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Spectral shifted Chebyshev 
collocation technique with residual 
power series algorithm for time 
fractional problems
Saad. Z. Rida 1, Anas. A. M. Arafa 2,3, Hussein. S. Hussein 1, Ismail G. Ameen 1 & 
Marwa. M. M. Mostafa 1*

In this paper, two problems involving nonlinear time fractional hyperbolic partial differential 
equations (PDEs) and time fractional pseudo hyperbolic PDEs with nonlocal conditions are presented. 
Collocation technique for shifted Chebyshev of the second kind with residual power series algorithm 
(CTSCSK-RPSA) is the main method for solving these problems. Moreover, error analysis theory is 
provided in detail. Numerical solutions provided using CTSCSK-RPSA are compared with existing 
techniques in literature. CTSCSK-RPSA is accurate, simple and convenient method for obtaining 
solutions of linear and nonlinear physical and engineering problems.

Keywords  Shifted Chebyshev polynomials of the second kind, Residual power series algorithm, Fractional 
derivatives, Hyperbolic equation with time fractional, Time fractional pseudo hyperbolic equations, Numerical 
results.

Mathematical modeling of various nonlinear phenomena, which can be expressed using nonlinear differential 
equations (DEs) is more complex and difficult than modeling linear phenomena. Such phenomena have an 
important role in the study of many scientific fields and often described by ordinary differential equations 
(ODEs) and PDEs. Although solving PDEs is more difficult than solving ODEs, these equations are widely used 
in physics and mathematical problems. The fractional arrangement has been used to generalize these equa-
tions by researchers in recent decades, and these equations have been known as fractional partial differential 
equations (FPDEs). It is difficult to obtain accurate solutions to such equations in their nonlinear state. In the 
literature, several mathematical methods are presented for solving these equations as Adomian decomposition 
method (ADM)1,2, variational iteration method (VIM)3, Iterative Laplace transform method4, Sumudu transform 
method5, finite difference method6, Tau method7, homotopy perturbation method (HPM)8, wavelet methods9, 
homotopy analysis method10, variational homotopy perturbation iteration method (VHPIM)11, finite element 
method12, modified HPM13 and Jacobi collocation14.

RPSA is an efficient, powerful and simple technique to create a power series solution that can be handled 
without discretization, linearization, and perturbation for linear and nonlinear equations. RPSA does not need 
any changes while transforming from lower to higher order. Hence, the technique can be utilized directly for 
problem by choosing suitable preliminary guess approximation. Researchers have used RPSA for solving different 
types of models, such as fuzzy differential equations15, fractional Burger types equations16, fractional gas dynamic 
equations17, KdV-Burgers equation18, Whitham–Broer–Kaup equations19, fractional time Cahn–Hilliard, Gard-
ner equations20,21, Swift–Hohenberg equation22, fractional diffusion equation23, Burgers–Huxley equations24, 
Navier–Stokes equations25 and Lane–Emden equations26.

Hyperbolic PDEs is a type of more significance nonlinear models in physics of mathematical. In the last few 
years, there exist analytical and numerical methods to solve these problems27,28. In Ref.8 Odibat and Momani 
obtained the analytic and approximate solution for hyperbolic PDEs by using VIM and ADM. Khalid et al.29 con-
structed an efficient schemes called Perturbation iteration algorithm (PIA) to get approximate solutions for hyper-
bolic PDEs. Das and Gupta30 employed HAM for obtaining the approximate solution for nonlinear hyperbolic 
PDEs of fractional order. Pseudo-hyperbolic equations is type of high order PDEs with combination of partial 
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derivatives concerning space and time, which describes various phenomena of physical including, diffusion of 
reaction, vibrations of longitudinal and physics of plasma31,32. In recent years, researchers and scientists have 
presented the numerical and analytical methods to solve the pseudo hyperbolic equation33–35. In Refs.32,36, the 
authors studied uniqueness, existence and stability analysis of numerical solutions for pseudo hyperbolic PDES.

The fundamental target of this study is to employ an approximate solution for time fractional hyperbolic 
PDEs and time fractional pseudo hyperbolic PDEs with nonlocal conditions. The method of solution is to apply 
properties of shifted Chebyshev polynomials of second kind (SCPSK) to reduce space hyperbolic PDEs and 
pseudo hyperbolic PDEs with nonlocal conditions into system of fractional ODEs, these FODEs system have 
been solved by employing RPSA.

The outline work is prepared as: The main definitions of Caputo fractional derivative (CFD) and fractional 
power series (FPS) are given in Section “Preliminaries”. Some characteristics for Chebyshev polynomials of the 
second kind (CPSK) are presented in Section “General characteristics of spectral Chebyshev polynomials”. The 
theorem utilized to discuss the method’s error analysis is presented in Section “Error analysis”. The methodol-
ogy has been applied to two applications in Section “Applications of methodology”. Numerical solutions and 
simulations to show CTSCSK-RPSA efficiency are presented in Section “Numerical simulation”. In Section 
“Conclusion”, a final conclusion is drawn.

