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Mechanical characteristics 
analysis of high dimensional 
vibration isolation systems based 
on high‑static‑low‑dynamic 
stiffness technology
Bu‑yun Li 1,2, Chang‑geng Shuai 1,2 & Jian‑guo Ma 1,2*

Large floating raft vibration isolation systems (FRVISs) based on high‑static‑low‑dynamic stiffness 
(HSLDS) technology offer excellent low frequency vibration isolation performance with broad 
application prospects. However, the design process for these complex high‑dimensional coupled 
nonlinear systems remains poorly developed, particularly when applied for ocean‑going vessels 
that experience rolling and pitching motions. The present work addresses this issue by establishing 
a six‑degree‑of‑freedom HSLDS vibration isolation model for FRVISs composed of eight isolators, 
and the model is applied to fully analyze the swing stability and multidimensional vibration isolation 
performance of these systems. The influence of nonlinearity on the mechanical properties of the 
vibration isolators is analyzed more clearly by assuming that each vibration isolator realizes nonlinear 
HSLDS characteristics in the z direction and linear characteristics in the x and y directions. The results 
demonstrate that the swing displacement responses of the system are greatly reduced under weak 
nonlinearity, which reflects the high static stiffness and high static stability characteristics of an 
HSLDS system. The multidimensional vibration isolation performance of the system is evaluated 
according to the impacts of nonlinearity, the installation height Hz of the isolators, and the relative 
position Dr of the two middle isolators. The results of analysis demonstrate that applying a value of 
Hz = 0 produces the best vibration isolation performance overall under strong nonlinearity by avoiding 
unnecessary secondary peaks in the force transmission rate under harmonic mechanical excitation and 
ensuring a maximum high‑frequency vibration isolation effect. However, applying a weak nonlinearity 
is better than a strong nonlinearity if Hz is not zero. In contrast, Dr has little effect on the vibration 
isolation effect of the raft in the x, y, and z directions. Therefore, an equidistant installation with 
Dr = 0.5 would be considered ideal from the standpoint of installation stability.

Keywords High-static-low-dynamic stiffness, Quasi-zero stiffness, High dimensional nonlinear system, 
Floating raft vibration isolation system, Swing stability

Floating raft vibration isolation systems (FRVISs) represent a state-of-the-art technology for minimizing the 
mechanical vibrations of ocean going vessels with a range of goals, such as for enhancing their acoustic stealth 
performance. Of particular importance in this regard is to maximize the low-frequency vibration isolation per-
formance of these  systems1. From a theoretical perspective, the low-frequency vibration isolation performance 
of these systems increases as their natural frequency  decreases2. The primary means of reducing the natural 
frequency of an FRVIS is to reduce the stiffness of the vibration isolators applied therein. However, this strategy 
suffers from at least two problems. First, the lowest natural frequency of an isolator is limited by the physical 
properties, and cannot be reduced indefinitely. Second, system stability is increasingly compromised under 
decreasing stiffness because this also increases the deformation experienced by the system under the rolling 
and pitching conditions of the vessel.
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These issues have been addressed in recent years by the development of high-static-low-dynamic stiffness 
(HSLDS) vibration isolation structures, which can reduce dynamic stiffness while ensuring static  stability3,4. Ide-
ally, the dynamic stiffness of this type of vibration isolation structure can approach a value of zero, and therefore 
represents quasi-zero stiffness (QZS)  performance5. At present, a number of HSLDS vibration isolator structures 
have been designed, such as inclined spring  structures6–10, cam-roller  structures11–15, pneumatic  structures16–18, 
magnetic  structures19–22, and structures inspired by biological  organisms23–26. Moreover, Li and  Xu27,28 were the 
first to design an FRVIS using QZS isolators, and the vibration isolation performance of the resulting system was 
analyzed. However, while the low-frequency vibration isolation performance of the system was demonstrated to 
be substantially improved via the use of QZS isolators, the model established was a little simple, and some factors 
affecting the vibration isolation effect of the system were not considered, such as the number of isolators, which 
can be very many in an FRVIS, and their installation positions. In addition, the influence of different excitation 
conditions and the nonlinearities of the isolators on the vibration isolation performance of FRVISs were also not 
considered. For example, the vibration isolation characteristics of the system were evaluated under non-eccentric 
excitations when the isolators realized QZS condition. However, these characteristics are not at all certain under 
all possible excitation conditions with non-QZS characteristics. The past research results inspired the research 
of this paper. This paper further studies the situations that have not been considered before to ensure engineer-
ing practicability.

