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Sabina Waniek 23, Stefan N. Willich 8, Michael F. Leitzmann 1,29 & Hansjörg Baurecht 1,29

Large population‑based cohort studies utilizing device‑based measures of physical activity are 
crucial to close important research gaps regarding the potential protective effects of physical activity 
on chronic diseases. The present study details the quality control processes and the derivation of 
physical activity metrics from 100 Hz accelerometer data collected in the German National Cohort 
(NAKO). During the 2014 to 2019 baseline assessment, a subsample of NAKO participants wore a 
triaxial ActiGraph accelerometer on their right hip for seven consecutive days. Auto‑calibration, signal 
feature calculations including Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation 
(MAD), identification of non‑wear time, and imputation, were conducted using the R package GGIR 
version 2.10‑3. A total of 73,334 participants contributed data for accelerometry analysis, of whom 
63,236 provided valid data. The average ENMO was 11.7 ± 3.7 mg (milli gravitational acceleration) 
and the average MAD was 19.9 ± 6.1 mg. Notably, acceleration summary metrics were higher in men 
than women and diminished with increasing age. Work generated in the present study will facilitate 
harmonized analysis, reproducibility, and utilization of NAKO accelerometry data. The NAKO 
accelerometry dataset represents a valuable asset for physical activity research and will be accessible 
through a specified application process.
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Large epidemiologic studies have established the health-promoting effects of self-reported physical activity on 
numerous disease endpoints, including cardiovascular disease, hypertension, type 2 diabetes, various cancers, 
and premature  mortality1. However, self-report physical activity methods are fraught with numerous limitations, 
including susceptibility to systematic errors like social desirability reporting and recall issues, which can lead 
to potentially biased  estimates2,3. By comparison, device-based measurement methods such as accelerometers 
provide objective estimates of physical  activity4. Moreover, advancements in technology have made it possible to 
record and store triaxial raw 24-h accelerometry data over extended periods, spanning days or weeks, in large-
scale studies involving thousands of participants (e.g., UK Biobank, NHANES, the HUNT4-N Study, the Pelotas 
Birth Cohorts)5–8. The major advantage of high-resolution accelerometry data lies in its capacity for transparent 
and flexible processing, which facilitates comparability and improves harmonization across different studies and 
 devices9–12. Furthermore, data from wearable sensors enable the use of sophisticated analytical methods, such as 
deriving physical activity patterns and conducting compositional 24-h activity  analyses13–17. The initial and most 
critical step in effectively utilizing raw accelerometry data involves rigorous quality control and the thorough 
generation of derived physical activity metrics.

The primary aim of the current manuscript was to describe the methodology for processing raw accelerometry 
data used in the German National Cohort (NAKO). Our goal was to evaluate the completeness and plausibility 
of the data and to provide justification for key data processing and analysis decisions. The ultimate goal was to 
produce and share a comprehensive repository of accelerometry data, which has the potential to address unre-
solved questions in the field of physical activity epidemiology.

Methods
Study population
Detailed information on the design and aims of the NAKO have been published  elsewhere18. In short, 205,415 
men and women (50% each) aged 19–74 years were recruited in 18 study regions in Germany at study baseline 
between 2014 and  201918. The study aims to identify risk and protective factors as well as to provide imaging 
and biomarkers for major chronic  diseases18. The NAKO is performed in accordance with the ethical standards 
of the institutional and/or national research committee, with national law and with the Declaration of Helsinki 
of 1975 (in the current, revised version). The study was approved by the responsible local ethics committees 
of the German Federal States where all study centers were located (Bayerische Landesärztekammer (protocol 
code 13023, Approval Date: 27 March 2013 and 14 February 2014 (rectification of documents, study protocol, 
consent form etc.))). Written informed consent was obtained from all  participants18,19. This study is reported 
according to the STROBE (Strengthening the Reporting of Observational studies in Epidemiology) Guidelines/
methodology (Supplementary Information 2).

