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Gamma radiation‑induced 
grafting of poly(butyl acrylate) 
onto ethylene vinyl acetate 
copolymer for improved crude oil 
flowability
Ahmed Siddiq 1, Mohamed M. Ghobashy 2, Abu‑bakr A. A. M. El‑Adasy 1 & 
Ashraf M. Ashmawy 3*

Ethylene vinyl acetate (EVA) copolymers are widely employed as pour point depressants to enhance 
the flow properties of crude oil. However, EVA copolymers have limitations that necessitate their 
development. This work investigated the modification of EVA via gamma radiation‑induced grafting 
of butyl acrylate (BuA) monomers and the evaluation of grafted EVA as a pour point depressant 
for crude oil. The successful grafting of poly(butyl acrylate) p(BuA) onto EVA was verified through 
grafting parameters, FTIR spectroscopy, and 1H NMR spectroscopy. Treating crude oil with 3000 
ppm of (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy yielded substantial reductions in pour point of 24, 
21, and 21 °C, respectively. Also, rheological characterization demonstrated improving evidenced 
by a viscosity reduction of 76.20%, 67.70%, and 71.94% at 25 °C, and 83.16%, 74.98%, and 81.53% 
at 12 °C. At low dosages of 1000 ppm, the EVA‑g‑p(BuA) exhibited superior pour point reductions 
compared to unmodified EVA, highlighting the benefit of incorporating p(BuA) side chains. The 
grafted EVA copolymers with p(BuA) side chains showed excellent potential as crude oil flow 
improvers by promoting more effective adsorption and co‑crystallization with paraffin wax molecules.

Keywords Gamma irradiation, Grafting, Pour point depressant, Rheology, Crude oil, EVA-copolymers, 
Flowability

Crude oil, often referred to as the "blood of industry" or "black gold," is a crucial component of the global 
 economy1,2. However, it is essential to understand that crude oil is a complex mixture containing various sub-
stances such as waxes, resins, saturates, asphaltenes, naphthenic, dissolved gases, water, and  salts3. Among these 
myriad constituents, waxes, composed mainly of n-alkanes with carbon numbers ranging from 16 to 40, have 
gained significant attention due to their impact on flow assurance. the content of paraffin waxes within crude 
oils can range considerably, spanning from 5 to 30 wt.%4. Under reservoir conditions, these waxes remain in a 
liquid state due to high temperatures and  pressures5. However, In cold weather conditions and deep underground 
pipelines where temperatures can drop significantly, wax accumulation can occur, thickening pipe walls, reduc-
ing pump efficiency, and hindering oil  extraction6,7. To combat wax deposition, several strategies are employed, 
including mechanical techniques (scrapers and pigs), thermal methods (insulation, electrical heating, hot oil 
treatment), and chemical interventions (solvents, dispersants, inhibitors)8–10. Among them, Chemical inhibitors, 
specifically viscosity-reducing agents and pour point depressants (PPDs), are favored for their cost-effectiveness, 
minimal environmental impact, efficacious outcomes, low energy consumption, and the absence of subsequent 
processing requirements. Ethylene–vinyl acetate (EVA) copolymer presently stand as the predominant chemi-
cal agents employed to mitigate paraffin deposition within  pipelines11–15. They work through mechanisms such 
as adsorption, co-crystallization, nucleation, and enhancing wax  solubility16–19. However, EVA copolymer has 
certain limitations, including reduced co-crystallization effectiveness with higher vinyl acetate (VA) content and 
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decreasing efficiency with increased paraffin wax content and carbon number. As a result, there is a growing 
research focus on improving the efficacy of EVA  copolymer20–23.

Radiation processing of polymers is a widely used method with various applications, including structural 
modification, polymerization, grafting, sterilization, and  crosslinking24,25. Grafting procedures are notably favored 
when executed through gamma irradiation-induced polymerization, distinguishing it from alternatives such as 
radio-frequency plasma or chemical  catalysts26. The utilization of gamma radiation offers distinct advantages 
stemming from its superior penetration capabilities compared to the other two methods. Additionally, it facili-
tates the attainment of elevated product purity and enables chemical synthesis at ambient temperatures. In con-
trast, plasma radiation’s effect is limited to surface-level polymer modification, while chemical agents frequently 
yield undesirable byproducts characterized by their potential toxicity and associated high  costs27.

