precision in area HVC 
(proper name) of the zebra finch. This scaling relationship can be tested using both neural data and 
song-spectrogram-based recordings while taking advantage of the natural fluctuation in HVC network 
size due to neurogenesis.

The firing of spikes is metabolically costly, with the brain consuming approximately 20% of the body’s energy 
at any time1. Indeed, studies show that the firing and transmission of action potentials via synapses consumes 
the majority of the predicted energy used by cells in the cerebral cortex2. Thus, to maximize the use of any par-
ticular spike in encoding/decoding stimuli across trials, a neural circuit may devote resources to increasing the 
reliability of emitting existing spikes and the timing precision of these emitted spikes, rather than adding extra 
spikes. This may also be a useful strategy in improving the performance of neuromorphic circuits, which use 
hardware instantiated spiking neurons for computations3,4.

Indeed, there are existing examples in neuroscience where neural circuits prioritize the reliability of spike 
emission and the precision of spike times, rather than encoding with a large volume of spikes. For example, the 
neural circuits controlling the singing behaviour of the zebra finch prioritize spike timing precision and emis-
sion reliability. The zebra finch singing behaviour is dependent on multiple nuclei post-learning. Here, we focus 
on the HVC (proper name), the Robust Nucleus of the Archopallium (RA), and the hypoglossal nucleus5–11. 
During the approximately half second bout of singing in a single song, HVC neurons which project to area RA 
( HVCRA neurons) fire a precise chain of spikes where each HVCRA neuron fires a burst at a well-defined moment 
in time10. This chain of spikes covers the entire time interval of singing, even during the silent intervals between 
the different segments (or syllables) of a single song12. This chain of spikes is also highly reproducible across sing-
ing bouts, with individual spikes displaying sub-millisecond precision8,10. For example, the first spike fired in a 
burst for HVCRA neurons was estimated to have a precision of 0.73± 0.3 ms. At RA, the individual neurons also 
display highly reproducible spike sequences with sub-millisecond ( 0.28± 0.3 ms) precision8. RA serves as one 
of the final command signals to produce singing through the vocal organ with the hypoglossal nucleus acting as 
the final relay. The neural architecture at the heart of this reproducible and precise behaviour is a reproducible, 
precise, and sparse sequence of spikes.

If populations of neurons use precisely timed and reliably emitted spikes to encode stimuli or produce behav-
iours, how would that impact the ability to decode out these stimuli or behaviours? Indeed, there is substan-
tial computational modelling and analytical results that investigate the accuracy of decoding a stimulus. For 
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example, if the spikes are only emitted as part of a rate code, then prior work shows that we should expect that 
decoding accuracy only scales with the square-root of the number of spikes fired13,14. However, there are also 
proposed neural circuits that rely on balanced excitatory/inhibitory networks that do not depend on precise 
and repeatable sequences of spikes yet have decoding errors that decrease linearly with network size13,15–17. 
These networks fire spikes sparsely15–18 through a coordinated network structure where a neuron’s time varying 
inputs are precisely balanced between excitation and inhibition. The precise balance of inputs allows a neuron 
to compute the decoding error in representing a stimulus, or dynamical system. A spike is only fired when a 
threshold decision boundary is crossed15–18, at which point the error in reproducing a stimulus or dynamical 
system is reset. These networks are robust to neural heterogeneity19,20, neuronal model implementation17, and 
can be learned locally with biologically plausible spike timing-dependent plasticity rules21–23. Owing to the error 
reset mechanism, the spike trains produced have Poisson-like statistics, without explicitly being drawn from a 
Poisson point process15–17.

In this study, we investigate the decoding accuracy of time-series data from precisely timed and regular 
sequences of spikes. By using synthetically constructed spike-trains and mathematical analysis, we derived 
sufficient conditions for sequences of spikes to have a qualitative difference over rate codes in the accuracy of 
decoding time series data. This time series data can represent behaviours, stimuli, or other signals but must be 
suitably smooth in a mathematical sense. In networks containing perfectly precise and reliable spikes, the root 
mean squared error (RMSE) of a time-series decoded with a linear decoder decreases linearly with the number 
of spikes or neurons used in the decoding. This is similar to the aforementioned efficient codes that rely on E/I 
balance13,15–17. We tested these findings in numerical simulations with synthetically generated spike-trains and 
synthetically generated signals to be decoded. This linear decrease in the RMSE with network size also holds 
when the spike times are no longer perfectly precise and reliable. However, the spike timing precision and spike 
emission reliability of a neuron must increase along with the size of a network. The error incurred by approxi-
mating the system with spikes can be regarded as the bias in a bias variance decomposition, while the variability 
in the replay of a signal caused by imprecise or unreliable spikes can be interpreted as the variance. Finally, we 
discuss how to test the scaling-relationship experimentally in the zebra finch circuit. This circuit exhibits a natural 
increase in the HVC network size via neurogenesis. We predict that if the decoding accuracy of the stereotypical 
zebra finch song increases linearly with HVC network size, then so must the precision of HVC spikes.

Results
Before considering how precise spike times impact the neural code, neural encoding and neural decoding will be 
defined. As an organism performs a behaviour or perceives a stimulus which is represented with the function of 
time, x(t), spikes are emitted as a result of the stimulus or in pursuit of enacting the behaviour. We will assume 
that the signal x(t) occupies an interval t ∈ [0,T] with all spikes generated in the encoding process confined to 
this interval. As such, the stimulus becomes encoded by some encoding transformation E into a series of spikes 
which can be represented as a matrix.