Accelerometer and data collection
ActiGraph (Pensacola, FL, USA) accelerometers have been extensively employed in epidemiologic  research20. 
As a result of the evolution of ActiGraph products throughout the course of the NAKO baseline data collection, 
three ActiGraph models (GT3X+, wGT3X+, and wGT3X-BT) were employed. All models record acceleration 
(g (gravitational acceleration) ≈ 9.81 m/s2) tri-axially (in longitudinal, lateral, and anteroposterior direction 
when positioned on the side of the hip) and were configured at a 100 Hz sampling rate. While GT3X+ and 
wGT3x+ have a 6 ± g dynamic range, wGT3X-BT has an 8 ± g dynamic range (all models use a 12-bit conversion). 
Further, firmware versions ranged from v1.2.0 to v3.2.1. To maximize the transparency and reproducibility of 
data processing, we disabled the default Low-Power-Mode filter to avoid relying on manufacturer-dependent 
pre-processing steps of the data.
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During the study center visit, study personnel attached the device above the right hip on the mid-axillary 
line using an elastic strap wearable over or underneath clothing. Participants were instructed to wear the device 
continuously (24/7) and to carry out all activities as usual. The device had to be taken off only in case of water 
contact lasting longer than 30 min such as in the sauna or while swimming or diving. The recording period 
started on the first day and ended on the eighth day after the study center visit. On the morning of day nine, the 
device had to be detached and sent back to the study center using a pre-paid envelope.

Data processing
We used the open-source R package GGIR version 2.10-321,22 combined with the R package read.gt3x version 
1.2.023 for data processing. GGIR has been described elsewhere in  detail21. All data processing was conducted 
on the high-performance computing cluster at the University of Regensburg. In the following section we sum-
marize the main processing steps.

Briefly, calibration correction coefficients were derived from non-movement periods in the acceleration data, 
where an iterative change point algorithm was used to calibrate signals to 1 g24. Measurements with a calibration 
error greater than 0.02 g were excluded from analysis based on our observation that the distribution of accelera-
tion metrics values, as detailed below, showed greater variation with > 0.02 g calibration error compared with 
0.01–0.02 g calibration error.

To empirically verify variation in the X and Y axis order, the longitudinal axis was estimated from the data 
by calculating the correlation of the epoch-by-epoch angle of each accelerometer axis with a 24-h lagged ver-
sion of itself. See legend of Fig. S5 for details on angle calculation. As the longitudinal axis shows a clear upright 
(daytime)–lying (nighttime) pattern, it is expected to show the highest day-by-day correlation.

Non-wear time was detected using a previously described and commonly used  procedure21,25–28. Briefly, non-
wear times per 15-min interval were identified using the standard deviation (< 13.0 mg for ActiGraph) and the 
range of values (< 50.0 mg) of the enclosing 60-min  interval25.

Various summary metrics were calculated per 5 s epoch, including the Euclidean norm minus one (ENMO)25 
and the Mean Amplitude Deviation (MAD)29. Both metrics have previously been used in physical activity 
 research5,26–28,30,31 and a detailed description can be found in Supplementary Methods S1 and S2. In contrast 
to some other  studies32, no low-pass frequency filter was applied because high signal frequencies can contain 
harmonics of movements at lower frequencies, which is not noise but a true reflection of movement. ENMO and 
MAD values were aggregated separately per participant across all valid (week(end))-days, per valid day, and on a 
15-min level across all valid days. Signal features were imputed for 15-min time segments classified as non-wear 
time or where more than 80% of the raw data points in the segment had a value close to or at the edges of the 
accelerometer’s dynamic range, as discussed in more detail in a previous  study25. Note that not imputing implies 
zero movement and omitting the data points implies imputing using the rest of the recording.