Acrylic acid and its esters derivatives are one of the prominently employed pour point depressants due to 
their high-performance proficiency to hinder wax  deposition12. Yongwen et al.28, investigated the modification 
of alcoholized ethylene–vinyl acetate copolymer (EVAL) by grafting n-alkyl acrylates with diverse lengths of 
alkyl chain. It was reported that alkyl side-chain insertion could increase grafted EVAL’s ability to adsorb and 
co-crystallize with wax molecules, hence enhancing wax solubility and altering the wax crystallization process. 
Grigoriy et al.29 studied the possibility of improving the physical, chemical, and operational properties of EVA 
copolymer by grafting the hydrophobic monomers on EVA copolymer using a low-energy electron beam (EB). 
It was reported that all synthesized grafted EVA polymers performed better in all laboratory and field tests than 
currently used commercial EVA PPD, and the efficiency of wax inhibition for the Kumkol oil blend reached 90%.

The main goal of this work was to modify Ethylene–vinyl acetate copolymer through induced grafting of Butyl 
acrylate monomer using gamma irradiation as well as, studying the impact of different monomer concentrations 
and different gamma doses on the grafting parameters. Moreover, the successful grafted EVA-based copolymer 
was further evaluated as a pour point depressant for Egyptian Qarun crude oil.

Experimental
Materials
Acrylic acid and n-butanol were obtained from Sigma Aldrich. Toluene, methyl alcohol, diethyl ether, p-toluene 
sulfonic acid and Hydroquinone were obtained from Alfa Aesar. Commercial Ethylene Vinyl Acetate (EVA) 
copolymer with = 28 wt. % of vinyl acetate (VA) content was purchased from ExxonMobil Chemical Company. 
Lastly, crude oil was obtained from the western desert of Egypt (QN field — Qarun Company), with a physi-
ochemical characteristic listed in Table 1.

Preparations
Esterification of acrylic acid and n‑Butanol
Esterification. The procedure involved conducting the reaction within a four-neck reaction flask equipped 
with a mechanical stirrer, reflux condenser, thermometer, and a Dean-Stark apparatus. In this process, a solution 
consisting of 80.14 mmol (5.5 ml) of acrylic acid and 80.14 mmol (7.33 ml) of n-butanol was subjected to reflux 
in a mixture of 50 mL of toluene. This reaction took place in the presence of 2.5 g of p-toluene sulfonic acid serv-
ing as the catalyst, alongside a polymerization inhibitor, specifically 0.25 wt.% (1.45 g) hydroquinone relative to 
the amount of acrylic acid used. The reaction was maintained at its boiling point (130 ℃) until the calculated 
quantity of water was distilled out  azeotropically30–33.

Purification of the prepared ester. The resultant monomer was then distilled under reduced pressure, resulting 
in the emergence of a white precipitate (Fig. 1). This precipitate underwent multiple purification steps by wash-
ing it with a sodium carbonate solution to attain a highly refined product, achieving a yield of 80%34.

Table 1.  Physiochemical characteristics of crude oil.

Test Method Results

Density@15.5 ℃, g/L ASTM D-1298 0.79

Specific gravity@60/60 ℉ ASTM D-4052 0.79

API gravity@60 ℉ ASTM D-4052 47.08

Viscosity kinematics at 40 ℃ cSt ASTM D-445 3.33

Pour point (℃) ASTM D-97 15

Wax content (wt.%) UOP 46/64 4.67

Asphaltene content (wt.%) IP 143/57 0.3

Ash content (wt.%) IP 4/94 0.001

Carbon residue (wt.%) IP 13/94 0.44

Sulfur content (wt.%) ASTM D-4294 0.09

Water content (vol%) IP 74/70 0.01

Flash point (℃) IP 170 − 19

Gross calorific value (MJ/Kg) ASTM D-240 46.37
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Radiation synthesis of grafted poly butyl acrylate onto EVA
Grafted EVA copolymers were synthesized using a gamma-irradiation induced grafting method. To accomplish 
this, a sequence was followed. Initially, distinct mass ratios of EVA and BuA, as outlined in Table 2, were dissolved 
in 20 ml of toluene. Following this, the prepared solution samples underwent irradiation using gamma rays from 
a 60Co Indian irradiation facility gamma ray at a dose rate of 0.866 kGy/h (the establishment of this irradiation 
facility was overseen by the National Center for Radiation Research and Technology (NCRRT), a division of 
the Egyptian Atomic Energy Authority (EAEA)), the irradiation procedure was conducted under atmospheric 
conditions and at room temperature. The polymers resulting from the process were then precipitated using an 
excess amount of methanol, subjected to filtration, and finally dried under reduced  pressure33,35–37.