Moreover, in contrast to land-based applications, ocean-going vessels experience rolling and pitching motions 
during operation, which introduce more rigorous stability requirements for HSLDS-FRVISs. However, the swing 
stability of these complex vibration isolation systems remains poorly evaluated. Meanwhile, some scholars have 
analyzed the swing stability of linear systems. For example, He et al.29 analyzed the rolling stability of a vibra-
tion isolation system designed for a vessel propulsion system based on a single-layer linear vibration isolation 
model. However, the stability characteristics of such systems are quite different from those of highly nonlinear 
HSLDS systems. In addition, most studies focused on analyzing the dynamic stability of nonlinear systems have 
considered relatively simple HSLDS vibration isolator systems, including their nonlinear dynamic behaviors, 
such as jumping and  bifurcation30–32. Accordingly, the design process for these complex high-dimensional cou-
pled nonlinear systems remains poorly developed in ocean-going vessel applications. As a result, the design of 
efficient, safe, and stable HSLDS-FRVISs remains beyond the reach of the current state of the art.

The present work addresses this issue by establishing a six degrees-of-freedom (6-DOF) HSLDS-FRVIS 
model, and the model is applied to fully analyze the swing stability and multidimensional vibration isolation 
performance of these systems. Therefore, the current work lays a sound theoretical foundation for the subsequent 
design of HSLDS-FRVISs.

Simplified HSLDS‑FRVIS model
For the convenience of analysis, it is assumed that the floating raft is rigid and supported only vertically by 
vibration isolators. For large floating rafts, vibration isolators will be symmetrically arranged at the four corners 
and the middle of the raft to ensure stability. According to the actual engineering needs, 6, 8, 10 or even more 
vibration isolators can be symmetrically installed. For general discussion, it is assumed that the floating raft is 
supported by eight vibration isolators, which is also a common isolator configuration for ship vibration isolation 
systems. Therefore, the simplified structure of the HSLDS-FRVIS investigated in the present study is illustrated 
schematically in Fig. 1. As can be seen, the mechanical equipment is rigidly installed on top of the floating raft, 
and the floating raft is supported by eight HSLDS vibration isolators. The eight vibration isolators are numbered 
①–⑧ counterclockwise from the lower right corner. The global coordinate system OXYZ is located at the center 
of gravity jointly determined by the mechanical equipment and floating raft. The coordinate system of each 
vibration isolator coincides with the global coordinate system. The influence of nonlinearity on the mechanical 
properties of the vibration isolators is analyzed more clearly by assuming that each vibration isolator realizes 

Figure 1.  Schematic illustrating the simplified structure of a high-static-low-dynamic stiffness (HSLDS) 
floating raft vibration isolation system (FRVIS).
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nonlinear HSLDS characteristics in the z direction and linear characteristics in the x and y directions. The 
other model parameters include lc, bc, and hc, which are one-half of the length, width, and height of the raft, 
respectively. In addition, installation positions ax, ay1, and az represent the coordinates of the vibration isolators 
in the coordinate system OXYZ, where |ax| = lc and 

∣

∣ay1
∣

∣ = bc . As can be seen, the positions of vibration isola-
tors installed at the four corners of the floating raft structure are usually determined by the length and width of 
the floating raft. However, the positions of the middle isolators are arbitrarily adjustable. Therefore, we define 
a coordinate ay2, which represents the position of the middle vibration isolators (i.e., isolators ②, ③, ⑥, and 
⑦) relative to the center of gravity along the y axis. In addition, while the installation heights of the isolators 
are arbitrarily adjustable, we apply a standard position of |az | = hc herein unless otherwise specified. |az | is the 
distance between the upper end of the isolator with rated load and the center of gravity jointly determined by 
the mechanical equipment and floating raft. Therefore, a standard position of |az | = hc means that the vibration 
isolators are installed on the bottom of the floating raft. Furthermore, the installation height of the isolators and 
the positions of the middle isolators are defined according to an installation height ratio Hz =

∣

∣azi
/

hc
∣

∣ (i = 1, 2, 
…, 8) and a distance ratio Dr =

∣

∣aym
/

bc
∣

∣ (m = 2, 3, 6, 7), respectively. The standard values of Hz and Dr applied 
are 1 and 0.5 respectively. Unless otherwise specified, the structural parameters applied herein are listed in 
Table 1. The coordinates of an applied excitation force F are denoted as (sx , sy , sz) , where the absolute values of 
sx , sy , and sz respectively represent the eccentric distances of F in the x, y, and z directions. If sx = sy = sz = 0 , 
the excitation force is located at the center of gravity of the system (i.e., at O).