To represent the distribution of a participant’s time spent in physical activity intensities, value distributions 
in 10 mg increments for both the ENMO and MAD metrics were derived. It must be noted that MAD values 
are known to be higher than ENMO values, therefore time spent in certain acceleration ranges is not directly 
comparable between ENMO and MAD metrics. The definition of moderate to vigorous-intensity physical activ-
ity (MVPA), i.e., physical activity conducted at an intensity of ≥ 3 metabolic equivalents of task (METs)33, does 
not lend itself to be unambiguously estimated from accelerometry data. However, MVPA is frequently used in 
physical activity research. Thus, to represent time spent above different physical activity intensity (acceleration) 
levels, various estimates were derived based on different epoch lengths, acceleration thresholds, and bout duration 
criteria to provide a variety of choices for data analysis and sensitivity analyses (Supplement Box 1).

In line with literature that has relied on 24-h wear  protocols34,35, we considered days with at least 16 valid 
wear hours as valid. Furthermore, using 16 h (2/3 of the anticipated 24-h wear period) aligns with traditional 
hip worn accelerometer literature, where accelerometers were typically worn only during waking hours, with an 
expectation of 10 h of wear out of the approximately 15 waking  hours3.

Descriptive and exploratory analyses
We excluded participants with less than one valid weekend day or fewer than two valid weekdays, ensuring cov-
erage of both weekend and weekday activities, or participants with an incomplete 24-h cycle, i.e., participants 
with consistently invalid data for any 15-min period across all recording days. To support that rationale, we ran 
missing data simulations in a subsample of 51,998 participants with perfect wear time compliance (seven valid 
days, five valid weekdays, two valid weekend days). Consecutively, ENMO measures from six to one random 
day(s) of this sample were averaged and compared against the 7-day ENMO average using intraclass correlation 
coefficients (ICC). The same procedure was applied to the five-weekday ENMO average and the weekend ENMO 
average as well as the MAD measures.

ENMO and MAD values were winsorized at the age- and sex-specific 99.9th percentile. Age was categorized 
according to 10-year increments. Due to a potential gap of several years between recruitment into the study and 
the baseline examination, the final sample contains participants older than 70 years. Biological sex was catego-
rized as woman or man. Body height and weight were measured using a Stadiometer 274 and a medical Body 
Composition Analyzer 515 (seca GmbH & Co. KG, Hamburg), respectively, and BMI was classified according to 
WHO categories: < 18.5 kg/m2 as underweight, 18.5–24.9 kg/m2 as normal weight, 25.0–29.9 kg/m2 as overweight, 
and ≥ 30.0 kg/m2 as  obese36,37. Times of day were grouped as follows: 0:00–5:59 AM, 6:00–11:59 AM, 12:00–5:59 
PM and 6:00–11:59 PM. Of note, days with time shift (due to daylight saving time) were also included, as GGIR 
takes this into account. The first day of accelerometer wear was used to determine the month, and the season 
was categorized such that spring started on 1st March. To describe the distribution and characteristics of the 
data, we computed accelerometer wear time and average acceleration according to population subgroups defined 
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by age, sex, and body mass index (BMI). We also explored temporal and seasonal variation in physical activity. 
Descriptive and exploratory statistics were calculated using R version 4.3.138.

Results
Participant flow
We received 73,334 gt3x files, of which 471 files could not be processed due to uninformative data (e.g., file size 
too small). Data from further 1694 subjects were excluded due to issues that had occurred at the study centers 
(e.g., incorrect documentation of consent status, improper device initialization) or problems with data quality 
(e.g., calibration error or clipping scores exceeding threshold values). Of the resulting 71,169 individuals, we 
disregarded those with less than one valid weekend day, those with less than two valid weekdays, and those with 
an incomplete 24-h cycle, resulting in a final population for analysis of 63,236 participants (Fig. 1).