During the irradiation of the initial reaction mixture, two processes occur simultaneously: graft copolymeriza-
tion of BuA monomer onto EVA and Homopolymerization of Butyl acrylate (BuA) monomer resulting in the for-
mation of poly butyl acrylate p(BuA) Homopolymer. To separate the grafted copolymer from the homopolymer, 
a solubilization-precipitation method was employed. The dried precipitated polymers, which included grafted 
EVA and the non-grafted p(BuA) Homopolymer, were dissolved in toluene and then precipitated in acetone. 
This caused the Non-grafted p(BuA) Homopolymer to dissolve while the grafted EVA copolymer precipitated 
as shown in Fig. 2. The resulting material was filtered and dried under reduced pressure until a constant weight 
was achieved. Key parameters for evaluating the graft polymerization, such as grafting percentage (G%), graft-
ing efficiency (GE%), and the degree of Non-grafted p(BuA) formation  (HNon-grafted p(BuA)%), were determined 
gravimetrically.

Characterization
FTIR spectroscopy
The infrared spectra of the prepared monomer and grafted polymer samples were recorded with a FTIR spec-
trophotometer (Model: BRUKER ALPHA II) at room temperature (25 ℃), all samples were scanned from 4000 
to 400  cm–1 with a resolution of 4  cm–1.

1H‑NMR spectroscopy
1H-NMR spectra were recorded on a Bruker AVANCE III HD NMR spectrometer (400 MHz) at a frequency 
of 400 MHz in deuterated chloroform  (CDCl3) at 25 ℃. Chemical shifts of signals in 1H-NMR spectra were 
determined relative to signals of residual protons  CDCl3 (7.24 ppm).

Determination of grafting parameters
Grafting polymerization parameters for the EVA-based polymers such as; grafting percentage (G %), grafting 
efficiency (GE %) and Non-grafted p(BuA) Homopolymer ratio  (HNon-grafted p(BuA) %) were determined gravi-
metrically using the below  equations38,39:

(1)G(%) =

{(

Wg−EVA −WEVA

WEVA

)

× 100

}

,

(2)GE(%) =

{(

Wg−EVA −WEVA

Wm

)

× 100

}

,
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Figure 1.  Esterification of acrylic acid and n-Butanol.

Table 2.  Different formulations of EVA-grafted polymer.

Sample number EVA (gm) Butyl acrylate (gm) Dose (kGy) Sample code

1 1 – 0 (EVA)0kGy

2 1 – 50 (EVA)50kGy

3 1 1 50 (1EVA:1BuA)50kGy

4 1 2 50 (1EVA:2BuA)50kGy

5 1 3 50 (1EVA:3BuA)50kGy
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where  Wg-EVA, weight of the grafted-EVA copolymer after irradiation;  WEVA, weight of the EVA copolymer before 
radiation,  Wm weight of the BuA monomer charged,  WHNon-grafted p(BuA) weight of the Non-grafted p(BuA).

Pour point depressant (PPD) test
Pour point measurements were determined using modified ASTM D-97; the oil sample was preheated to 60 ℃ 
for 1 h to eliminate the thermal history thereof. All oil samples were kept in tightly sealed vessels during heating 
and a 1-h waiting time to ensure that no light fractions were lost. PPD injection was carried out at 60 ℃ and kept 
for 30 min at this temperature. During measurements, samples were checked for flow every 3 ℃.

The reduction of the pour point was calculated according to the following  equation40:

where  PPDpure is the pour point of the crude oil without additive (blank) and  PPDadditive is the pour point of the 
treated crude oil.