Preliminaries
In this section, we give some essential definitions of CFD and FPS.

Definition 1  37–39 The CFD of order β for a function Θ(t) ∈ Cq , q ≥ −1 is defined as belows:

Definition 2  37–39 The Caputo fractional partial derivative (CFPD) of order β for a function Θ(x, t) ∈ Cq , q ≥ −1 
is given by:

The CFD satisfies linear property similar to integer order differentiation:

where �1, �2, . . . , �m are constants.
The major properties for the Caputo derivative are:

where ⌈β⌉ denote to the smallest integer greater than or equal to β , where N0 = {0, 1, 2, . . .}.

Definition 3  40,41 The power series which has the formula

is called FPS about τ0.
There exist the three possibilities for convergence of the FPS 

∑∞
l=0 ϑl(τ − τ0)

lβ , which are: 

•	 The series converges only for τ = τ0 , that is, the radius of convergence equal zero.
•	 The series converges for all τ ≥ τ0 , that is, the radius of convergence equal ∞.
•	 The series converges for τ0 ≤ τ < τ0 +R , for some positive real number R and diverges for τ > τ0 +R , 

where R is the radius of convergence for the FPS.

Definition 4  40 The multiple FPS at τ = τ0 is defined as:

(1)D
βΘ(t) = I

m−β
D

mΘ(t) =
1

Γ (m− β)

∫ t

0

(t − ν)m−β−1
D

mΘ(ν)dν, t > 0, m− 1 < β < m.

(2)D
β
t Θ(x, t) =







1
Γ (m−β)

t
�

0

(t − ν)m−β−1 ∂mΘ(x,ν)
∂νm

dν, m− 1 < β < m,

∂mΘ(x,t)
∂tm , β = m ∈ N.

D
β
[�1Θ1(t)+ �2Θ2(t)+ · · · + �mΘm(t)] =

[

�1D
βΘ1(t)+ �2D

βΘ2(t)+ · · · + �mD
βΘm(t)

]

,

(3)D
β
k = 0, k is constant.

(4)D
β tυ =

{

Γ (υ+1)
Γ (υ+1−β)

tυ−β , for υ ∈ N0, υ ≥ ⌈β⌉,
0, for υ ∈ N0, υ < ⌈β⌉,

∞
∑

l=0

ϑl(τ − τ0)
lβ = ϑ0 + ϑ1(τ − τ0)

β + ϑ2(τ − τ0)
2β + · · · , 0 ≤ l − 1 < β ≤ l, l ∈ N, and τ ≥ τ0,

∞
∑

r=0

l−1
∑

j=0

Prj(x)(τ − τ0)
rβ+j , 0 ≤ l − 1 < β ≤ l, l ∈ N and τ0 ≤ τ ≤ τ0 +R.
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General characteristics of spectral Chebyshev polynomials
We recall some main expressions of spectral SCPSK that are utilized in this paper.

Definition 5  42 The spectral CPSK Tm(s) over the interval [−1, 1] can be defined as:

where s = cos(ξ), ξ ∈ [0,π ].

The orthogonality formula of CPSK with respect to weight function ω(s) =
√
1− s2 as:

The recurrence form of polynomials Tm(s) can be written as:

where

The explicit formula of Tm(s) as:

where ⌈m
2
⌉ denotes the integral part of m

2
.

Definition 6  42 The SCPSK T∗
m(x) is defined on [0, 1] as:

The orthogonal property of SCPSK with respect to weight function ω∗(x) =
√
x − x2 is given as below:

The recurrence relation of SCPSK:

where

The analytical expressions of SCPSK T∗
m(x) of degree m can be given as:

The function u(x) ∈ L2[0, 1] can be defined by SCPSK T∗
i (x) as follows:

where the coefficients ϑi are given by:

In practice, we truncate the infinite series up to (n+ 1) terms of SCPSK as follows:

Theorem 1  Assume that un(x) be series approximation of spectral SCPSK defined by Eq. (9), then Dβun(x) is 
given as:

Tm(s) =
sin(m+ 1)ξ

sin(ξ)
,

< Tm(s),Tj(s) >=
∫ 1

−1

ω(s) Tm(s)Tj(s)ds =
{

0 ifm �= j,
π
2
ifm = j.

Tm(s) = 2sTm−1(s)− Tm−2(s), m = 2, 3, 4, . . . ,

T0(s) = 1, T1(s) = 2s.

(5)Tm(s) =
⌈m
2
⌉

∑

i=0

(−1)i
2m−2iΓ (m− i + 1)

Γ (m− 2i + 1)Γ (i + 1)
s
m−2i , m > 0,

T
∗
m(x) = Tm(2x − 1).