Here the vector τ is an N × nt matrix where N corresponds to the number of neurons, and nt is a discretization 
of time. Thus, we define the matrix τ as

where the Ij th time interval corresponds to Ij = [ jTnt ,
(j+1)T

nt
] . We will not explicitly specify how the function 

E generates the encoding matrix τ , but rather consider the conditions on a mapping that allow for accurate 
decoding. For example, the mapping E may generate the same realization of spikes for x(t) every time yielding 
reliable and precisely timed spikes. Alternatively, E may be stochastic in nature and the spike times may have 
some noise or “jitter” present, or subsets of the spikes may even fail to be emitted. Thus, the function E in (1) 
defines a basic neural encoding scheme.

Decoding can be thought of as a kind of inverse to Eq. (1). In neural decoding, the goal is to reconstruct 
x(t) from τ . In general, inverting Eq. (1) is not possible. However, x(t) can be approximated with x̂(t) and some 
decoding operator D:

One approach to decoding x(t) is to convolve the spikes with some sort of kernel, K(t) and then consider the 
decoder D to be a linear transformation, D = φx

where tjk is the jth spike fired by the kth neuron. The Kernel function K(t) the spikes. Here, we consider the simple 
exponential filter ( K(t) = exp(−t/τ) with a filtering time constant of 10 ms. The function rj(t) is the filtered spike 
history for neuron j. We can interpret r as a temporal basis set. The linear decoder φx transforms the temporal 
basis set r(t) into the approximation to the decoded signal (x̂(t)).

Typically, the decoder is constructed by using one or a subset of repetitions of the behaviour or stimulus (and 
spikes) to train the decoder. The trained decoder is later tested with repetitions that were not used to construct 
the initial decoder.

(1)τ = E(x(t))

τ ij =

{

1 if Neuron i spiked in Ij
0 otherwise

(2)x̂(t) = D(τ ) = D(E(x(t))

(3)x̂(t) =
N
∑

j=1

φx
j rj(t) =

N
∑

j=1

∑

tjk<t

φx
j K(t − tjk)
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Neural encoding and decoding raise the question of how accurate can we decode out the function x(t) with 
x̂(t) . The Root-Mean-Squared Error (RMSE) is commonly, although by no means exclusively used as the metric 
to measure this accuracy14–17. For example, if we consider the audio-time series of a zebra finch singing as x(t), 
then the RMSE measures the difference between the decoded song ( ̂x(t) ) and the recording with a RMSE of 0 
indicating perfect decoding accuracy. The RMSE is defined as:

where MSE denotes the mean-squared-error. With encoding, decoding, and the RMSE of decoding now defined, 
the question of how accurate can the stimulus x(t) be reconstructed naturally emerges. More formally, for pro-
gressively larger networks ( N → ∞ ), what is the limiting behaviour of the RMSE?

Efficient coding networks were proposed in15–17 to 1) sparsely fire spikes and 2) accurately and robustly represent 
signals or internal dynamics all with one-neural architecture. Briefly, these networks use precisely balanced 
slower connections and faster inhibitory connections which can be learned or pre-configured as a result of an 
error reducing optimization criterion15–18,21–23. These networks are robust to losing neurons, and can accurately 
produce a desired output. These networks precisely track a desired signal as a decoded representation x̂(t) . When 
the error in this representation reaches a critical threshold (or bounding box18), a spike is emitted to reset the 
local error in the representation to 0. The neuron that ultimately fires this spike inhibits the other neurons in the 
network to maximize the efficiency of the code. Thus, for these networks, the � value in Eq. 5 is -1 and adding 
more neurons decreases the RMSE linearly with the network size.

As we will demonstrate numerically and analytically, for precisely timed sequences of spikes, such as those 
fired by HVCRA neurons or pyramidal neurons in RA in the zebra finch, the RMSE also has a � = −1 and 
decreases linearly with the number of neurons:

This is qualitatively different from and in strike contrast to alternate codes. For example, if the timing of spikes is 
unimportant for the neural code, and only the number of spikes per unit of time (the rate) encodes information, 
the RMSE decreases with the square root ( � = −1/2 ) of the number of neurons15–17:

The bias‑variance decomposition
To test how the RMSE changes when spikes become imprecisely timed or unreliably emitted, a perturbed decoded 
approximation x̃(t) is defined as the approximation to x(t) when the decoder φx is applied to the second set of 
spikes which suffer from spike failure, where spikes fail to be emitted at their designated time, or spike jitter, 
where the spike time of a spike is randomly perturbed. Then the MSE can be decomposed as

where the square of the RMSE is the mean squared error (MSE) and ‖‖ is the standard L2 function norm defined 
over [0, T]. The first term in Eq. (8) can be interpreted as the bias in the bias-variance trade-off, while the scond 
term is the variance (square of the standard deviation). The first term quantifies how well we can approximate 
x(t) with a spike train, while the second term is the error incurred in assuming that the spike train is perfectly 
repeatable.

Precise and reliable spike times lead to a linear decrease in the root mean squared error (RMSE) 
with increasing network sizes
To investigate how spike timing precision and spike emission reliability impact decoding accuracy, we con-
structed synthetic spike trains where each neuron fires a variable number of spikes. These spikes were generated 
randomly from a Poisson distribution, with the same realization of spikes drawn on each trial. Further, the 
spikes are reliable and precisely timed from trial to trial as they are drawn from the same realization, however 
they can be easily and independently perturbed in subsequent trials (Fig. 1A-B). We constructed optimal linear 

(4)RMSE =

√

∫ T

0

(

x̂(t)− x(t)
)2

dt =
√
MSE

(5)RMSE =

√

∫ T

0

(

x̂(t)− x(t)
)2

dt = O(N�), N → ∞

(6)RMSE =

√

∫ T

0

(

x̂(t)− x(t)
)2

dt ∝ 1

N
(Precise spike times and reliable spikes).