Viscosity measurement
The dynamic viscosity of both untreated and treated crude oil samples was measured using the programmable 
UV-III rheometer by Brookfield. The chosen polymers were selected based on their optimal performance in 
terms of pour point outcomes. These measurements were conducted at varying concentrations (1000 and 3000 
ppm) and across a range of temperatures (12, 25, and 40 ℃).

To quantify the extent of viscosity reduction, we introduce the Degree of Viscosity Reduction (DVR), which 
can be computed using Eq. (5)41:

where µNon-treated represents the viscosity of the untreated crude oil at a shear rate of 60  S-1 in cp, while µtreated 
represents the corresponding viscosity of the treated crude oil with additives at the same shear rate.

(3)HNon−graftedp(BuA)(%) =

{(

WHNon−grafted

Wm

)

× 100

}

,

(4)Reduction of pour point(�PPD) =
{

PPDadditive − PPDpure

}

,

(5)DVR(%) =

{(

µNon−treated − µtreated

µNon−treated

)

× 100

}

,

Figure 2.  Preparation stages and separation of EVA-g-p(BuA).
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Results and discussion
Performed of the prepared esterified acrylic acid
Butyl acrylate (BuA) is a significant synthetic material appreciated for its desirable properties, including low-tempera-
ture flexibility, strong adhesion, hardness, as well as resistance to water and oil. These characteristics make it a valuable 
raw material for the formulation of paints and coatings, as well as for various other applications such as  adhesives42. 
Figure 3 and Table 3 present a comparative examination of the FTIR spectra which agreed with the assignments 
from previously reported vibrational studies for acrylic  acid43–45, n-butanol46,47, and butyl  acrylate48–50. The successful 
esterification of acrylic acid is evidenced by the shifting of the broad band of ν(C=O) from 1707  cm–1 to 1727  cm–1, 
also a slight shifting in ν(C=C) was observed from 1635, 1617  cm–1 to 1636, 1620  cm–1.

Impact of monomer concentrations and gamma irradiation doses on grafting parameters
The inherent properties of many produced polymers often are not compatible with the desired attributes required 
for their intended applications in their initial form. Consequently, the necessity arises for modifications to be 
applied to satisfy specific surface properties. A viable strategy to elevate polymer attributes and introduce novel 
functionalities involves the utilization of irradiation-induced grafting  techniques51. This technique can serve to 
introduce functional groups onto the surface or backbone of the primary polymer, thereby enhancing its overall 
efficiency across various applications. The grafting yield (measured by increased weight) of the sample after 
irradiation in the presence of Butyl acrylate monomer is the initial indicator of successful grafting. The different 
grafting parameters of; grafting percentage (G%), grafting efficiency (GE%) and the ratio of Non-grafted p(BuA) 
Homopolymer  (HNon-grafted p(BuA) %) were further investigated to study its relationship with both Butyl acrylate 
concentration and gamma radiation dose.

To optimize the monomer concentration, varying quantities of BuA monomer were utilized and the impact of 
Butyl acrylate (BuA) concentration on grafting parameters is graphically depicted in Fig. 4. It is readily apparent 
that as the BuA monomer concentration increases, there is a noticeable increment in grafting parameters (i.e. 
Grafting percentage (G%), Grafting efficiency (GE%), and the degree of Non-grafted p(BuA) Homopolymer 
formation  (HNon-grafted p(BuA)%)). This enhancement can be attributed to the higher availability of monomers at 
elevated concentrations, facilitating their grafting onto the polymer backbone. These findings are consistent with 
prior research in this  field52.
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Figure 3.  FTIR of the prepared Butyl acrylate monomer.

Table 3.  Assignments of the FTIR peaks for synthesized butyl acrylate. ν stretch, δ scissor, ω wag, τ twist, ρ 
rock.