The dynamic equation of the system is given as  follows33,34. The nonlinearity includes the linear stiffness term 
and the cubic nonlinear stiffness term, which is a part of a typical duffing equation.

Here, the operation ⊗ is defined as the multiplications of elements in the same position of different matrices. 
M is a matrix containing the mass m, the moments of inertia Iii (i = x, y, z), and the products of inertia Iij (i, j = x, 
y, z, i  = j ) of the machinery and floating raft, which is defined as follows.

x =
[

xc yc zc αc βc γc
]T is the displacement vector of the center of gravity, including translation terms ([xc 

yc zc]T) and angle terms ([α β γ]T), ni is the number of the isolators, Gi =





0 azi −ayi
E3×3 −azi 0 axi

ayi −axi 0



 is the position 

transformation matrix from the upper end of the i-th isolator to O, where E3×3 is a 3× 3 identity matrix, and aυi
(υ = x, y, z ) are the above-defined vibration isolator coordinates, Ci = T

T
i diag(cix , ciy , ciz)Ti is the linear damp-

ing matrix, where Ti is an identity matrix because the coordinate system of each vibration isolator coincides with 
the global coordinate system, Kil = T

T
i diag(kilx , kily , kilz)Ti is the linear stiffness matrix, and 

Kin = T
T
i diag(0, 0, kinz)Ti is the nonlinear stiffness matrix. Accordingly, we can define the excitation force vector 

as F =
[

Fx Fy Fz Mx My Mz

]T.
Introducing dimensionless parameters yields the following terms:

x̂c =
xc
lc

 , ŷc =
yc
lc

 , ẑc = zc
lc

 , α̂c = αc
θ

 , β̂c = βc
θ

 , γ̂c = γc
θ

 , ωn =

√

8kz
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ωn
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kz
 , 
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2
c

kz
 , F̂υ = Fυ

8kz lc
 , M̂υ = Mυ

8kz l2c
 , and âυ = aυ

lc
 ( υ = x, y, z).

Here, ω is the excitation frequency, θ is a unit angle for rendering angle terms [α β γ]T dimensionless, τ is 
dimensionless time, ξ is the dimensionless damping ratio and kz is the static stiffness given by the static force 
divided by static displacement. It is assumed that the damping of an isolator is the same in all directions. For 
convenience, dimensionless parameters are still represented by original parameter variables except dimension-
less time τ and damping ratio ξ.

These dimensionless parameters transform Eq. (1) into a dimensionless dynamic equation of the system. It 
is further noted that the linear and nonlinear stiffness elements can be alternatively defined as kilz = 1− 2

(

1−l̂

l̂

)

 

(1)

Mẍ +
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T
i Ci(Giẋ)+
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T
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+

ni
∑
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T
i Kin((Gix)⊗ (Gix)⊗ (Gix)) = F

(2)M =















m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx −Ixy −Ixz
0 0 0 −Iyx Iyy −Iyz
0 0 0 −Izx −Izy Izz















Table 1.  Standard structural parameters applied herein for the HSLDS-FRVIS illustrated in Fig. 1.

Parameter ax
/

lc ay1
/

lc ay2
/

lc az
/

lc Hz Dr

Value 1.0 2.4 1.2 0.07 1 0.5



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8195  | https://doi.org/10.1038/s41598-024-58469-x

www.nature.com/scientificreports/

and kinz = 1−l̂2

l̂3
34,35. The nonlinearity of the system can be conveniently represented by the dimensionless com-

pression factor l̂  which is the ratio of the compressed length to the original length for springs, because kinz 
increases while kilz decreases with increasing l̂  . Here, the system attains maximum nonlinearity when ̂l = 0.667 , 
and is accordingly a QZS system. In contrast, a value l̂ = 1 represents an equivalent linear system (ELS).