Accelerometry wear time
Missing data simulation showed that the ICC for two valid weekdays exceeded 0.9, whether compared to the 
average of a 7-day period or just the 5 weekdays. Likewise, the ICC for either Saturday or Sunday surpassed 
0.9 when compared to the average weekend measurement (Fig. S1). Over 90% of participants had at least four 
valid wear days, and compliance increased with age (Fig. S2). Median wear time was consistent across weekdays, 
seasons, age, BMI groups, ENMO levels, and between sexes (Table S1).

Baseline characteristics and acceleration summary metrics
In the study, 52% of participants were women. Participants were on average 50.1 years (SD = 12.6) old and had a 
mean BMI of 26.4 kg/m2 (SD = 4.8). The average ENMO was 11.7 mg (SD = 3.7), with men showing slightly higher 
values (12.0 mg (SD = 4.0)) than women (11.5 mg (SD = 3.5)). The overall average MAD was 19.9 mg (SD = 6.1), 
with men at 20.4 mg (SD = 6.5) and women at 19.5 mg (SD = 5.7). The correlation between the winsorized (99.9th 
percentile) ENMO and MAD was high (r = 0.96, Supplementary Fig. S3).

For both ENMO and MAD, acceleration decreased with increasing age, it was higher in men than women, 
and it was higher in normal weight than underweight, overweight, or obese participants (Table 1, Fig. 2).

Acceleration levels were higher on weekdays compared to weekend days (Table 1). Notably, physical activity 
levels were distinctly lower on Sundays for both men and women across all age groups (Fig. 3). Additionally, both 
ENMO and MAD values peaked in the summer and were lowest in the winter, affecting both men and women 
in most age groups (Table 1, Fig. S4). ENMO and MAD values were highest between 12:00 PM and 05:59 PM, 
and lowest between 0:00 AM and 5:59 AM (Table 1). Younger participants were physically more active in the 
evening, whereas older subjects were physically more active in the morning (Fig. 4). The variation in the angle 
of the accelerometer’s longitudinal axis, indicative of its orientation in three-dimensional space, showed a clear 
difference between upright posture during daytime hours and a reclined posture during nighttime (Fig. S5).

Figure 1.  Flow chart of participants. PA physical activity.
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Table 1.  Magnitude of acceleration (ENMO and MAD) by participant characteristics. n = 63,236 participants 
(sample for physical activity analysis). ENMO and MAD values were winsorized at age- and sex-specific 
99.9th percentile. BMI body mass index, ENMO Euclidean Norm Minus One with negative values set to 
zero, MAD mean amplitude deviation, see text, mg milli gravitational acceleration, SD standard deviation. 
a Average acceleration vector magnitude per time period. b Average acceleration vector magnitude per day; Only 
valid days with ≥ 16 valid wear hours included. c Spring starting on 1st March; First day of wear determines 
classification to month.

ENMO [mean ± SD mg] MAD [mean ± SD mg]

Men Women Men Women

Age (years)

 < 30
12.9 ± 4.1 12.4 ± 3.7 21.8 ± 6.7 20.8 ± 6.1

(n = 2660) (n = 3024) (n = 2660) (n = 3024)

 30–39
12.9 ± 3.8 12.2 ± 3.5 21.9 ± 6.4 20.6 ± 5.6

(n = 3046) (n = 3498) (n = 3046) (n = 3498)

 40–49
12.8 ± 3.9 12.1 ± 3.5 21.8 ± 6.4 20.5 ± 5.8

(n = 7841) (n = 8725) (n = 7841) (n = 8725)

 50–59
12.2 ± 4.0 11.6 ± 3.3 20.8 ± 6.6 19.7 ± 5.6

(n = 8092) (n = 9125) (n = 8092) (n = 9125)

 60–69
10.5 ± 3.5 10.3 ± 3.1 18.0 ± 5.9 17.5 ± 5.1

(n = 7923) (n = 7990) (n = 7923) (n = 7990)