Assignment

Wavenumber  (cm–1)

Acrylic acid n-Butanol n-Butyl acrylate (BuA)

ν(O–H) – 3355 –

ν(COO–) 3109 – 3105

ν(C–H) 2976 2959, 2933, 2874 2961, 2936, 2874

ν(C=O) 1707 – 1727

ν(C=C) 1635, 1617 – 1636, 1620

δ(CH2) – 1463 1464

δ(=CH2) 1413 – 1409

ρ(=CH) 1299, 1061 – 1296, 1275, 1064

ν(C–O) 1194 1072 1192

ω(CH=CH2) 985 – 985

τ(=CH2) 813 – 811
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Additionally, to investigate the impact of different irradiation doses on grafting parameters, the grafted 
samples that showed the most effective results as pour point depressants (i.e. (1EVA:3BuA)) were subsequently 
chosen for an in-depth investigation into the influence of various radiation doses. Figure 5 illustrates the impact 
of different gamma irradiation doses (ranging from 10 to 50 kGy) on these grafting parameters. It was observed 
that an increase in gamma dose led to a corresponding increment in grafting parameters (G%, GE%, and 
 HNon-grafted p(BuA)%), which can be attributed to the greater provision of high-energy radiation. This enhanced 
radiation supply facilitates the creation of active sites that encourage the attachment of monomers to the EVA 
 backbone51,53. Furthermore, an inverse correlation between the percentage of Non-grafted p(BuA) Homopolymer 
 (HNon-grafted p(BuA)%) and the grafting percentage (G%) was observed. This phenomenon can be attributed to the 
following rationale: When monomer concentration or irradiation dose is higher, Homopolymerization becomes 
the preferred reaction over grafting polymerization. This can be ascribed to two key factors: (i) As Homopoly-
mer formation increases, the viscosity of the reaction medium rises due to the solubility of Homopolymer in 
the solvent. This heightened viscosity impedes the diffusion of monomers and the growth of Homopolymeric 
chains towards active sites, consequently leading to a reduction in grafting  percentage54,55. (ii) Additionally, the 
steric hindrance generated by the formed Homopolymeric chains with each other and with diffused monomer 
further motivates the “grafting to” method rather than “grafting from”, which is characterized by its low grafting 
percentage as shown in (Fig. S1 (Supplementary Data)).
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Figure 4.  Impact of monomer concentrations of (BuA) on the grafting parameters.
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Performed analysis of the prepared EVA‑g‑p(BuA) copolymers
FTIR analysis
FTIR spectroscopy stands as the predominant analytical approach in the field of polymer research. Its efficacy as 
a non-destructive method for characterizing polymers and assessing their chemical makeup is widely acknowl-
edged. The pure EVA spectrum in Fig. 6 shown a vibration signal that consistent with vibration signals reported 
in previous  studies56–59. Furthermore, as showed in Fig. 6 and elaborated upon in Table 4; The successful grafting 
of poly butyl acrylate p(BuA) on the EVA backbone was evidenced by the forming of the broad band around 3448 
 cm–1 which could attributed to the Hydrogen bonded between polymer molecules. Additionally, the ν(C=O) was 
shifted to 1735  cm–1, these results come in agreement with a previous  works60,61.

1H‑NMR analysis
Nuclear magnetic resonance (NMR) spectroscopy has played a substantial role in enhancing comprehension of 
the ramifications of radiation on polymeric  systems62.The significance of NMR as a methodology is underscored 
by its capacity to enable the precise attribution of signals to individual atoms within both the polymer’s main 
chain and its side  chains63–65. The 1H-NMR spectra of commercially studied EVA are presented in Fig. 7a. Within 
the spectrum, the EVA copolymer spectrum exhibits a prominent peak within the 4.8–5.0 ppm range, which 
is attributed to the methine proton –CH–R– associated with the vinyl acetate moiety (peak 1). Additionally, a 
peak around δ = 2 ppm is linked to the methyl protons of the vinyl acetate moiety (peak 3). In the δ = 1.1–1.8 
ppm range, multiple peaks correspond to the methylene protons found in both the ethylene and vinyl acetate 
segments (peaks 2). Moreover, the peak representing end-chain methyl protons is observed within the 0.75–0.9 
ppm region (peaks 4). These assignments are consistent with previously reported research  findings23,66,67.

The utilization of nuclear magnetic resonance (1H-NMR) spectroscopy for material analysis involves a dis-
tinct region known as the compound’s fingerprint region. In our study, we initiated by quantifying the acetate 
groups within pure EVA copolymer. The vinyl acetate content in pure EVA can be ascertained through peak 
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Figure 6.  FTIR spectroscopy of EVA, BuA and the grafted EVA-g-p(BuA).

Table 4.  Assignments of the FTIR peaks for the prepared EVA-g-p(BuA). ν stretch, δ scissor, ω wag, τ twist, ρ 
rock.