(7)RMSE =

√

∫ T

0

(

x̂(t)− x(t)
)2

dt ∝ 1√
N

(Rate Code).

(8)

MSE =
∫ T

0
(x̃(t)− x(t))2 dt = �x̃ − x�2

=�x̃ − x̂ + x̂ − x�2

≤(�x̃ − x̂� + �x̂ − x�)2 = �x̂ − x�2 + �x̃ − x̂�2 + 2�x̂ − x��x̃ − x̂�

(9)=Bias2 + Variance + 2Bias · Std
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decoders that could decode out a target signal, in this case, a simple sinusoidal oscillator with a period of 1 Hz 
(Fig. 1A). We found that the RMSE decreased linearly (RMSE ∝ N−1.00 ) with the network size for sufficiently 
large networks. Thus, if spike times are perfectly precise, they can be used to decode out a continuous signal 
with N−1 RMSE scaling. The spikes do not need to explicitly encode features of the signal, but merely tile time 
with sufficiently large numbers. This is an identical RMSE scaling to efficient codes15–17 and superior to the error 
scaling achieved by using firing rates (RMSE ∝ N−1/2).

Next, we investigated for what general conditions this result would hold (Supplementary Material S1 and 
Fig. S1). We found that the linear decrease in the RMSE with network size is a general, mathematical result that 
occurs so long as the time series that the spikes must approximate is sufficiently smooth (differentiable). This 
criterion can be relaxed to the function being Lipschitz continuous (Supplementary Fig. S1). The spikes need 
not be ordered into a chain or generated randomly as above but must be precise from trial-to-trial and suf-
ficiently dense in time (Supplementary Material S1). Under these conditions, the efficient coding error scaling 
RMSE ∝ N−1 is likely to be achieved for sufficiently large network sizes. Further, the spikes can overlap and 
interfere with each other extensively (Supplementary Fig. S2) and need not be sparsely distributed or orthogonal. 

Figure 1.   (A) (Left) A diagram of a randomly generated spike sequence used to decode a time series with 
optimal linear decoders. A decoded signal (blue) along with the target supervisor (black) is shown in the 
right. The signal is decoded using N = 1024 neurons. (B) Decoding the time series with larger networks. The 
spikes generated are drawn with the same statistics as in (A) and filtered identically. The signal is decoded for 
progressively larger networks ( N = 210 to N = 214 ). (C) The loglog plot of the RMSE vs network size. The 
RMSE decreases linearly with the network size. The linear fit was performed to the mean of the 10 realizations 
from N = 210 to N = 214 . The largest five.
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As long as the spikes are precisely timed, the RMSE will still decrease linearly with the network size (Supple-
mentary Fig. S2) under the smoothness conditions considered in the Supplementary Material. Alternatively 
stated, in the case of perfectly timed and perfectly reliable spikes and a suitably smooth supervisor, the bias 
term in Eq. (8) decreases linearly with the network size, while the variance is 0 as the spikes contain no degree 
of imprecision or unreliability.

The precision of spike times and reliability of spikes must increase with the network size to 
preserve RMSE ∝ N

−1 scaling
While spike times in the zebra finch HVCRA neurons and RA neurons are precise, they are not perfectly precise. 
From trial-to-trial, the spike times often display sub-millisecond levels of jitter. This is true for neurons in both 
the HVC and RA8,10 where the jitter is O(0.1) ms (depending on the neuronal subtype). Further, neurons can 
also fail in firing spikes owing to unreliable synapses24. Thus, we considered just how precise and reliable spikes 
should be when increasing the network size to maintain a linear decrease in the RMSE.

First, we considered spike-jitter from trial-to-trial by constructing a decoder with initially precise spikes. 
Then, we perturbed the spike times randomly and reapplied the decoder on subsequent trials, and measured 
the RMSE (Fig. 2A). We found that if the standard deviation of the jitter ( σ ) was fixed, the N−1 error scaling in 
the RMSE was no longer present (RMSE ∝ N−0.085 ). This was numerically confirmed for trained optimal linear 
decoders (Fig. 2). The sub-linear decrease in the RMSE was also confirmed for other fixed values of the standard 
deviation of the spike jitter (Supplementary Fig. S3).

If a fixed amount of timing imprecision would destroy the linear decrease in the RMSE, could populations of 
neurons increase their spike timing precision with network size to restore it? To investigate this hypothesis, we 
considered the possibility that spikes might become more precisely timed with increasing network sizes by hav-
ing the jitter decrease with larger networks (either σ ∝

√
N

−1 or σ ∝ N−1 , Fig. 2B). We found that if the spike 
times became more precise linearly ( σ ∝ N−1 ) with the network size, this was sufficient to restore the linear 
decrease in the RMSE with network size (RMSE ∝ N−0.965).

Next, we considered the case where spikes might abruptly fail (Fig. 2C,D). We again found that if the prob-
ability of spike failure ( pF ) was fixed and independent of the network size, the linear decrease in the RMSE with 
increasing network size would no longer be present (RMSE ∝ N−0.130 ). However, once again, if the spikes are 
less likely to fail with larger networks ( pF ∝

√
N

−1 ), the linear decrease in the RMSE would be restored (RMSE 
∝ N−1.022 ). These results were qualitatively and quantitatively similar to the case where spikes were randomly 
emitted (rather than randomly failed, Supplementary Fig. S4). Thus, spike timing imprecision or spike-failure are 
themselves not sufficient to eliminate the linear decrease in the RMSE, but the spikes can become more reliable 
and more precisely timed with progressively larger network sizes to maintain RMSE ∝ N−1 scaling. The prob-
ability of a spike failing can decrease with the square-root of the network size while the standard deviation of 
spike jitter should decrease linearly with the network size as a sufficient condition to preserve a linear decrease 
in RMSE scaling.