 ≥ 70
9.7 ± 3.4 9.5 ± 3.0 16.5 ± 5.5 16.2 ± 4.9

(n = 695) (n = 617) (n = 695) (n = 617)

BMI (1238 NA)

 Underweight (< 18.5 kg/m2)
11.4 ± 4.3 12.1 ± 3.8 19.2 ± 6.9 20.6 ± 6.2

(n = 136) (n = 528) (n = 136) (n = 528)

 Normal weight (18.5–24.9 kg/m2)
12.9 ± 4.2 12.3 ± 3.6 22.0 ± 6.8 20.9 ± 5.8

(n = 10,027) (n = 16,113) (n = 10,027) (n = 16,113)

 Overweight (25.0–29.9 kg/m2)
12.0 ± 3.8 11.2 ± 3.1 20.4 ± 6.3 19.0 ± 5.2

(n = 13,452) (n = 9578) (n = 13,452) (n = 9578)

 Obesity (≥ 30 kg/m2)
10.5 ± 3.5 9.8 ± 2.9 17.9 ± 5.9 16.7 ± 4.9

(n = 6049) (n = 6115) (n = 6049) (n = 6115)

Time of  daya

 0:00–5:59 AM
3.3 ± 3.0 2.8 ± 2.4 4.9 ± 4.1 4.1 ± 2.9

(n = 30,257) (n = 32,979) (n = 30,257) (n = 32,979)

 6:00–11:59 AM
14.2 ± 7.0 13.9 ± 6.2 24.4 ± 11.5 23.7 ± 10.1

(n = 30,257) (n = 32,979) (n = 30,257) (n = 32,979)

 12:00–5:59 PM
18.5 ± 7.3 18.1 ± 6.4 32.2 ± 12.1 31.5 ± 10.8

(n = 30,257) (n = 32,979) (n = 30,257) (n = 32,979)

 6:00–11:59 PM
11.7 ± 6.2 10.9 ± 5.2 19.7 ± 10.0 18.4 ± 8.5

(n = 30,257) (n = 32,979) (n = 30,257) (n = 32,979)

Day of the  weekb

 Week
12.1 ± 4.1 11.6 ± 3.5 20.7 ± 6.9 19.8 ± 5.9

(n = 30,257) (n = 32,979) (n = 30,257) (n = 32,979)

 Weekend
11.5 ± 5.1 11.1 ± 4.4 19.6 ± 8.3 18.9 ± 7.3

(n = 30,257) (n = 32,979) (n = 30,257) (n = 32,979)

Season of the  yearc

 Spring
12.2 ± 4.0 11.6 ± 3.5 20.9 ± 6.7 19.8 ± 5.8

(n = 7926) (n = 8692) (n = 7926) (n = 8692)

 Summer
12.5 ± 4.1 12.0 ± 3.6 21.3 ± 6.7 20.4 ± 5.9

(n = 6971) (n = 7887) (n = 6971) (n = 7887)

 Autumn
11.8 ± 3.9 11.4 ± 3.4 20.1 ± 6.4 19.3 ± 5.6

(n = 7558) (n = 8483) (n = 7558) (n = 8483)

 Winter
11.4 ± 3.8 10.9 ± 3.3 19.3 ± 6.3 18.5 ± 5.5

(n = 7802) (n = 7917) (n = 7802) (n = 7917)
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Activity intensity categories
Participants predominantly spent their time in the lowest activity intensity category, ranging from 0 to 10 mg of 
ENMO or MAD (Fig. 5A,B). Time spent in any given acceleration category decreased with increasing activity 
intensity.

ENMO-based analyses showed that women below age 60 years spent more time in the lowest intensity cat-
egory (0–10 mg) and less time in the 10–20 mg intensity category than men. Conversely, women over age 60 
years spent less time in the 0–10 mg category and more time in the 10–30 mg categories than men (Fig. 6A). 
MAD-based analyses showed a similar pattern, with the differences being more pronounced among participants 
over age 60 years and less so in those under age 60 (Fig. 6B).