Assignment

Wavenumber  (cm–1)

EVA n-butyl acrylate (BuA) EVA-g-p (BuA)

ν(COO–R) & (broad H-bonded) – 3105 3448

ν(C–H) 2917, 2850 2961, 2936, 2874 2921,2851

ν(C=O) 1736 1727 1735

ν(C=C) – 1636,1620 –

δ(C–H) 1462  (CH2), 1369  (CH3) 1464 1460,1374

δ(=CH2) – 1409 –

ρ(=CH) – 1296,1275,1064 –

ν(C–O) 1237, 1020 1192 1241,1021

ω(CH=CH2) – 985 –

τ(=CH2) – 811 –

ρ(CH2) 721 739 721

ω(C=O) 607 – 605
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area integration within the range of 4.8–5 to 1.1–1.8 ppm. Specifically, the peak area denoted as I at 4.8–5.0 
ppm corresponds to hydrogen attached to the carbon proximate to the acetate groups, yielding the equation: 
 I4.8–5 ppm = x = (1.00). Within the 1.1 to 1.8 ppm range lies the sum of four methylene hydrogens relative to the 
ethylene segment in addition to two protons of the acetate segment, resulting in:  I1.1–1.8ppm = 4y + 2x = (33.53)68,69. 
Here, the variables y and x represent the fractions of ethylene and vinyl acetate. The molar content of vinyl acetate 
in the copolymer can be determined through (Eq. 6)69–71:

Figure 7.  1H-NMR spectroscopy of (a) EVA, and (b) EVA-g-p(BuA).
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The weight fraction of vinyl acetate  (VAcont.) can be determined using the corresponding  VAcont.(mol %) frac-
tion with the following relationship (Eq. 7)70,71:

where  MVA and  ME are the molecular weight of the vinyl acetate and ethylene  (MVA = 86.09 g/mol,  ME = 28.05 g/
mol), respectively. The result illustrated that the used commercial EVA is (VA(mol%) = 11.26 mol & 
VA(wt.%) = 28%), which agreed with the actual percent.

In the context of EVA grafting modification, it is reported that the grafting process predominantly occurs 
on the amorphous vinyl acetate (VA) segments, rather than the crystalline polyethylene (PE)  segments72,73. 
Compared to the 1H-NMR spectrum of pure EVA some new peaks could be seen in the 1H-NMR spectrum of 
the grafted EVA copolymer, as depicted in Fig. 7b, a novel new peak emerges at approximately 4 ppm, which 
corresponds to the –O–CH2 group of the grafted poly butyl acrylate (peak 6). Additionally, the peak ranging 
from 2.2 to 2.4 ppm is indicative of the COO–C–H group of the grafted poly butyl acrylate (peak 5). Moreover, 
an increase in absorbance at the peaks around 0.8 to 1 ppm can be attributed to the heightened presence of end 
methyl groups within the grafted poly butyl acrylate (peaks 4). These newly identified characteristic peaks pro-
vide evidence of the successful integration of the BuA monomer onto the EVA backbone, aligning with findings 
from several prior  investigations61,74–76. Finally, upon inspection of the 1H-NMR chart of EVA copolymer fol-
lowing grafting polymerization with a modest irradiation dose, a distinct observation emerged. The integration 
area beneath the curve associated with the methine proton of the vinyl acetate segment exhibited a reduction 
after grafting. This reduction strongly suggests that grafting of the Homopolymer occurred at precisely this site, 
with a portion of these protons being substituted by the grafted Homopolymer. Additionally, the application of 
gamma-radiation induced the ionization of the proton linked to a functional group recognized as possessing 
electron-withdrawing characteristics.

Suggested mechanism of grafting polymerization for EVA‑copolymer
Graft copolymerization serves as an exceptionally versatile means of functionalization, enabling the incorpora-
tion of functional groups into diverse polymer types through the direct polymerization of monomers onto the 
polymer  backbone77,78. When grafting polymerization is applied to the EVA copolymer backbone using BuA 
monomer, two primary approaches are employed, as illustrated in (Fig. S1 (Supplementary Data)):

• “Grafting-to”; this approach involves the attachment of pre-synthesized p(BuA) Homopolymer chains.
• “Grafting-from”; involves the initiation of p(BuA) Homopolymer synthesis directly from the surface, leading 

to the outward growth of polymer  chains79–81.