The impacts of spike timing imprecision, and spike emission reliability were also explored analytically, albeit 
with simplifying assumptions for tractability (Supplementary Material S2). Indeed, in the bias-variance decom-
position, sufficient (but not necessary) conditions were determined to restrict the variance to scale like N−2 , 
which leads to the RMSE scaling like ∝ N−1 . First, we considered the case of a simple neuron-specific jitter to a 
filtered, but differentiable, spike train. This would be the case for example if the spikes were filtered with Gaussian 
filters where every spike for a single neuron is jittered by the same amount, which differs from the jitter applied 
to the other neurons’ spikes. If the sum of the absolute decoders, given by 

∑N
j=1 |φ

x(t)
j | , is bounded for N → ∞ , 

then σ ∝ N−1 is a sufficient condition for RMSE∝ N−1 as N → ∞ . For the case of failing spikes, we considered 
evenly distributed spikes with box filters. In this case, each spike does not have any redundancy in the form of 
overlapping spikes from other neurons to aid in the coding of a signal, as all the spike trains are orthogonal. In 
this scenario, it is sufficient for the spike failure rate to scale with pF ∝ N−2 , which differs radically from the 
numerical results of pF ∝

√
N

−1 to maintain RMSE∝ N−1 . This discrepancy where the numerical simulations 
result in looser restrictions on the probability of spike failure may be due to the simplifying assumption of non-
redundant spiking in the analytical derivation for tractability. To investigate this more thoroughly, the simulations 
in Fig. 2 were conducted with larger initial pF ( pF = 0.05 and pF = 0.5 Supplementary Fig. S3). In the latter case, 
we did find that RMSE ∝ −0.703 when the pF ∝ 0.5√

N
 . This may imply that the decrease in RMSE with pF is 

dependent on the initial pF with larger initial failure probabilities overwhelming any redundancy that additional 
spikes provides as the network becomes larger, or alternatively, the sub-linear decrease in RMSE with network 
size for larger pF may be a numerical transient.

In Figs. 1 and 2, the decoders were trained with a single repetition of the supervisor and spike train. We tested 
the hypothesis that more repetitions would improve RMSE scaling with N by training a network with 10 trials 
of imprecise (Fig. 3A,C) or unreliable spikes (Fig. 3B). The linear decrease in RMSE with increasing network 
size was only maintained under identical scaling conditions as in Fig. 2 for the spike jitter (RMSE ∝ N−0.958 ) 
where the standard deviation decreased linearly with network size, and spike failure (RMSE ∝ N−0.953 ) where 
the probability of spike failure decreased with the square root of the network size. However, there was a nota-
ble improvement in RMSE scaling when using multiple trials when the probability of spike failure was con-
stant ( pF = 0.02 ). When multiple trials were used, RMSE ∝ N−0.764 while a single training trial lead to RMSE 
∝ N−0.243 . It is possible that with more training trials, the exponent would shift further closer to −1 . Thus, to 
preserve the linear decrease in RMSE with network size, even when multiple trials are used to train a decoder, 
the spikes should still become more reliably emitted and more precisely timed with network size to maintain a 
linear decrease in the RMSE with network size.
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The impacts of supervisor complexity and smoothness on linear RMSE scaling
The decoded signals thus far were simple smooth functions (e.g., sinusoidal inputs). We sought to determine how 
increasing the potential complexity of a supervisor would impact the scaling of the RMSE. First, we considered a 
multi-dimensional supervisor consisting of a sequence of pulses of variable duration (Fig. 4). The pulses represent 
different notes for the song “Ode to Joy” (see14 for further details). We found that precisely timed and reliably 
emitted spikes still lead to a linear decrease in the RMSE with network size (RMSE ∝ N−1.019 , Fig. 4A). However, 
if the spikes are imprecise, the standard deviation of the spike jitter must decrease linearly with the network size 
to preserve the linear error scaling of the RMSE (RMSE ∝ N−0.981 ). If the spikes are unreliable, the probability 
of spike failure must also decrease with the square root of the network size to preserve the linear error scaling 
of the RMSE (RMSE ∝ N−1.008 ). Collectively, these results imply that the linear decrease of the RMSE with 
network size is robust to different supervisors as the RMSE scaling was identical to the results in Figs. 1, 2 and 3.