Time spent above various activity intensity thresholds, calculated using distinct algorithms (Box S1) is plotted 
in Fig. S6. Using a 1-min epoch without bout detection and applying age-specific cut-points from literature, par-
ticipants under 60 years averaged 45.5 min per day (SD = 27.2) in MVPA based on the 70 mg ENMO  threshold39, 
and 72.7 min per day (SD = 34.8) based on the 90 mg MAD  threshold40.

Discussion
The NAKO collected raw, seven-day, hip-worn accelerometry data, providing plausible estimates of physical 
activity from over 63,000 highly adherent participants. Our derived accelerometry summary metrics showed 
higher physical activity in men than women, declining activity with increasing age, and temporal variation 
reflecting rest-activity rhythms as well as higher physical activity on working days (Monday to Saturday) versus 
Sundays. The derived variables are available in four levels of detail, each catering to different research needs: 
first, individual-level data aggregated across all valid days for overall physical activity analyses; second, week 
segment-level data for comparing physical activity between weekdays and weekend days; third, day-level data, 
aggregated by valid day, for comparing days of the week; and fourth, 15-min-level data, aggregated across all 
valid days, for detailed temporal analyses of physical activity.

Comparing our data to the literature poses challenges because accelerometry study protocols vary due to dif-
ferent practical requirements. For example, in some studies accelerometers were only worn during waking hours. 
Other large epidemiologic studies such as NHANES (2011–2014), the UK Biobank, the Whitehall II Study, or the 
Pelotas Birth  Cohorts5,6,8,34 used wrist worn accelerometers, as this promises superior wear  compliance41,42 and is 
more broadly accepted in sleep  research43. Since the wrist is exposed to stronger accelerations than the hip, wrist 

Figure 2.  Magnitude of acceleration (ENMO and MAD) by age and sex. ENMO Euclidean Norm Minus One 
with negative values set to zero, MAD mean amplitude deviation, see text, mg milli gravitational acceleration. 
n = 63,236. ENMO and MAD values were winsorized at age- and sex-specific 99.9th percentile. Interpretation 
of box and whiskers plot: The box depicts the interquartile range (IQR, central 50% of the distribution) with 
the 25% quantile and the 75% quantile as lower and upper limits, respectively, as well as the median (50% 
quantile, middle line); the lower whisker shows the smallest observation that is greater than or equal to the 
25% quantile − 1.5 × IQR; the upper whisker depicts the largest observation that is less than or equal to the 75% 
quantile + 1.5 × IQR; the dots indicate outliers beyond the whiskers.
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worn accelerometers yield higher activity values than accelerometers worn at the  hip35. For example, in the UK 
Biobank, age- and sex-specific ENMO values measured at the wrist ranged between 22.9 and 31.2 mg5, while in 
our study, ENMO values measured at the hip ranged between 9.5 and 12.9 mg. Recent studies utilizing ActiGraph 
GT3X+ devices worn at the hip align with our results. In a secondary analysis of data from 220 participants of 
the Iowa Bone Development Study (IBDS), the mean ENMO value was 15.5 mg (SD = 3.9)44. A Spanish study 

Figure 3.  Weekday variation in magnitude of acceleration (A, ENMO and B, MAD) by age, and sex. ENMO 
Euclidean Norm Minus One with negative values set to zero, MAD mean amplitude deviation, see text, mg milli 
gravitational acceleration. n = 63,236. ENMO and MAD values were winsorized at age- and sex-specific 99.9th 
percentile. Interpretation of box and whiskers plot: The box depicts the interquartile range (IQR, central 50% of 
the distribution) with the 25% quantile and the 75% quantile as lower and upper limits, respectively, as well as 
the median (50% quantile, middle line); the lower whisker shows the smallest observation that is greater than or 
equal to the 25% quantile − 1.5 × IQR; the upper whisker depicts the largest observation that is less than or equal 
to the 75% quantile + 1.5 × IQR; the dots indicate outliers beyond the whiskers.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7927  | https://doi.org/10.1038/s41598-024-58461-5

www.nature.com/scientificreports/

involving 209 men and women found an average ENMO of 11.5 mg (SD = 3.2)45. Another Spanish study with 
42 participants reported an average ENMO of 16.0 mg (SD = 5.6) and an average MAD of 24.4 mg (SD = 6.9)35.