However, the grafting-to method typically results in grafted polymers with lower grafting percentages due 
to steric hindrance caused by macromolecules already grafted onto the surface. In contrast, the grafting-from 
synthetic strategy offers the advantage of a broader monomer selection since it’s not restricted by orthogonal 
monomer side chain functionalities that might interfere with the chain end group used for conjugation, as is the 
case in the grafting-to  approach82.

The impact of EVA‑g‑p(BuA) on pour point measurement
The industry typically employs concentrations of pour point depressants (PPDs) ranging from 50 to 5000 ppm, 
although there may be some  variations83–87. The concentration of these additives has a significant influence on 
pour point depression. Based on the findings presented in Fig. 8, it was observed that increasing the additive 
concentration from 1000 to 3000 ppm resulted in a noticeable reduction in the pour point  temperature88,89, and 
all prepared samples performed well as flow improvers for waxy crude oil. Pure EVA showed the best perfor-
mance, and the maximum pour point depressant was achieved at a concentration of 3000ppm for (EVA)0kGy, 
(1EVA:3BuA)50kGy.

However, each additive has an optimal concentration at which the maximum pour point depression is 
achieved, but beyond this concentration, the pour point begins to increase. This is primarily attributed to the 
interaction between additive crystals and wax molecules, which tend to form linkages and promote the adsorp-
tion and co-crystallization with the paraffin wax  molecule28,90,91. Additionally, the grafting of p(BuA) Homopoly-
mer on EVA copolymer results in increased bulkiness and heightened likelihood of intermolecular interaction, 
thereby diminishing its effectiveness. Consequently, the pour point exhibits a subsequent  increase92–94. Addi-
tionally, as shown in Fig. 8, the most significant pour point depression (ΔPPD = 24 ℃) was achieved with a low 
concentration (1000 ppm) of (1EVA:3BuA)50kGy which could be attributed to the incorporation of the p(BuA) 
side chain in the main skeleton of EVA-copolymer. Overall, it can be stated that the grafting of BuA monomer 
onto the EVA copolymer backbone using gamma radiation {(1EVA:3BuA)50kGy} improved the pour point depres-
sant at low concentrations (1000ppm). Also, comparing irradiated and non-irradiated EVA (i.e. (EVA)0kGy & 
(EVA)50kGy) indicates that irradiation had led to crosslinking of EVA copolymer chain thus resulting in decreasing 
their efficiency. These findings are consistent with those reported by Grigoriy et al.29, who found that EVA-based 
graft copolymers exhibited better PPD performance than commercial pour-point depressants.

(6)VAcont.(mol.%)NMR =

{(

x

x+ y

)

× 100

}

.

(7)VAcont.(wt.%)NMR =

{(

MVA × VAcont.(mol.%)

(MVA × VAcont.(mol.%))+ME × ((100− VAcont.(mol.%))

)

× 100

}

,
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A comparative analysis of pour point degrees achieved through gamma-induced grafting of (1EVA:3BuA)50kGy, 
as conducted in this study, reveals notable distinctions from the findings reported by Yongwen et al.28. Specifically, 
our investigation demonstrates that the grafting process resulted in a ΔPPD of 24 ℃ at 1000ppm, surpassing 
the outcomes of EVAL-g-C16 and EVAL-g-C18, which yielded ΔPPD values of 11℃ and 15℃ at the same con-
centration, respectively. Furthermore, the work by Yang et al.95 explored the pour point degrees of EVA, EVAL, 
EVAL-0.5% Carbon nanotubes, and EVAL-1% Carbon nanotubes at 1000ppm, revealing ΔPPD values of 6, 9, 
10, and 9, respectively. These findings provide valuable insights into the effectiveness of gamma-induced graft-
ing compared to alternative methods and highlight the superior performance of (1EVA:3BuA)50kGy in achieving 
significant reductions in pour point temperature.