< T
∗
m(x),T

∗
j (x) >=

∫ 1

0

√

x − x2 T∗
m(x)T

∗
j (x)dx =

{

0 ifm �= j,
π
8
ifm = j,

T
∗
m(x) = 2(2x − 1)T∗

m−1(x)− T
∗
m−2(x), m = 2, 3, 4, . . .

T
∗
0(x) = 1, T∗

1(x) = 4x − 2.

(6)T
∗
m(x) =

m
∑

i=0

(−1)i
22m−2iΓ (2m− i + 2)

Γ (2m− 2i + 1)Γ (i + 1)
xm−i , m > 0.

(7)u(x) =
∞
∑

i=0

ϑiT
∗
i (x),

(8)ϑi =
8

π

∫ 1

0

√

x − x2 u(x)T∗
i (x)dx, i = 0, 1, 2, . . .

(9)un(x) =
n

∑

i=0

ϑiT
∗
i (x).
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where Ω(β)

i,k  is defined as:

Proof  (see Ref.42). 	�  �

Error analysis
In this section, the following theorem proves an error analysis of the method.

Theorem 2  Suppose a function Φ(x) ∈ [0, 1] which is continuous and differentiable up to (n+ 1) times. 

Let   un(x) =
n

∑

i=0

ϑiT
∗
i (x) be the best square approximation function of Φ(x) , then

where M = maxx∈[0,1] Φ(n+1)(x) and K = max{x0, x − x0}.

Proof  We approximate function Φ(x) by Taylor series as:

where x0 ∈ [0, 1] and ζ ∈ [x0, x].
Let

then

Since un(x) =
n
∑

i=0

ϑi
∗
i(x) , is the best square approximation function of Φ(x) , we have

Hence K = max{x0, x − x0} , we get

By taking square root of both sides for Eq. (15), we get

	�  �

(10)D
βun(x) =

n
∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

ϑi Ω
(β)

i,k xi−k−β ,

Ω
(β)

i,k = (−1)k
22i−2kΓ (2i − k + 2) Γ (i − k + 1)

Γ (k + 1)Γ (2i − 2k + 2)Γ (i − k − β + 1)
.

(11)�Φ(x)− un(x)� ≤
M(Kn+1)

2 Γ (n+ 2)

√

π

2
,

(12)

Φ(x) = Φ(x0)+Φ ′(x0)
(x − x0)

Γ (2)
+Φ ′′(x0)

(x − x0)
2

Γ (3)
+ · · · +Φ(n)(x0)

(x − x0)
n

Γ (n+ 1)
+Φ(n+1)(ζ )

(x − x0)
n+1

Γ (n+ 2)
,

(13)yn(x) = Φ(x0)+Φ ′(x0)
(x − x0)

Γ (2)
+Φ ′′(x0)

(x − x0)
2

Γ (3)
+ · · · +Φ(n)(x0)

(x − x0)
n

Γ (n+ 1)
,

(14)
∥

∥Φ(x)− yn(x)
∥

∥ =
∣

∣

∣

∣

Φ(n+1)(ζ )
(x − x0)

n+1

Γ (n+ 2)

∣

∣

∣

∣

.

�Φ(x)− un(x)�2 ≤
∥

∥Φ(x)− yn(x)
∥

∥

2 =
1

∫

0

w∗(x)
(

Φ(x)− yn(x)
)2
dx

=
1

∫

0

w∗(x)

(

Φ(n+1)(ζ )
(x − x0)

n+1

Γ (n+ 2)

)2

dx

≤
M

2

(Γ (n+ 2))2

1
∫

0

√

x − x2
(

(x − x0)
n+1

)2
dx.

(15)
�Φ(x)− un(x)�2 ≤

M
2K(2n+2)

(Γ (n+ 2))2

∫ 1

0

√

x − x2dx

=
M

2K(2n+2)

(Γ (n+ 2))2

π

8
.

(16)�Φ(x)− un(x)� ≤
M(Kn+1)

2 Γ (n+ 2)

√

π

2
.
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Applications of methodology
The principal objective of this section is to obtain an approximate solution for time fractional hyperbolic PDEs 
and time fractional pseudo hyperbolic PDEs with nonlocal conditions. 