We excluded 7933 participants (11%) who had less than one valid weekend day, less than two valid weekdays, 
or an incomplete 24-h cycle to capture both weekend and weekday behavior. This exclusion rate aligns with other 
large-scale studies, like the UK Biobank, which also excluded 7% of data due to insufficient wear  time5.

Auto-calibration was originally designed for wrist-worn accelerometry data and is less suitable for hip-worn 
accelerometry due to the reduced sensor orientation variability at the hip. Therefore, caution is advised when 
analyzing data from individuals with high acceleration levels or extended periods of non-wear time. Despite our 
stringent exclusion criteria, our dataset still included outliers with extreme values for time spent in MVPA or 
average acceleration, possibly due to calibration issues or sensor malfunctions. To address this, we recommend 
winsorizing such outliers at the 99.9th percentile.

We used raw accelerometry data to derive ENMO and MAD, two body acceleration summary metrics that 
possess certain assumptions. ENMO assumes well-calibrated sensor data with continuous representation of 
gravitational acceleration as 1 g. MAD assumes that the epoch mean of the signal vector reflects the gravitational 
acceleration and that its oscillations are always below 0.2 Hz (1 divided by MAD window length of 5 s). Nonethe-
less, both metrics deliver information on movement kinematics. ENMO is correlated with energy expenditure 
and has associations with demographic variables and health outcomes in studies using wrist-worn accelerometers 
like the UK Biobank and Pelotas Birth  Cohorts5,8,25. In our dataset, ENMO and MAD measures were highly cor-
related and showed similar patterns across age and sex groups. However, MAD may represent a superior metric 
for hip-worn accelerometer data due to its lower sensitivity to calibration  errors24,35. Of note, MAD values are 
known to be higher than ENMO values, thus both metrics are in certain acceleration ranges not directly com-
parable. Also, divergent error structures and different sensitivities to true body movement exist between ENMO 
and MAD. For example, ENMO may show larger error for sedentary behavior when the accelerometer is not well 
calibrated. Similarly, MAD may overestimate acceleration when the accelerometer rotates with frequencies that 
have a time period shorter than the epoch length. We focused on ENMO and MAD because those two metrics 
are the most extensively researched, they are easy to document, are computationally fast, have values expressed 
in units of gravity, and are sufficient for descriptive quality assessment as is the focus of our current investigation. 
We acknowledge that other metrics may prove equally valuable, and this should be explored in future studies 
using NAKO data as the number of possible metrics is large.

MVPA lacks a clear, measurable definition, and acceleration does not necessarily correlate with MET-based 
activity intensities. Also, cut points used to classify time spent in sedentary behavior, light physical activity, and 
MVPA have typically been derived using small study samples, making them less transferable to all populations 
or age groups. Additionally, the concept of MVPA varies depending on whether cut points are based on wrist or 
hip  data46. Furthermore, categorizing continuous data leads to information loss, reduced precision, and poten-
tial  bias47. Therefore, the focus in public health should be on encouraging overall physical activity rather than 
maximizing time spent above certain  thresholds48. However, the concept of measuring time spent in MVPA is 
well established and widely used in accelerometry data analysis. To offer flexibility for future studies, we derived 
a range of MVPA estimates using literature-based  thresholds39,40,49–51. For example, researchers could consider 
assessing time spent in MVPA using 1-min epochs without bout detection, employing literature-based thresholds 
and surrounding values as a sensitivity analysis. Although, in the age group over 70 some thresholds for ENMO 
as proposed in the literature are concerningly close to  zero51,52 complicating a reliable distinction between vari-
ations caused by calibration error and variations caused by time in MVPA. In this case, we recommend either 
using higher thresholds or focussing on the full distribution of MAD metric values.