Static swing stability analysis
Swing motion includes rolling and pitching motions. Under rolling motion, the force exerted on the XOZ plane 
produces only translational displacements in the x and z directions and rotational displacements β around the y 
axis, as shown in Fig. 1. Regardless of damping, the dimensionless equations defining the rolling motion of the 
3-DOF system based on the 6-DOF system described in “Simplified HSLDS-FRVIS model” section are given 
as follows.

Here, klx, klz are the linear stiffness in the x, z directions respectively. knz is the nonlinear stiffness in the z 
direction.

Under pitching motion, the force exerted on the YOZ plane produces only translational displacements in the y 
and z directions and rotational displacements α around the x axis, as shown in Fig. 1. Regardless of damping, the 
dimensionless equations defining the pitching motion of the corresponding 3-DOF system are defined as follows.

Here, kly is the linear stiffness in the y direction.
The swing stability of an FRVIS is usually determined according to its static response because the swing fre-

quency of a ship is quite small, and swing motion can therefore be regarded as a quasi-static  process29. In addition, 
we assume that all vibration isolators realize QZS characteristics in the z direction (i.e., l̂ = 0.667 ) because this 
enables us to obtain an analytical expression of the displacement response of the system that facilitates a clear 
analysis of the influence of system parameters on swing stability.

Ignoring the differential terms in Eq. (3) yields the following rolling displacement response of the FRVIS.

In contrast, the greater complexity of the equations of pitching motion in Eq. (4) make it impossible to 
obtain an explicit analytical pitching displacement response for the FRVIS. Therefore, the pitching displacement 
response of the system is given as follows. This equation can be solved using the solve function of the  MATLAB® 
software.

Similarly, the dimensionless rolling displacement responses xr−l , zr−l , and βr−l obtained for an ELS ( ̂l = 1 ) 
with only linear stiffness elements Kil = T

T
i diag(kz , kz , kz)Ti and Kin = 0 (i = 1, 2, …,8) can be given as follows.

The dimensionless pitching displacement responses yp−l , zp−l , and α
p−l

 are also defined as follows.

To further simplify the analysis, we assume that the load is concentrated at the origin O of the global coor-
dinate system (i.e., at the center of gravity of the system). This enables us to define the balance between the load 
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ÿc +
1
2klyyc +

1
2klyazαc = Fy

z̈c +
1
2klzzc +

3
4α

2
c

�

a2y1 + a2y2

�

knzzc +
1
2knzz

3
c = Fz

α̈c +
1
2a

2
zklyαc +

1
4

�

a2y1 + a2y2

�

�

klz + 3knzz
2
c

�

αc +
1
4

�

a4y1 + a4y2

�

knzα
3
c +

1
2azklyyc = Mx

(5)















xc =
4Fx+azβklx

klx

zc =
(−4azFx+4axFz

axknz
)1/3+( 4azFx+4axFz

axknz
)1/3

2

βc =
( 4azFx+4axFz

axknz
)1/3−(−4azFx+4axFz

axknz
)1/3

2ax

(6)















1
2klyyc +

1
2klyαcaz = Fy

3
4α

2
c

�

a2y1 + a2y2

�

knzzc +
1
2knzz

3
c = Fz

1
2a

2
zklyαc +

3
4knz

�

a2y1 + a2y2

�

z2c αc +
1
4

�

a4y1 + a4y2

�

knzα
3
c +

1
2azklyyc = 0

(7)











xr−l = 4Fx +
4Fxa

2
z

a2x
zr−l = 4Fz
βr−l =

4azFx
a2x

(8)















y
p−l

= 2Fy +
4Fya

2
z

a2y1+a2y2

z
p−l

= 2Fz

α
p−l

= −
4azFy

a2y1+a2y2



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8195  | https://doi.org/10.1038/s41598-024-58469-x

www.nature.com/scientificreports/

and the support force of the vibration isolator during the rolling and pitching of the ship as being equivalent to 
applying the following rolling and pitching forces at O.