•	 Time fractional hyperbolic PDEs29 

 with subject to initial conditions (ICs) and boundary conditions (BCs): 

 where µ ∈ R and L is non linear operator. Assume Θn(x, t) is approximated as: 

 Let us to utilize the approximation of Θn(x, t) which is defined in Eq. (19) as following steps:

	Step (I)	 By applying Theorem (1) and Eqs. (17) and (19), we have 

	Step (II)	Now we collocate Eq. (20) at xp, p = 0, 1, 2, ldotsn− ⌈β⌉ and the collocation point of SCPSK T∗
n+1−⌈β⌉(x) , 

we have a system of fractional order differential equations (FODEs) as: 

	Step (III)	Substituting Eq. (19) into Eqs. (18), we can obtain (⌈β⌉ + 1) algebraic equations as: 

 where BCs 

	   To obtain the unknown coefficients ϑ0(t),ϑ1(t),ϑ2(t), . . . ,ϑn(t) , combing Eqs. (21)–(23), we have 
system of FODEs, which can be solved by utilizing RPSA. To determine the unknown coefficients of 
ϑ0(t),ϑ1(t),ϑ2(t), . . . ,ϑn(t) , we take n = 2 and n = 3 in Eq. (21), respectively: 

 By solving Eq. (25), we get 

 By solving Eq. (23) at n = 2 and n = 3 , respectively. Then we get 

(17)D
β
t Θ(x, t)− µD

2
xΘ(x, t)− L(Θ(x, t)) = 0, 1 < β ≤ 2, x ∈ [0,X], t > 0,

(18)
{

Θ(x, 0) = f1(x), DtΘ(x, 0) = f2(x),
Θ(0, t) = A1(t), Θ(X, t) = A2(t),

(19)Θn(x, t) =
n

∑

i=0

ϑi(t)T
∗
i (x).

(20)
n

∑

i=0

D
β
t ϑi(t)T

∗
i (x)− µ

n
∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

ϑi(t)Ω
(β)

i,k xi−k−β − L

(

n
∑

i=0

ϑi(t)T
∗
i (x)

)

= 0.

(21)
n

∑

i=0

D
β
t ϑi(t)T

∗
i (xp)− µ

n
∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

ϑi(t)Ω
(β)

i,k x
i−k−β
p − L

( n
∑

i=0

ϑi(t)T
∗
i (xp)

)

= 0.

(22)















n
�

i=0

ϑi(0)T
∗
i (x) = f1(x),

n
�

i=0

Dtϑi(0)T
∗
i (x) = f2(x),

(23)















n
�

i=0

ϑi(t)T
∗
i (0) = A1(t),

n
�

i=0

ϑi(t)T
∗
i (X) = A2(t).

(24)
{

D
β
t ϑ0(t)−D

β
t ϑ2(t)− 32µϑ2(t)− L

(

ϑ0(t)− ϑ2(t)

)

= 0.

(25)















D
β
t ϑ0(t)−D

β
t ϑ1(t)+D

β
t ϑ3(t)− µ

�

32ϑ2(t)− 96ϑ3(t)
�

− L

�

ϑ0(t)− ϑ1(t)+ ϑ3(t)

�

= 0,

D
β
t ϑ0(t)+D

β
t ϑ1(t)−D

β
t ϑ3(t)− µ

�

32ϑ2(t)+ 96ϑ3(t)
�

− L

�

ϑ0(t)+ ϑ1(t)− ϑ3(t)

�

= 0

(26)

{

D
β
t ϑ0(t)− 32µϑ2(t)− 1

2
[L(ϑ0(t)− ϑ1(t)+ ϑ3(t))+ L(ϑ0(t)+ ϑ1(t)− ϑ3(t))] = 0,

D
β
t ϑ1(t)−D

β
t ϑ3(t)− 96µϑ3(t)+ 1

2
[L(ϑ0(t)− ϑ1(t)+ ϑ3(t))− L(ϑ0(t)+ ϑ1(t)− ϑ3(t))] = 0.

(27)
{

ϑ1(t) = 1
4
(A2(t)− A1(t)),

ϑ2(t) = 1
6
(A1(t)+ A2(t))− 1

3
ϑ0(t).
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 By substituting Eqs. (27) and (28) into Eqs. (24) and (26), then 

 RPSA assumes the solution of Eq. (29) using FPS at t0 = 0 as: 

 Next, let ϑ0(s,l)(t) denote the sth truncated series of ϑ0(t) which take the form: 

 where Υ0 and Υ1 can be obtained by solving Eqs. (22) and (27). The RPSA assumes the solution of Eqs. (30) 
and (31) using FPS at t0 = 0 as: 

 Let ϑ0(s,l)(t) and ϑ1(s,l)(t) denote the sth truncated series of ϑ0(t) and ϑ1(t) which take the form: 

 where Ψ0, Ψ1, η0 and η1 can be obtained by solving Eqs. (28) and (22). We can write the residual functions 
of Eqs. (29)–(31) as: 

and

(28)
{

ϑ2(t) = 1
6
(A1(t)+ A2(t))− 1

3
ϑ0(t),

ϑ3(t) = 1
8
(A2(t)− A1(t))− 1

2
ϑ1(t).