The impact of EVA‑g‑p(BuA) on rheological properties
For most crude oils, when exposed to elevated temperatures, the viscosity remains constant, rendering the chemi-
cally intricate crude akin to a straightforward Newtonian fluid. Nonetheless, as temperatures decline, the flow 
characteristics of crude oil can undergo a transition from uncomplicated Newtonian behavior to intricate flow 
patterns due to the crystallization of waxes and the colloidal bonding of asphaltenes. Waxes primarily comprise 
n-alkanes that crystallize, forming interconnected structures of plates and needles. These crystals can ensnare 
the oil, creating a gel-like arrangement that has the potential to generate substantial deposits within pipelines, 
leading to heightened pumping pressures that could ultimately obstruct the  flow96–98.

To assess the potential of the prepared EVA-g-p(BuA) copolymers as viscosity improvers for crude oil, the 
first step involves comprehending the rheological characteristics of untreated crude oil. This entails testing the 
optimal dosages of both pure and modified EVA-copolymer, which exhibited the most substantial reduction in 
pour point (specifically, at concentrations of 1000 and 3000 ppm), across a range of temperatures (40, 25, and 
12 ℃), that encompassing temperatures both above and below the pour point of the crude oil. The results from 
the rheological tests are depicted in Figs. 9 and 10, which illustrate the variations in shear stress and viscosity 
concerning the shear rate for specific samples, namely (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy. Notably, a 
substantial reduction in the viscosity of crude oil was observed upon treatment with both unaltered and modi-
fied EVA copolymers, implying that a lower viscosity at the same temperature corresponds to improved fluidity 
of crude oil, particularly at lower  temperatures99,100. Furthermore, as illustrated in Fig. 11, the incorporation of 
1000 ppm resulted in a remarkable viscosity reduction of 60.80%, 51.29%, and 69.51% at 25 °C, and 55.20%, 
18.74%, and 63.49% at 12 °C. Upon increasing the dosage to 3000 ppm, the viscosity demonstrated even more 
remarkable decreases, specifically 76.20%, 67.70%, and 71.94% at 25 °C, and 83.16%, 74.98%, and 81.53% at 
12 °C, for (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy, respectively.

Conclusion
The present study investigated the modification of EVA-copolymer via gamma-induced grafting of Butyl acrylate 
(BuA) which was subsequently evaluated as a flow improver for crude oil. The successful grafting of poly butyl 
acrylate p(BuA) onto the EVA-copolymer backbone via gamma radiation was confirmed by the characterization 
of grafting parameters, FTIR and 1H-NMR spectroscopy analyses. Additionally, the treatment of crude oil with 
3000 ppm of the grafted additives led to considerable reductions in pour point, with depressions of (ΔPPD = 24, 
21 and 21 ℃ degree) for (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy. Furthermore, the rheological charac-
teristics of the crude oil showed improvement with the additive’s addition of 1000 ppm evidenced by viscosity 
reductions of 60.80%, 51.29%, and 69.51% at 25 °C, and 55.20%, 18.74%, and 63.49% at 12 °C. increasing the 
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dosage to 3000 ppm resulted in even greater enhancement in viscosity reductions: 76.20%, 67.70%, and 71.94% 
at 25 °C, and 83.16%, 74.98%, and 81.53% at 12 °C, for (EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy, respectively. 
Notably, the grafted EVA copolymers with p(BuA) exhibited enhanced performance compared to the native 
EVA-copolymer even at a low dosage of 1000 ppm indicating that incorporation of p(BuA) as a side chain on 
EVA-copolymer backbone promoted the adsorption and co-crystallization with the paraffin wax molecule. In 
addition, irradiation of EVA without introducing monomers led to its crosslinking which showed decreasing in 
efficiency that was attributed to increasing in its molecular weight.
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Figure 9.  Relationship between shear rate and shear stress for the untreated and treated crude oil using 
(EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy at temperatures (a) 40 ℃, (c) 25 ℃, and (e) 12 ℃ at 1000 ppm & at 
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Figure 10.  Relationship between shear rate and viscosity for the untreated and treated crude oil using 
(EVA)0kGy, (EVA)50kGy, and (1EVA:3BuA)50kGy at temperatures (a) 40 ℃, (c) 25℃, and (e) 12 ℃ at 1000 ppm & at 
temperatures (b) 40 ℃, (d) 25 ℃, and (f) 12 ℃ at 3000 ppm.
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The data that support the findings of this study are not publicly available because it is a part of a comprehensive 
study but available from the corresponding author on reasonable request.
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