Here, G = Ga
8kz lc

 is the dimensionless load of the system, where Ga is the load, ρ = ρa
θ

 is the dimensionless 
rolling angle, where ρa is the rolling angle, and φ = φa

θ
 is the dimensionless pitching angle, where φa is the pitch-

ing angle.
The impacts of ρ and G on the dimensionless displacement responses of the HSLDS-FRVIS ( ̂l = 0.667 ) 

and the ELS ( ̂l = 1 ) under rolling conditions are presented in Fig. 2a and b as functions of ρ for G values of 1 
and 10, respectively. Similarly, these impacts on the HSLDS-FRVIS and the ELS under pitching conditions are 
presented in Fig. 3a and b as functions of φ for G values of 1 and 10, respectively. It is found that the responses 
of the HSLDS-FRVIS and ELS are nearly equivalent in the x and y directions under the swing conditions. This 
demonstrates that nonlinearity in the z direction has little influence on the system responses in the x and y 
directions. Under the rolling condition, the response of the HSLDS-FRVIS in the z direction is generally greater 
than that of the ELS with increasing ρ when G = 1, and is less than that of the ELS only at relatively large values 
of ρ. Similar behavior is observed under the pitching condition, except that the response of the HSLDS-FRVIS 
in the z direction is always greater than that of the ELS. However, this behavior changes when G = 10, where the 
responses of the HSLDS-FRVIS in the z direction are nearly always less than or equal to that of the ELS under 
both rolling or pitching conditions. Moreover, the gap between the two responses becomes increasingly obvious 
with increasing ρ or φ. This demonstrates that the displacement offset of the HSLDS-FRVIS is smaller than that 
of the ELS under large load and large swing angle conditions, which is beneficial for ensuring the stability of the 
vibration isolation system. This can be qualitatively explained from an analysis of Eqs. (5) and (7) combined with 
Eqs. (9) and (10) respectively, where we note that the load and swing angle have less influence on the responses 
of the HSLDS-FRVIS in the z direction than the ELS. Therefore, the HSLDS-FRVIS provides improved swing 
stability performance over that of the ELS.

We also analyzed the influence of the degree of nonlinearity l̂  on the displacement responses of the HSLDS-
FRVIS and the ELS in the z direction under swing motion for G = 10 , and the results obtained under roll and 
pitch motions are presented as functions of ρ and φ in Fig. 4a and b, respectively. It is found that even slight 
nonlinearity can greatly reduce the displacement response of the system and improve its swing stability under 
heavy load. In fact, the displacement response observed for ̂l = 0.9 is little different from that obtained under the 
minimum displacement response at l̂ = 0.667 , and is much less than that of the ELS. For example, the responses 
observed for l̂ = 0.9 at the maximum rolling and pitching angles considered were about 12% and 30% those of 

(9)
{

Fx = G sin ρ
Fz = G(1− cos ρ)

(10)
{

Fy = G sin φ
Fz = G(1− cosφ)

Figure 2.  Dimensionless displacement responses obtained under rolling motion for the HSLDS-FRVIS 
( ̂l = 0.667 ) and the ELS ( ̂l = 1 ) defined in Fig. 1 as functions of the dimensionless rolling angle ρ under 
different dimensionless loads G: (a) G = 1 ; (b) G = 10.
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the linear system ( ̂l = 1.0 ), respectively. Accordingly, these results reflect the high static stiffness and high static 
stability characteristics of HSLDS technology.

Taking rolling motion as an example, we further analyzed the influence of the installation height ratio Hz of 
the vibration isolators on the displacement responses of the vibration isolation systems under rolling motion 
for G = 10 , and the results obtained are presented for the HSLDS-FRVIS ( ̂l = 0.667 ) and the ELS as functions 
of ρ in Fig. 5a and b, respectively. It is found that different installation positions have relatively little effect on the 
displacement response of the HSLDS-FRVIS compared to that of the ELS. We further note that Hz affects only 
the response of the ELS in the x direction, but has no effect on the response in the z direction. In addition, a value 
of Hz = 0 (i.e., az = 0) produces the minimum displacement response for the ELS in the x direction. This is more 

Figure 3.  Dimensionless displacement responses obtained under pitching motion for the HSLDS-FRVIS and 
the equivalent linear system (ELS) as functions of the dimensionless pitching angle φ for different G: (a) G = 1 ; 
(b) G = 10.

Figure 4.  Dimensionless displacement responses obtained in the z direction under swing motions for the 
HSLDS-FRVIS and ELS as functions of ρ and φ for different degrees of nonlinearity l̂  with G = 10 : (a) rolling 
motion; (b) pitching motion.
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intuitively conveyed from an analysis of Eqs. (7) and (9). Therefore, nonlinear isolators weaken the influence of 
their installation position on the displacement response of the system compared with that of the ELS.