Figure 2.   (A) Synthetic spike trains are generated and used to train an optimal decoder on a simple sinusoidal 
oscillator with a period of 1 second. The spike trains are then jittered and the decoder is reapplied, with the 
resulting root mean squared error (RMSE) measured. (Top) A cartoon of the spike generation protocol: the 
spikes are first generated to train a decoder. A new spike raster is then generated by jittering the spikes with the 
decoder reapplied. A sample curve for N = 214 shown where the spikes are jittered randomly with mean 0 and 
standard deviation σ = 0.1 s. The supervisor is overlayed (black dashed line) during training. (B) The RMSE as 
a function of the network sized (N) for differing jitter amounts σ . The jitter is either fixed at 0.1 seconds (blue), 
decreases like the square-root of the network size (green), linearly with the network size (orange) or remains 
fixed with network size. (C) Synthetic spike trains are generated and decoders are trained as in (A), only now a 
random subset of spikes fail with pF denoting the spike failure probability. A pF = 1 implies that all spikes fail, 
while a pF = 0 implies that the spikes are perfectly reliable. (Top) A cartoon of the spike generation protocol: the 
spikes are first generated to train a decoder. A new spike raster is then generated by dropping spikes randomly 
with probability pF with the decoder reapplied after. A sample curve for N = 214 shown where the spikes are 
dropped randomly with pF = 0.02 . The supervisor is overlayed (black-dashed) line during training. (D) The 
RMSE as a function of the network sized (N) for differing spike failure amounts pF.
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Next, we considered if the continuity of the decoded signal was critical for the linear decrease in RMSE with 
larger network sizes (Fig. 5). To that end, we utilized a simple but non-smooth signal (the sign function) that 
exhibits a discontinuity (Fig. 5A–C). Surprisingly, even when the spikes are both reliable and precise, the RMSE 
did not decrease linearly with the network size, but at a slower rate (RMSE ∝ N−0.772 , Fig. 5A–B). This signal is 
also more poorly decoded when the spikes suffer from spike jitter or failure, however the slower RMSE scaling 
is restored when the standard deviation of the jitter decreases linearly with the network size (RMSE ∝ N−0.721 , 
or when the spike failure rate decreases with the square root of the network size (RMSE ∝ N−0.771 ). The source 
of the discontinuity is where the magnitude of the error is the largest (Supplementary Fig. 5). We note that the 
point of discontinuity also explicitly breaks the smoothness conditions (and more generally the Lipschitz condi-
tion) required for RMSE ∝ N−1 scaling in the derivation (Supplementary Material S1). Further, we show that 
approximating a nonsmooth step function will change the bias scaling in the bias-variance decomposition to 
bias ∝ N−1/2 (Supplementary Material S2). This was derived analytically under simplifying assumptions about 
the nature of the spike train (evenly distributed single spikes) and filtering (box-filtering) which differs from 
the more realistic numerical examples considered. Nevertheless, the smoothness of the supervisor impacts the 
RMSE scaling via the bias term in the bias-variance decomposition.

Testing the RMSE versus network size in the zebra finch
We investigated what the impact of precise spike times would have on the RMSE of a decoded behaviour: the song 
produced by the zebra finch. We first constructed a simplified model of the zebra finch circuit with synthetically 
constructed spike trains that mimic the statistics of HVCRA neurons (Fig. 6A). In particular, each HVCRA neuron 
fires a single burst of spikes, and the bursts are sampled from a uniform distribution over the entire duration of 
the song. A decoder ( φx ) is then constructed using a zebra finch song recording (see Materials and Methods,14, 
Fig. 6B). We considered three scenarios: a fixed jitter at σ = 0.3 ms a jitterless network with σ = 0 ms, and a net-
work for which the jitter would decrease with N with σ = 1s

N  . Note that we took a larger jitter value for small N so 
that the overall jitter in the latter case would be comparable to 0.3 ms for large N. We found that larger networks 

Figure 3.   (A) The impact of multiple trials on RMSE scaling. Randomly generated spike sequences with 
imprecise and reliable spike times are used to linearly decode a sinusoidal oscillator with a period of 1 second. 
The decoder is trained with 10 repetitions of a spike train with jittered spikes and tested with another 10 
repetitions to measure the RMSE. A total of 10 realizations of this procedure are used for each N. The spike 
jitter amount decreases linearly with N (yellow), with the square-root of N (green), or stays constant (teal). (B) 
Randomly generated spike sequences with precise spike times but unreliable spikes are used to linearly decode 
a generic a sinusoidal oscillator with a period of 1 second. The decoder is trained with 10 repetitions of a spike 
train with failed spikes and tested with another 10 repetitions to measure the RMSE. A total of 10 realizations 
of this procedure are used for each N. (C) The target time series (black dashed lines) and the decoded estimate 
(blue). The decoder is reapplied in the left on a test trial of jittered spikes. The decoded signal is trained and 
tested in (C) with N = 212 neurons and a jitter of σ = 0.1 s. Note that for (A) and (B), the maximum network 
size considered was N = 212.
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(increasing N) of HVCRA neurons resulted in more accurate decoding (Fig. 6B). For sufficiently large networks, 
the RMSE decreased approximately linearly when the jitter was either not present (RMSE ∝ N−0.9 ), or decreased 
linearly with the network size (RMSE ∝ N−0.89 ). We remark that the RMSE scaling exponent is slightly larger 
than -1, which may be due to discontinuities or rapid signal changes in the spectrogram (Supplementary Material 
S2). If the jitter was fixed at σ = 0.3 ms, the RMSE decreased sublinearly with network size (RMSE ∝ N−0.43).

While the RMSE is important for computational studies, it is difficult for an experimental neuroscientist 
to actually utilize and measure for a simple reason: they do not have access to the signal a circuit intends to 
represent, only the output of the circuit itself. Indeed, the RMSE represents the accuracy of a behaviour once 
that behaviour is known. Thus, we tested whether the precision of a behaviour also increased with network size 
by measuring the standard deviation of the decoded spectrograms (Fig. 6C–D). We found that the behavioural 
variability (see Materials and Methods for definition) of the spectrograms displayed similar scaling relationships 
(slopes of -0.43, -0.93, and -0.89) as the RMSE (slopes of -0.43, -0.9, and -0.89) for all conditions ( σ = 0.3 ms, 
σ = 0 ms, σ ∝ N−1 ). This result allows an experimentalist to record a small number of repetitions (10 in this 
case) of animal singing, and use the stereotypy of a song as a proxy for the RMSE in measuring these scaling 
relationships.