(29)
{

D
β
t ϑ0(t)− 1

8
D

β
t (A1(t)+ A2(t))− 4µ(A1(t)+ A2(t))

+8µϑ0(t)− 3
4
L
(

4
3
ϑ0(t)− 1

6
[A1(t)+ A2(t)]

)

,

(30)







D
β
t ϑ0(t)−

16µ
3
[A1(t)+ A2(t)] + 32µ

3
ϑ0(t)

− 1
2
[L(ϑ0(t)− 3

2
ϑ1(t)+ 1

8
[A2(t)− A1(t)])

+L(ϑ0(t)+ 3
2
ϑ1(t)− 1

8
[A2(t)− A1(t)])],

(31)







D
β
t ϑ1(t)− 1

12
D

β
t (A2(t)− A1(t))− 8µ[A2(t)− A1(t)]

+32µϑ1(t)+ 1
3
[L(ϑ0(t)− 3

2
ϑ1(t)+ 1

8
[A2(t)− A1(t)])

−L(ϑ0(t)+ 3
2
ϑ1(t)− 1

8
[A2(t)− A1(t)])] = 0.

(32)ϑ0(t) = Υ0 + Υ1t +
∞
∑

r=1

l
∑

j=0

hrj
trβ+j

Γ (rβ + j + 1)
.

(33)ϑ0(s,l)(t) = Υ0 + Υ1t +
s

∑

r=1

l
∑

j=0

hrj
trβ+j

Γ (rβ + j + 1)
, ∀s = 1, 2, ... and l = 0, 1,

(34)



























ϑ0(t) = Ψ0 + Ψ1t +
∞
�

r=1

l
�

j=0

frj
trβ+j

Γ (rβ + j + 1)
,

ϑ1(t) = η0 + η1t +
∞
�

r=1

l
�

j=0

drj
trβ+j

Γ (rβ + j + 1)
.

(35)



































ϑ0(s,l)(t) = Ψ0 + Ψ1t +
s

�

r=1

l
�

j=0

frj
trβ+j

Γ (rβ + j + 1)
,

ϑ1(s,l)(t) = η0 + η1t +
s

�

r=1

l
�

j=0

drj
trβ+j

Γ (rβ + j + 1)
,

∀s = 1, 2, . . . and l = 0, 1,

(36)
{

ℜes(s,l)(t) = D
β
t ϑ0(s,l)(t)− 1

8
D

β
t (A1(t)+ A2(t))− 4µ(A1(t)+ A2(t))

+8µϑ0(s,l)(t)− 3
4
L( 4

3
ϑ0(s,l) − 1

6
[A1(t)+ A2(t)]),

(37)







ℜes1(s,l)(t) = D
β
t ϑ0(s,l)(t)−

16µ
3
[A1(t)+ A2(t)] + 32µ

3
ϑ0(s,l)(t)

− 1
2
[L(ϑ0(s,l)(t)− 3

2
ϑ1(s,l)(t)+ 1

8
[A2(t)− A1(t)])

+L(ϑ0(s,l)(t)+ 3
2
ϑ1(s,l)(t)− 1

8
[A2(t)− A1(t)])],

(38)







ℜes2(s,l)(t) = D
β
t ϑ1(s,l)(t)− 1

12
D

β
t (A2(t)− A1(t))− 8µ[A2(t)− A1(t)]

+32µϑ1(s,l)(t)+ 1
3
[L(ϑ0(s,l)(t)− 3

2
ϑ1(s,l)(t)+ 1

8
[A2(t)− A1(t)])

−L(ϑ0(s,l)(t)+ 3
2
ϑ1(s,l)(t)− 1

8
[A2(t)− A1(t)])],
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•	 Time fractional pseudo hyperbolic PDEs with nonlocal conditions34 

 subject to ICs and BCs: 

 Let us utilize the approximation of Θn(x, t) which defined in Eq. (19) as following steps:

	Step (I)	 By substituting Theorem (1) and Eq. (19) into Eq. (40), we obtain 

	Step (II)	By collocating Eq. (42) at the roots xp, p = 0, 1, 2, . . . n− ⌈β⌉ and the collocation point of SCPSK 
∗
n+1−⌈β⌉(x) , we get a system of FODEs as: 

	Step (III)	By substituting Eq. (19) into Eq. (41), we can obtain (⌈β⌉ + 1) algebraic equations as: 

 where BCs 

 To obtain the unknown coefficients ϑ0(t),ϑ1(t),ϑ2(t), . . . ,ϑn(t) , combing Eqs. (43)–(45), we have 
system of FODEs which can be solved by utilizing RPSA. To determine the unknown coefficients of 
ϑ0(t),ϑ1(t),ϑ2(t), . . . ,ϑn(t) , we take n = 3 in Eq. (43), we have 

 By solving Eq. (45), we get 

 By solving Eq. (46), we obtain 

 By substituting Eq. (47) into Eq. (48), then 

(39)















D
(r−1)β
t D

j
t ℜes(s,l)(t0) = 0,

D
(r−1)β
t D

j
t ℜes1(s,l)(t0) = 0,

D
(r−1)β
t D

j
t ℜes2(s,l)(t0) = 0,

∀r = 1, 2, . . . , s and j = 0, 1, . . . , l.