Multidimensional dynamic analysis
Under the established condition ξ = ξx = ξy = ξz , the dimensionless equations defining the dynamic motion 
of the 6-DOF system described in “Simplified HSLDS-FRVIS model” section are given as follows.

Past research has demonstrated that little difference is observed between solutions obtained by the harmonic 
balance analytical method and the numerical method in the higher excitation frequency  range27. However, these 
solutions differ greatly in the low frequency range because the analytical solution includes a truncation error that 
arises as the solution is assumed to be first order, but the actual solution has infinite order terms. Therefore, the 
solution obtained by the numerical method is more accurate in the low frequency range. Moreover, it is difficult 
to obtain explicit analytical solutions for high-dimensional nonlinear systems. Collectively considering both 
accuracy and simplicity, the present work applies the numerical method to solve Eq. (11) by using the ode45 
solver of the  MATLAB® software, which also facilitates a clear and accurate analysis of the influences of various 
parameters on the vibration isolation performance of the system.

In addition, the present work assumes that the external excitation is simple harmonic force excitation. There-
fore, the vibration isolation effect of an FRVIS is analyzed in the x, y, and z directions according to the force 
transmission rate, which is defined as

(11)
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Figure 5.  Dimensionless displacement responses obtained under rolling motion for different systems as 
functions of ρ with G = 10 and different vibration isolator installation positions: (a) HSLDS-FRVIS ( ̂l = 0.667 ); 
(b) ELS.
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Here, the function lg(∙) represents the logarithm with base 10 of its argument, the function RMS(∙) represents 
the root mean square of its argument, Ftυ is the nonlinear force transmitted by the FRVIS to the foundation, 
and Fυ = fυ cos�t is the external harmonic excitation force, where fυ is the dimensionless amplitude of the 
excitation force. According to Eq. (11), the forces transmitted to the foundation in the x, y, and z directions can 
be given as follows.

These forces can be analyzed further by considering the following two types of excitations.

1. Unidirectional excitation:

2. Multidirectional eccentric excitation:

As can be seen, the unidirectional excitation mode defined in Eq. (14) facilitates an analysis of the vibration 
isolation performance of a vibration isolation system in the z direction when the load is concentrated at the origin 
O of the global coordinate system (i.e., at the center of gravity of the system). We first analyze the influence of l̂  
on the z-directional vibration isolation performance by plotting the force transmission rate Tz obtained in the z 
direction as a function of Ω under various values of l̂  with ξ = 0.06 in Fig. 6. The values of Ω at which Tz = 0 under 
the four values of l̂  are given as Ω1–Ω4. It is found that the vibration isolation effect of the system in the z direc-
tion increases with decreasing l̂  , and achieves a maximum vibration isolation performance at l̂ = 0.667 . We also 
considered the differences between the Ω1–Ω4 values relative to the vibration isolation frequency Ω4 of the linear 
system, and the results were (�4 −�1)

/

�4 = 76.8% , (�4 −�2)
/

�4 = 30.3% and (�4 −�3)
/

�4 = 12.7% . 
Accordingly, an increasing degree of nonlinearity is found to expand the range of vibration isolation frequen-
cies and improve the low-frequency vibration isolation performance of the isolator. This can be explained from 
an analysis of Eq. (11), where we note that the nonlinear stiffness term is zero at l̂ = 1 , such that the system 
response is mainly composed of the dominant harmonic solution. However, the proportion of the subharmonic 
solution increases with decreasing l̂  because this decreases the linear stiffness term and increases the nonlinear 

(12)Tf υ = 20 lg
RMS(Ftυ)

RMS(Fυ)
(dB)

(13)















Ftx = ξ ẋc − ξaz β̇c + klxx − klxazβc

Fty = ξ ẏc + ξaz α̇c + klyy + klyazαc

Ftz = ξ żc + klzzc + knzz
3
c +
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(14)Fx = Fy = 0,Fz = 0.01 cos(�t),Mx = My = Mz = 0.

(15)
Fx = Fy = 0.005 cos(�t), Fz = 0.01 cos(�t),

Mx = syFz − szFy ,My = szFx − sxFz ,Mz = sxFy − syFx .