Figure 4.  Daytime variations in magnitude of acceleration (A, ENMO and B, MAD) by age and sex. ENMO 
Euclidean Norm Minus One with negative values set to zero, MAD mean amplitude deviation, see text, mg milli 
gravitational acceleration. n = 63,236. ENMO and MAD values were winsorized at age- and sex-specific 99.9th 
percentile. Shading bounds represent two standard errors.
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Our study has several important strengths. We produced an elaborate set of physical activity metrics using 
open-source software with transparent documentation of all coding steps (Table S2), which facilitates data 
interpretation and eases comparability with other studies. Our summary variables have been integrated into the 
NAKO database and are available for researchers to apply for analytical use.

However, our study has certain limitations. Wearing an accelerometer might induce reactivity effects, lead-
ing to increased physical activity, despite guidance for participants to continue their normal routines. Also, the 
cohort may not fully represent the general population in Germany, limiting the generalizability of our  results18. 
While there are no clear recommendations for deriving MVPA measures, we have made all the necessary data 
available for comprehensive sensitivity analysis.

Conclusion
The NAKO generated plausible estimates of physical activity from hip-worn accelerometry involving over 63,000 
highly compliant participants. We derived a comprehensive set of summary metrics for accelerometry, enhanc-
ing the reproducibility, utilization, and interpretation of physical activity data. These variables and the raw data 
are valuable for future analyses exploring associations between physical activity and disease outcomes. They 
can be used to statistically adjust for physical activity in multivariate models, support methodological research, 
and potentially identify high-risk, physically inactive population subgroups. This aligns with efforts to inform 

Figure 5.  Time spent in acceleration ranges based on (A) ENMO and (B) MAD by sex. ENMO Euclidean 
Norm Minus One with negative values set to zero, MAD mean amplitude deviation, mg milli gravitational 
acceleration. n = 63,236. Values were not winsorized. Interpretation of box and whiskers plot: The box depicts 
the interquartile range (IQR, central 50% of the distribution) with the 25% quantile and the 75% quantile as 
lower and upper limits, respectively, as well as the median (50% quantile, middle line); the lower whisker shows 
the smallest observation that is greater than or equal to the 25% quantile − 1.5 × IQR; the upper whisker depicts 
the largest observation that is less than or equal to the 75% quantile + 1.5 × IQR; the dots indicate outliers beyond 
the whiskers.
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intervention strategies and guide policies targeting the WHO’s Global Action Plan goal of reducing physical 
inactivity by 15% by  203053.

Data availability
Access to and use of NAKO data and biosamples can be obtained via an electronic application portal (https:// 
trans fer. nako. de).

Code availability
The Code used for processing NAKO hip worn accelerometer data on the computing cluster is openly available 
from the Github repository at https:// github. com/ UREpi PrevM ed/ nako- accel erome try.

Figure 6.  Sex-differences of time spent in acceleration ranges based on (A) ENMO and (B) MAD by age. 
ENMO Euclidean Norm Minus One with negative values set to zero, MAD mean amplitude deviation, mg milli 
gravitational acceleration. n = 63,236. Lines represent the difference of the mean time (minutes per day) spent 
in acceleration categories in the group of men and the group of women. Shading bounds represent the 95% 
confidence interval of the two-sample t-test with the Null hypothesis: “true difference in means between group 
men and group women is equal to zero”. Values were not winsorized.

https://transfer.nako.de
https://transfer.nako.de
https://github.com/UREpiPrevMed/nako-accelerometry
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