Discussion
Precisely timed spikes have been hypothesized to somehow encode information25–34. Here, we explored the 
hypothesis that spike timing precision and spike emission reliability are specifically used to improve the accuracy 
of decoding a time series, as measured by the root mean squared error (RMSE). The RMSE in decoding any 
behaviour or sensory stimulus decreases linearly with the network size when using an optimal linear decoder with 
precisely timed and reliable spikes. This is similar to efficient coding circuits15–18,21–23, or the transition between 
rate and timing codes considered by others34. We found that this linear decrease in RMSE was robust to different 
supervisors, and different distributions of spikes, so long as the spikes were precise and reliable, and sufficiently 
smooth. If the standard deviation in the spike times remained fixed with network size, the linear decrease in the 
RMSE with network size would be destroyed. If, however, spike emission reliability and spike timing precision 

Figure 4.   (A) Imprecise but reliable spikes are used to decode a 5-dimensional sequence of pulses that replicate 
the song “Ode to Joy”. The root mean squared error is plotted versus the network size. The spike jitter amount 
decreases linearly with N (yellow), with the square-root of N (green), or stays constant at σ = 0.1 s (teal), or 
stays constant at 0 (red). (B) Precisely timed but unreliable spikes with a probability of spike failure pF are used 
to decode Ode to Joy. The spike failure probability either decreases with the square root of the network size 
(green), or is fixed at pF = 0.02 (teal), or is fixed to 0 (red). (C) The decoded Ode to Joy signal at N = 215 with 
σ ∝

√
N

−1 (right). The jitterless signal (blue) and the supervisor (black) are shown in the left. The pulse width 
denotes either a quarter note or a half note, while the pulse dimension denotes the specific note.
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Figure 5.   (A) Imprecise but reliable spikes are used to decode a nonsmooth function f (t) = sign(t − 0.5) . 
The root mean squared error is plotted versus the network size. The spike jitter amount decreases linearly with 
N (yellow), with the square-root of N (green), or stays constant at σ = 0.1 s (teal), or stays constant at σ = 0 
(red). (B) Precisely timed but unreliable spikes with a probability of spike failure pF are used to decode the 
sign function. The spike failure probability either decreases with the square root of the network size (green), or 
is fixed at pF = 0.02 (teal), or is fixed to pF = 0 (red). (C) The decoded sign function signal at N = 215 with 
σ ∝

√
N

−1 (right). The jitterless signal (blue) and the supervisor (black) are shown in the left.
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Figure 6.   (A) Synthetic HVCRA synfire chain spike sequences are created and used to train a decoder to decode 
out a sample spectrogram. These spikes are generated as bursts of 4 spikes per cell. The time the initial spike in a 
burst is randomly sampled from a uniform distribution on [0, 0.88]s. These spikes are then jittered with varying 
amounts of jitter with the decoder reapplied and the RMSE measured. (B) Root Mean Squared Error (RMSE) 
between the song spectrogram and the decoded output as a function of the network size (N) with varying 
amounts of jitter. Sub-millisecond jitter can destroy the ≈ N−1 scaling in the RMSE. The standard deviation of 
the jitter was taken to be σ = 0 (blue), σ = 0.3 ms (red), and σ = 1s

N  (green). (C) Sample decoded spectrograms 
for different values of the network size for the fixed jitter σ = 0.3 ms case. (D) The spectrogram variance s̄2 (see 
Materials and Methods) displays identical scaling relationships as the RMSE. The standard deviation of the jitter 
was taken to be σ = 0 (blue), σ = 0.3 ms (red), and σ = 1s

N  (green). (E) The prediction of linear RMSE scaling 
in the zebra finch circuit. An increase in network size (in this case a doubling) due to neurogenesis leads to a 
proportional increase in behavioural stereotypy/precision (or decrease in the behavioural standard deviation), 
and an increase in the precision of spike times in HVCRA neurons.
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increased with the network size, the linear decrease in RMSE with network size would be retained. The standard 
deviation of the spike jitter had to decrease linearly with network size while the probability of spike failure had 
to decrease with the square-root of the network size for a linear decrease in the RMSE with network size to be 
maintained.

The sub-linear increase in the RMSE with network size can in many of the cases considered here, be attributed 
to the variance in the bias-variance decomposition of the RMSE. In both analytical results, and numerical simula-
tions, we found that for smooth supervisors, the bias term in the RMSE would decrease linearly with the network 
size, while the variance would decrease sub-linearly unless the variance could be controlled to also decrease with 
square of the network size by firing spikes more reliably and more precisely. We remark that as the bias and the 
variance can scale at different rates, accurate empirical estimates of the asymptotic scaling relationship in the 
RMSE may require larger network sizes than those considered here.

The numerical and analytical exploration of the coding accuracy of a stimulus considered here can inform 
reservoir computing approaches with spikes14,35–37, where the learning is primarily in the readout weights, and 
more generally, neuromorphic computing, where spiking neurons are used in hardware implementations of neu-
ral circuits3,4. Our results show that there are diminishing returns in adding either more spikes or more neurons 
to improve decoding, unless the spike timing reliability and spike failure rates can be suitably controlled with 
larger network sizes. These results show that hardware resources should be dedicated to improving the precision 
of spikes or their reliability, instead of increasing the network size for networks that are already large. This is in 
line with recent results that examine network size versus error rates in non-spiking networks39.