Figure 6.  Force transmission rate Tz obtained in the z direction for an HSLDS-FRVIS as a function of the 
dimensionless excitation frequency Ω under various values of l̂  with a dimensionless damping ratio ξ = 0.06.
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stiffness term, and the frequency corresponding to the peak system transmittance shifts to the left, resulting in 
an expanded vibration isolation frequency band.

In contrast to the above unidirectional excitation analysis, the multidirectional excitation mode defined 
in Eq. (15), which is common in practical engineering settings, enables the influences of nonlinearity and the 
installation positions of the vibration isolators on the vibration isolation performance of the HSLDS-FRVIS to be 
analyzed under eccentric loading at coordinates sx, sy, and sz. The eccentricity was set as sx/lc = 0.8 , sy/bc = 0.8 , 
and sz/hc = −1.

We first analyze the influence of Hz on the vibration isolation performance of an HSLDS-FRVIS with l̂  = 0.667 
and otherwise standard parameters (i.e., those in Table 1 and ξ = 0.06 ) by plotting the force transmission rates 
Tx, Ty, and Tz obtained in the x, y, and z directions in Fig. 7a–c, respectively, as functions of Ω under various 
values of Hz . Corresponding results are presented in Figs. 8 and 9 for l̂  = 0.8 and l̂  = 0.9, respectively. First of 
all, it is found that Hz has little effect on the vibration isolation performance of the raft in the z direction, and 
mainly affects the isolation performance in the x and y directions. The relative impacts of Hz in the x, y, and 
z directions can be explained from an analysis of Eq. (11), which indicates that Hz (i.e., az ) mainly affects the 

Figure 7.  Force transmission rates Tx, Ty, and Tz obtained for an HSLDS-FRVIS in the x, y, and z directions, 
respectively, as functions of Ω under various values of Hz with l̂ = 0.667 and otherwise standard conditions: (a) 
Tx; (b) Ty; (c) Tz.
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vibration response of the raft in the x, y, α , and β directions. Moreover, we note that the apparent impact of Hz 
on the isolation performance in the x and y directions increases with increasing l̂  . In fact, the respective plots 
of Tx and Ty in Fig. 10a and b as functions of Ω for different values of l̂  with Hz = 0 demonstrate that the degree 
of nonlinearity has no effect on the response of the raft in the x and y directions under this isolator installation 
condition. However, the degree of nonlinearity clearly affects the response of the raft in the x and y directions 
for Hz values of 0.5 and 1. In fact, secondary peaks are observed in the Tx and Ty spectra under these isolator 
installation conditions, which weakens the vibration isolation performance of the raft. Moreover, the magnitudes 
of these secondary peaks increase with increasing Hz, which is an increasing detriment to the vibration isola-
tion performance. In addition, the high-frequency vibration isolation effect of the raft in the x and y directions 
increases with decreasing Hz. Therefore, an HSLDS-FRVIS design with Hz = 0 provides an overall optimal vibra-
tion isolation effect by avoiding secondary peaks in the Tx and Ty spectra and ensuring the best high-frequency 
vibration isolation effect in the x and y directions.

However, the mechanisms by which secondary peaks arise in the Tx and Ty spectra require some analysis. 
This can be ascertained based on the respective plots of Tx and Ty in Fig. 11a and b as functions of Ω for different 
values of l̂  with Hz = 1 as an example. We first consider the ELS ( ̂l = 1.0 ), which yields two strong peaks in the 

Figure 8.  Force transmission rates obtained for an HSLDS-FRVIS as functions of Ω under various values of Hz 
with l̂ = 0.8 and otherwise standard conditions: (a) Tx; (b) Ty; (c) Tz.
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Tx and Ty spectra. We must further note that, according to Eq. (11), the responses in the x and y directions are 
functions solely of a 2-DOF system. The response in the x direction is defined according to the following typical 
dynamic equations for a 2-DOF system.