(40)D
β
t Θ(x, t)− ε DtD

2
xΘ(x, t)−D

2
xΘ(x, t)−W(x, t) = 0, 1 < β ≤ 2, x ∈ [0,X], t ∈ [0,T],

(41)























Θ(x, 0) = V1(x), DtΘ(x, 0) = V2(x), x ∈ [0,X],

Θ(0, t) = ρ1(t)+
� X

0

Θ(x, t)dx = B1(t), t ∈ [0,T],

Θ(X, t) = ρ2(t)+
� X

0

Θ(x, t)dx = B2(t), t ∈ [0,T].

(42)
n

∑

i=0

D
β
t ϑi(t)T

∗
i (x)− ε

n
∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

Dtϑi(t)Ω
(β)

i,k xi−k−β −
n

∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

ϑi(t)Ω
(β)

i,k xi−k−β −W(x, t) = 0.

(43)
n

∑

i=0

D
β
t ϑi(t)T

∗
i (xp)− ε

n
∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

Dtϑi(t)Ω
(β)

i,k x
i−k−β
p −

n
∑

i=⌈β⌉

i−⌈β⌉
∑

k=0

ϑi(t)Ω
(β)

i,k x
i−k−β
p −W(xp, t) = 0.

(44)
{
∑n

i=0 ϑi(0)T
∗
i (x) = V1(x),

∑n
i=0 Dtϑi(0)T

∗
i (x) = V2(x),

(45)























n
�

i=0

ϑi(t)T
∗
i (0) = B1(t),

n
�

i=0

ϑi(t)T
∗
i (X) = B2(t).

(46)















D
β
t ϑ0(t)−D

β
t ϑ1(t)+D

β
t ϑ3(t)− εDt

�

32ϑ2(t)− 96ϑ3(t)
�

−
�

32ϑ2(t)− 96ϑ3(t)
�

−W

�

1

4
, t

�

= 0,

D
β
t ϑ0(t)+D

β
t ϑ1(t)−D

β
t ϑ3(t)− εDt

�

32ϑ2(t)+ 96ϑ3(t)
�

−
�

32ϑ2(t)+ 96ϑ3(t)
�

−W

�

3

4
, t

�

= 0.

(47)















ϑ2(t) =
1

6

�

B1(t)+ B2(t)

�

−
1

3
ϑ0(t),

ϑ3(t) =
1

8

�

B2(t)− B1(t)

�

−
1

2
ϑ1(t).

(48)















D
β
t ϑ0(t)− 32εDtϑ2(t)− 32εϑ2(t)−

1

2

�

W(
1

4
, t)+W(

3

4
, t)

�

= 0,

D
β
t ϑ1(t)−D

β
t ϑ3(t)− 96εDtϑ3(t)− 96ϑ3(t)+

1

2

�

W(
1

4
, t)−W(

3

4
, t)

�

= 0.
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 Let ϑ0(s,l)(t) and ϑ1(s,l)(t) denote the sth truncated series of ϑ0(t) and ϑ1(t) which defined in Eq. (35), 
then the residual functions of Eqs. (49) and (50) take the form: 

and

Numerical simulation
Two problems are established in this section to demonstrate the effectiveness and applicability of the 
CTSCSK-RPSA.

Problem 1. Suppose the following nonlinear time fractional hyperbolic PDEs29 which are described in Eq. 

(17), where µ = 0 and L
(

Θ(x, t)

)

=
∂

∂x

(

Θ(x, t)
∂Θ(x, t)

∂x

)

 , then

with ICs and BCs:

The exact solution at β = 2 is Θ(x, t) =
x2

(t + 1)2
.

Table 1 presents the approximate solutions obtained by CTSCSK-RPSA with VIM, ADM8, VHPIM, HPM11 
and PIA29. Table 2 present the CTSCSK-RPSA approximate solutions at various values of β . Figure 1 represents 
comparison between exact and approximate solutions at β = 2 . Figure 2 shows the 3D graph of approximate 
solution at β = {1.9, 1.8, 1.7} . Figure 3 displays the behavior of approximate solution for fractional order β and 
t = 0.1 in two dimensional graphs.