The zebra finch is well positioned to test hypotheses about how the precision in reproducing behaviours is 
determined by the number of neurons controlling said behaviour. First, the circuit controls a stereotyped behav-
iour that is readily elicited and easily recorded with a microphone in head-fixed animals. Second, new HVCRA 
neurons naturally form through the process of neurogenesis40–45 in HVC, and roughly double in number from an 
average of around 40, 000 HVCRA neurons in the first year of life, to around 80, 000 HVCRA neurons by year 11 
(see Fig. 2 in40, Fig. 6). Our work predicts that singing bouts will become more regular or equivalently, decrease 
in their variance linearly with the size of the network if the spikes also increase in precision and reliability. The 
precise trend comparing the behavioural precision with the network size of HVCRA neurons has not been cur-
rently ascertained. However, there are a pair of studies that separately imply that the total number of HVCRA 
neurons increases with age40 and that the singing precision also increases with age44. However, the authors in44 
postulated that the increase in behavioural precision was inversely related to the rate of neurogenesis, rather 
than the overall number of HVCRA neurons.

As an alternative to naturally allowing the HVCRA neurons to increase in number with neurogenesis, one can 
selectively inhibit HVCRA neurons with optogenetics or ablate a fixed proportion of the HVC nucleus entirely11. 
This would deactivate a random subset of HVCRA neurons. After the animal is given a suitable amount of time to 
recover and relearn from the deactivation of said neurons, the resulting circuit should produce the identical song, 
but with fewer HVCRA neurons. This recovery period should also be smaller than the (very slow) timescale of 
HVCRA neurogenesis. Here, we would expect the behavioural precision to decrease linearly with the proportion 
of neurons deactivated. We note that selective perturbations in efficient codes were also studied in18 (see Figs. 4, 
5, 6), and the impacts on the bounding box of an efficient code. We also note that it is possible that a trained 
decoder would be able to predict the resulting changes to the song after perturbation, or potentially predict the 
natural fluctuations of the song with a sufficiently large training sample.

Further, we remark that precise and reliably emitted spikes are sufficient to generate a linear decrease of the 
RMSE with network size, however, this is not the only possibility. In fact, linear error scaling was previously 
predicted under efficient spike time coding schemes15–23. Here, neurons explicitly code the error in the represen-
tation of a stimulus, behaviour, or internal dynamic state with their voltages. When the error reaches a critical 
threshold, a neuron fires a spike to explicitly reset the error to 0. The end result is a network that also produces a 
linear scaling of the RMSE with network size. However, owing to the explicit error correction mechanism in these 
circuits, the spike times for individual neurons are not precisely timed across multiple trials, but are precisely 
timed to reset the error in a representation15–17,21. Here, we suggest an alternate mechanism for N−1 error scaling 
in a circuit: stabilize the spike times and spike emission reliability for larger networks.

This theoretical work demonstrates the sufficient conditions for a neural circuit to qualitatively improve the 
decoding of a stimulus or behaviour with precisely timed and reliably emitted spikes. Under sufficiently precise 
and reliable spiking, a network can double its size to double the accuracy of encoding/decoding a stimulus. 
However, said network must also double the precision of all spikes in the network, and increase the reliability 
with which spikes are emitted, but by less than double the network size.

Materials and methods
Generating synthetic spike trains
Each network considered here constitutes N synthetically generated spike trains, with each spike train repre-
senting a single neuron. Thus, the synthetic spike times, tji which corresponds to the ith spike fired by the jth 
neuron that could have their spike timing precision and spike emission reliability controlled. These spikes were 
then filtered with a synaptic filter:

The filtering or Kernel function, K(t) was taken to be a single-exponential filter for all numerical simulations:

(10)rj(t) =
∑

tji<t

K(t − tji).
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where τs = 10 ms was used as the synaptic filter, approximating the time constant of AMPA synapses. The gen-
eration of spike times tji is described in greater detail below.

HVCRA spike train
Each HVCRA neuron consisted of a synthetically generated spike train consisting of 4 spikes in an isolated 
burst. The spikes were separated by 3 ms inter-spike-intervals, with the initial spike time drawn from a uniform 
distribution on the interval [0, T], where T = 0.88 seconds is the duration of the song-recording. To vary the 
network size N, the networks were successively doubled in size from N = 21 to N = 215 = 32768 . The networks 
in Fig. 6 were simulated 10 times for a fixed N, with different seeds in each network, thereby generating different 
starting times for each HVCRA burst.

To jitter the spikes, each spike time tji was randomly perturbed by ǫji , where ǫji was a normally distributed 
random variable with mean 0, and standard deviation, σ . The values of σ vary within figures with perfectly precise 
spikes ( σ = 0 milliseconds), spikes with sub-millisecond precision ( σ = 0.3 milliseconds, Fig. 6), and spikes 
that become increasingly precise with larger network sizes ( σ ∝ 1

N).

Poisson generated spike trains
The randomly generated spikes in Figs. 1, 2, 3, 4 and 5 were generated from a Poisson process with firing rate 
ν = 2 Hz, for successively larger networks which were doubled in size from N = 21 to N = 214 . As in the song-
bird example, the spikes were perturbed in time with a normally distributed random variable with mean 0 and 
standard deviation σ . To implement spike-failure, decoders were first constructed with all spikes generated. These 
decoders remained fixed, even after the spike times or spike reliability is altered. Then, the fixed decoders were 
applied to the same spike trains but with each spike having a probability of pF of failure. To implement spike 
interference, spikes were added randomly to neurons in time with probability pI . The total number of spikes 
added was pInspikes where nspikes was the number of spikes generated in the nominal, reliable spiking case. The 
added spikes were randomly distributed from a uniform distribution in time, and across neurons.