The y-direction responses are the same. Therefore, the system generates two transmission peaks in both the x 
and y directions. We further note that the strongly nonlinear QZS system ( ̂l = 0.667 ) generates a large number 
of secondary spectra at frequencies less than the primary peak, which detracts from the low-frequency vibration 
isolation effect of the raft. These secondary spectra arise because the linear stiffness term in the z direction is zero 
when ̂l = 0.667 , and the strong nonlinearity in the z direction leads to subharmonic solutions with large magni-
tudes in the x and y directions. As can be observed, these secondary peaks do not appear for weakly nonlinear 

(16)

{

ẍc + ξ ẋc − ξaz β̇c + klxx − klxazβc = Fx

β̈c − azklxxc − ξazẋc + a2zklxβc + a2xklzβc + ξa2x β̇c + ξa2z β̇c = My

Figure 9.  Force transmission rates obtained for an HSLDS-FRVIS as functions of Ω under various values of Hz 
with l̂ = 0.9 and otherwise standard conditions: (a) Tx; (b) Ty; (c) Tz.
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systems ( ̂l = 0.8 and l̂ = 0.9 ), which either exhibit responses that represent a combination of the responses of 
the ELS and the QZS system for ̂l = 0.8 , or responses that are quite similar to the ELS for ̂l = 0.9 . This is because 
the nonlinear stiffness term of the system decreases with increasing l̂  , while the linear stiffness term increases, 
and this reduces the magnitude of the subharmonic responses obtained in the solution.

Finally, the influence of the distance ratio Dr on the vibration isolation performance of the HSLDS-FRVIS 
was analyzed according to the plots of Tx, Ty, and Tz presented as functions of Ω under various values of Dr with 
l̂ = 0.667 in Fig. 12a–c, respectively. Corresponding results are presented in Fig. 13 for l̂  = 0.8. It can be found 
that Dr has little effect on the vibration isolation performance of the HSLDS-FRVIS in any direction. Therefore, 
an equidistant installation with Dr = 0.5 would be considered ideal from the standpoint of installation stability.

Figure 10.  Force transmission rates obtained for an HSLDS-FRVIS as functions of Ω under various values of l̂  
with Hz = 0 and otherwise standard conditions: (a) Tx; (b) Ty.

Figure 11.  Force transmission rates obtained for an HSLDS-FRVIS as functions of Ω under various values of l̂  
with Hz = 1 and otherwise standard conditions: (a) Tx; (b) Ty.
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Conclusion
The present work addressed the poorly developed process for designing the complex high-dimensional HSLDS-
FRVISs applied in ocean-going vessels by establishing a 6-DOF HSLDS-FRVIS model, and applying that model 
for fully analyzing the swing stability and multidimensional vibration isolation performance of these systems. 
The results of extensive analysis demonstrate the following conclusions.

1. Weak nonlinearity greatly reduces the swing displacement responses of the system and improves the swing 
stability under heavy loads and large swing angles. This reflects the high static stiffness and high static stabil-
ity characteristics of HSLDS systems. In addition, applying different installation positions for the vibration 
isolators has little effect on the displacement responses of the HSLDS systems in comparison with that of the 
corresponding linear systems. Meanwhile, the influence of the installation position on the swing displace-
ment responses of the system decreases with increasing nonlinearity.

2. In terms of the multidimensional vibration isolation performance of the systems, the low-frequency vibration 
isolation effect can increase with increasing nonlinearity. However, a strongly nonlinear QZS system is more 

Figure 12.  Force transmission rates obtained for an HSLDS-FRVIS as functions of Ω under various values of Dr 
with l̂ = 0.667 and otherwise standard conditions: (a) Tx; (b) Ty; (c) Tz.
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sensitive to parameter changes than weakly nonlinear HSLDS systems. The results of analysis demonstrate 
that applying a value of Hz = 0 produces the best vibration isolation performance overall under strong nonlin-
earity by avoiding unnecessary secondary peaks in the force transmission rate under harmonic mechanical 
excitation and ensuring a maximum high-frequency vibration isolation effect. However, applying a weak 
nonlinearity is better than a strong nonlinearity if Hz is not zero. Therefore, a weakly nonlinear HSLDS system 
is preferred to a highly nonlinear QZS system in engineering design practice to ensure an optimal vibration 
isolation performance. Meanwhile, Dr has little impact on the vibration isolation effects of the system in x, 
y, and z directions. Therefore, applying an equidistant installation with Dr = 0.5 would be considered ideal 
from the standpoint of installation stability.

Accordingly, the current work lays a sound theoretical foundation for the subsequent design of 
HSLDS-FRVISs.

Data availability
Some of the data and models generated during the study are available from the corresponding author by reason-
able request.

Figure 13.  Force transmission rates obtained for an HSLDS-FRVIS as functions of Ω under various values of Dr 
with l̂ = 0.8 and otherwise standard conditions: (a) Tx; (b) Ty; (c) Tz.
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