Problem 2. Consider time fractional pseudo hyperbolic PDEs with nonlocal conditions34

with ICs and BCs:

The exact solution at β = 2 is Θ(x, t) = x3et .
Table 3 shows the numerical solution obtained by CTSCSK-RPSA and RPSA with absolute error. Table 4 

present the CTSCSK-RPSA approximate solutions at various values of β . Figure 4 represents comparison 
between exact and approximate solutions at β = 2 . Figure 5 shows the 3D graph of approximate solution at 

(49)















D
β
t ϑ0(t)−

16ǫ

3
Dt

�

B1(t)+ B2(t)

�

+
32ǫ

3
Dtϑ0(t)

−
16

3

�

B1(t)+ B2(t)

�

+
32

3
ϑ0(t)−

1

2

�

W(
1

4
, t)+W(

3

4
, t)

�

= 0,

(50)















D
β
t ϑ1(t)−

1

12
D

β
t

�

B2(t)− B1(t)

�

− 8εDt

�

B2(t)− B1(t)

�

+ 32εDtϑ1(t)

−8

�

B2(t)− B1(t)

�

+ 32ϑ1(t)+
1

3

�

W(
1

4
, t)−W(

3

4
, t)

�

= 0.

(51)















Res1(s,l)(t) = D
β
t ϑ0(s,l)(t)−

16ǫ

3
Dt

�

B1(t)+ B2(t)

�

+
32ǫ

3
Dtϑ0(s,l)(t)

−
16

3

�

B1(t)+ B2(t)

�

+
32

3
ϑ0(s,l)(t)−

1

2

�

W(
1

4
, t)+W(

3

4
, t)

�

,

(52)















Res2(s,l)(t) = D
β
t ϑ1(s,l)(t)−

1

12
D

β
t

�

B2(t)− B1(t)

�

− 8εDt

�

B2(t)− B1(t)

�

+32ε Dtϑ1(s,l)(t)− 8

�

B2(t)− B1(t)

�

+ 32ϑ1(s,l)(t)+
1

3

�

W(
1

4
, t)−W(

3

4
, t)

�

,

(53)







D
(r−1)β
t D

j
t Res1(s,l)(t0) = 0,

D
(r−1)β
t D

j
t Res2(s,l)(t0) = 0,

∀r = 1, 2, . . . , s and j = 0, 1, . . . , l.

(54)D
β
t Θ(x, t)−

∂

∂x

(

Θ(x, t)
∂Θ(x, t)

∂x

)

= 0, 1 < β ≤ 2, x ∈ [0, 1], t > 0,

(55)







Θ(x, 0) = x2, DtΘ(x, 0) = −2x2,

Θ(0, t) = 0, Θ(1, t) =
1

(t + 1)2
.

(56)D
β
t Θ(x, t)− ε DtD

2
xΘ(x, t)−D

2
xΘ(x, t)− et(x3 − 18x) = 0, 1 < β ≤ 2, x ∈ [0, 1], t ∈ [0, 2],

(57)







Θ(x, 0) = x3, DtΘ(x, 0) = x3,

Θ(0, t) =
� 1

0

Θ(x, t)dx −
1

4
et , Θ(1, t) =

� 1

0

Θ(x, t)dx +
3

4
et .
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Table 1.   The Comparison between CTSCSK-RPSA and other available methods for Problem 1.

t x Exact

CTSCSK-RPSA

VIM8 ADM8 HPM11 VHPIM11 PIA29n = 2 n = 3

0.2 0.25 0.043403 0.043403 0.043403 0.043400 0.043395 0.043400 0.04320 0.043400

0.2 0.5 0.173611 0.173611 0.173611 0.173600 0.173580 0.173600 0.172820 0.173599

0.2 0.75 0.390625 0.390625 0.390625 0.390600 0.390556 0.390600 0.388844 0.390599

0.2 1 0.694444 0.694444 0.694444 0.694400 0.694321 0.694400 0.691278 0.694399

0.4 0.25 0.031888 0.031887 0.031888 0.031779 0.031567 0.031779 0.029913 0.031779

0.4 0.5 0.127551 0.127551 0.127551 0.127118 0.126268 0.127118 0.119650 0.127118

0.4 0.75 0.286990 0.286988 0.286990 0.286015 0.284103 0.286015 0.269212 0.286015

0.4 1 0.510204 0.510204 0.510204 0.508471 0.505072 0.508471 0.478600 0.508472

0.6 0.25 0.024414 0.024648 0.024444 0.023665 0.022005 0.023665 0.018860 0.023665

0.6 0.5 0.097656 0.097968 0.097460 0.094660 0.088018 0.094660 0.075442 0.094659

0.6 0.75 0.219727 0.219960 0.219403 0.212984 0.198040 0.212984 0.169743 0.212984

0.6 1 0.390625 0.390625 0.390625 0.378638 0.352071 0.378638 0.301766 0.378638

Table 2.   Numerical results of CTSCSK-RPSA at different values of β for Problem 1.

t x

β = 1.5 β = 1.75

ADM8 VIM8 n = 2 n = 3 ADM8 VIM8 n = 2 n = 3

0.2 0.25 0.0592832 0.047502 0.043791 0.043325 0.0497012 0.043403 0.044368 0.043210