Constructing linear decoders
Linear decoders were constructed by first generating filtered spike-trains that contained no jitter or failure. Then 
the solution to the optimal linear decoder for a given signal x(t) is:

The decoder can then be applied to new spike trains to decode x̂(t) when these new spikes display either impre-
cision in their spike times or the failure of spike emission relative to the initial spike train used to construct φx . 
For the simple sinusoidal example, x(t) = sin(2π t) , with the approximation x̂(t) given by:

while for the spectrogram, each frequency component of the song has its own decoder:

The term p(f, t) is the power of the frequency component f at time t in the spectrogram, as defined in14, while 
the decoder component φp(f ) is the optimal decoder for the power frequency component p(f, t), yielding the 
approximation:

The frequency range considered varies from a low of f = 172.27Hz to a high of f = 10 kHz, discretized with 
229 evenly distributed points, thereby making φp(f ) a N × 229 dimensional decoder.

Measuring the root mean‑squared error
The RMSE for the decoded oscillators in Figs. 2F–H and 3 is given by:

where x(t) = sin(2π t) , and x̂(t) is the decoded approximation to x(t).
The RMSE for the decoded spectrogram is computed with:

(11)K(t) = exp

(

− t

τs

)

(12)φx =
(
∫ T

0
r(t)r(t)T dt

)−1 ∫ T

0
r(t)x(t) dt

(13)x̂(t) =
N
∑

j=1

φjrj(t),

(14)φp(f ) =
(
∫ T

0
r(t)r(t)T dt

)−1 ∫ T

0
r(t)p(f , t) dt

p̂(f , t) =
N
∑

j=1

φ
p(f )
j rj(t)

(15)RMSE =

√

∫ 1

0

(

x̂(t)− x(t)
)2

dt
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where p(f, t) is the value of the song spectrogram at frequency f and time t over the range f = 0 to F = 10 kHz 
and from time t = 0 time T = 0.88 s (song duration). For each value of N, 10 trials (corresponding to different 
decoders) were used to obtain the average value of the RMSE for that fixed value of N. The linear fits to the RMSE 
were constructed on the loglog scale with the MATLAB polyfit function, for sufficiently large networks ( N ≥ 210).

Measuring the stereotypy in the zebra finch networks
To estimate the variability from song-bout to song-bout, we computed the integrated variance, σ SB:

where

where p̂k(f , t) denotes the kth trial’s decoded spectrogram for k = 1, 2, . . . 10.

Time discretization
To simulate the filtered spike-trains and decoded signal over a time interval [0, T] we discretize time into M 
evenly distributed points (T1, . . . ,TM) with step size �t , which we took as �t = 10−5 ms, and Tk = (k�) and 
M = T/�t . We then have a corresponding discretized filtered spike-train vectors 

(

r
1, . . . , rM

)

 which are defined 
by:

where K is the filtering function and rkj  is the jth neuron’s filtered spike-train at time step k and tji is the ith spike 
fired by the jth neuron. We then generate the decoded output for each time step Tk by the vector multiplication 
x̂ = (φx)T rk . We can improve the efficiency of this calculation for the exponential filter

using the exponentiation identity ex+y = exey . If for neuron j, no spikes occur in the time interval [Tk−1,Tk] 
then we have the update

and if a spike does occur in the interval [Tk−1,Tk] at time tji then we have the update

Thus at each time step we do not need to compute the sum over all previous spikes and can instead perform a 
single update. For Fig. 6, the spike interpolation scheme in between time steps in Eq. 23 was not used, and a 
basic time step of �t = 10−5 was utilized.

Training/Testing trials
For Figs. 1, 2, 4 and 5, Supplementary Figs. S3–S4, and (6 songbird) a single trial of spikes was used to train the 
optimal linear decoders φx , while for Fig. 3, a total of 10 trials were used to train the optimal linear decoders. 
The test RMSE for Fig. 3 used 10 trials for 10 different random network seeds (spike trains). The test RMSE for 
Figs. 1, 2, 4 and 5, and Supplementary Figs. S3–S4, 10 different network seeds were used with 1 trial to estimate 
the test RMSE. For all simulated networks with the exception of the songbird networks (6), the trials used for 
training/testing were appended consecutively in a large matrix for r(t) . To avoid the initial transients for r(t) = 0 , 
an initial buffer trial of spikes was added. This buffer trial would be used to initialize the filtered spike trains r(t) 
but would not be used to train the optimal linear decoders.

Data availability
A hyperlink to the songbird spectrogram can be found on the modelDB46 link above, with the raw recording 
from47. The raw recording was processed as in14.

(16)RMSE =

√

∫ F

0

∫ T

0

(

p̂(f , t)− p(f , t)
)2

dtdf

(17)s2 =
∫

F

∫ T

0
σ 2
SB(f , t) dtdf

(18)σ 2
SB(f , t) =

m
∑

k=1

(

pk(f , t)− �pk(f , t)�
)2

(19)�pk(f , t)� =
1

m

m
∑

k=1

pk(f , t)

(20)rkj =
∑

tji<Tk

K
(

Tk − tji
)

(21)K(t) = exp

(

− t

τs

)

(22)rkj = rk−1
j exp

(

−�t

τs

)

(23)rkj = exp

(

−
Tk − tji

τs

)

+ rk−1
j exp

(

−�t

τs

)
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Code availability
The relevant code to generate the results of this paper can be found on modelDB46, under Accession no. 2015409 
(direct hyperlink https://​model​db.​scien​ce/​20154​09). The read-only access code for referees is ro1331. The accom-
panying code on modelDB will be released to the public after publication of this manuscript.
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