0.2 0.5 0.237133 0.190007 0.174129 0.174129 0.194805 0.184170 0.174898 0.174898

0.2 0.75 0.533549 0.427517 0.391013 0.391480 0.438311 0.414383 0.391590 0.392748

0.2 1 0.948532 0.760029 0.694444 0.694444 0.779220 0.736680 0.694444 0.694444

0.4 0.25 0.0654119 0.041853 0.043745 0.023960 0.037742 0.037742 0.032128 0.031840

0.4 0.5 0.261647 0.167412 0.180405 0.180405 0.174992 0.150968 0.127872 0.174898

0.4 0.75 0.588707 0.376676 0.326630 0.374198 0.393732 0.339679 0.287230 0.287519

0.4 1 1.04659 0.669647 0.510204 0.510204 0.699969 0.603873 0.510204 0.510204

0.6 0.25 0.063177 0.037722 0.220672 0.117212 0.381836 0.031457 0.185133 0.100000

0.6 0.5 0.252710 0.150888 0.359333 0.359333 0.152735 0.125829 0.311949 0.311949

0.6 0.75 0.568598 0.339499 0.318117 0.651493 0.343653 0.283114 0.415984 0.554257

0.6 1 1.01084 0.603553 0.390625 0.390625 0.610938 0.503314 0.390625 0.390625
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Figure 1.   Exact and approximate solutions at β = 2 of Problem 1.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8683  | https://doi.org/10.1038/s41598-024-58493-x

www.nature.com/scientificreports/

β = {1.9, 1.8, 1.7} . Figure 6 displays the behavior of approximate solution for fractional order β and t = 1 in two 
dimensional graphs.

Conclusion
In this study, the CTSCSK-RPSA is successfully applied to solve nonlinear time fractional hyperbolic PDEs and 
time fractional pseudo hyperbolic PDEs with nonlocal conditions. Error analysis of the proposed problems was 
studied. It is clear that the numerical and simulation results obtained by CTSCSK-RPSA at β = 2 are close to the 
exact solutions and they are more accurate than previous methods in the literature. All results were done with 
MATLAB R2017b (9.3.0.713579). Finally, we point out that CTSCSK-RPSA is a convenient and efficient solutions 
for for various types of fractional linear and nonlinear problems that arise in engineering and applied physics.

0
1

2

0.8

4

1

6

0.6 0.8

=1.9

t

8

0.6

x

0.4

10

0.4
0.2 0.2

0 0

0
1

2

0.8

4

1

6

0.6 0.8

=1.8

t

8

0.6

x

0.4

10

0.4
0.2 0.2

0 0

0
1

2

0.8

4

1

6

0.6 0.8

=1.7

t

8

0.6

x

0.4

10

0.4
0.2 0.2

0 0

Figure 2.   Behavior of approximate at different values of β for Problem 1.
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Figure 3.   2D graphics of exact and approximate solutions at different fractional order of β for Problem 1.
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Table 3.   Numerical results of pseudo hyperbolic PDE with nonlocal conditions at ε = 2 and β = 2 for 
Problem 2.

x t Exact

Approximate solutions Absolute error

CTSCSK-RPSA RPSA34 CTSCSK-RPSA RPSA34

0 0 0 0 0 0 0

0.1 0.2 0.001221 0.001221 0.001221 6.49719× 10−14 1× 10−12

0.2 0.4 0.011935 0.011935 0.011935 1.73472× 10−18 0

0.3 0.6 0.049197 0.049197 0.049197 2.77556× 10−17 3× 10−11

0.4 0.8 0.142435 0.142435 0.142435 8.32667× 10−17 1× 10−10

0.5 1 0.339785 0.339785 0.339785 0 3× 10−10

0.6 1.2 0.717145 0.717145 0.717145 1.11022× 10−16 0

0.7 1.4 1.390934 1.390934 1.390934 2.22045× 10−16 0

0.8 1.6 3.097420 3.097420 3.097420 4.44089× 10−16 0

0.9 1.8 4.410193 4.410193 4.410193 0 3× 10−9

1 2 7.389056 7.389056 7.389056 2.66454× 10−15 2.8× 10−8

Table 4.   Approximate solution for different values of β for Problem 2.

x t

CTSCSK-RPSA

β = 1.95 β = 1.85 β = 1.75

0 0 0 0 0

0.1 0.2 0.007560 0.001264 0.001298

0.2 0.4 0.012122 0.012529 0.012985

0.3 0.6 0.050111 0.052087 0.054292

0.4 0.8 0.145352 0.151656 0.158673

0.5 1 0.347200 0.363209 0.381013

0.6 1.2 0.733481 0.768741 0.807946

0.7 1.4 1.423587 1.494070 1.572439

0.8 1.6 2.596795 2.728137 2.874197

0.9 1.8 4.517702 4.749821 5.008006

1 2 7.571329 7.964938 8.402844
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Figure 4.   Exact and approximate solutions at β = 2 of Problem 2.
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