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Dynamic performance 
of functionally graded composite 
structures with viscoelastic 
polymers
Shaoqing Wang 1,2,4*, Yaqin Song 2, Yanmei Qiao 3, Siyuan Shao 1 & Weigang Wang 4

The functionally graded composite structures with viscoelastic polymers inherits the excellent 
performance of functionally graded composites and also possesses large damping performance, 
which has broad application prospects in the aerospace and mechanical engineering fields. However, 
due to the complexity of the structure itself, there is limited literature available on its theoretical 
modeling for efficient solutions. To predict its dynamic performance, a simplified dynamic model of 
the functionally graded composite structures with viscoelastic polymers is established. This model 
takes into account the displacement transfer relationship between the functional graded composite 
layer and the viscoelastic polymer layer. The governing differential equations are obtained by applying 
the Navier method and complex modulus theory. These equations are then solved using the Rayleigh–
Ritz method. The validity of the theoretical model is confirmed by comparing it with existing literature 
and the results obtained from ANSYS software. Additionally, the model that has been developed is 
used to analyze how the graded index and elastic modulus of the structure, as well as its geometric 
parameters, affect its vibration and damping characteristics.
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Functionally graded composite materials (FGCMs) are a unique class of composite materials that consist of 
multiple materials and display a gradual variation in composition throughout  space1–3. The main objective of 
FGCMs is to attain diverse properties and functionalities at different locations through precise control of the 
composition graded. This meticulous control enables a seamless transition from one material to another, thereby 
minimizing stress concentrations and bolstering the load-bearing capacity of functionally graded composite 
 structures4,5. Consequently, these structures exhibit enhanced performance and durability.

In recent years, researchers have conducted significant research on functionally graded composite materials 
due to their numerous benefits. This research has focused on various aspects, including specimen preparation, 
prediction of mechanical properties, as well as optimization and enhancement of these  properties6,7. Currently, 
there are several methods available for the preparation of graded materials, such as powder metallurgy, plasma 
spraying, physical vapor deposition, and additive  manufacturing8–11. For example, Chauhan et al.12 utilized the 
powder metallurgy process to fabricate an aluminum-copper functionally graded material. They investigated 
the impact of different preparation parameters on the formation of the material’s microstructure. Additionally, 
they assessed potential defects such as voids, porosity, and cracks, and analyzed their influence on the material’s 
properties. Another study conducted by Sain et al.13 focused on the preparation and properties of uniform and 
functionally graded glass fiber-reinforced polymer composites. By altering the distribution of glass fibers in 
the composite material, they were able to achieve materials with different properties in different regions. The 
researchers investigated the effects of different preparation methods, process parameters, and fiber distribution 
on the mechanical properties, thermal performance, and interface characteristics of the composite materials. 
Put et al.14 studied the material selection, preparation methods, and characterization techniques involved in the 
fabrication process of graded ceramic–metal composite materials. They also proposed strategies for improving 
and optimizing the material properties.
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In addition to preparing specimens and characterizing their properties, theoretical research plays a crucial role 
in studying the structural behavior of functionally graded composite  materials15. The main objective of theoretical 
research is to establish appropriate mechanics models and numerical calculation methods. These models are 
solved using variational principles or Rayleigh–Ritz theory to predict stress and strain distributions at different 
positions, as well as the variation patterns of mechanical properties with graded index. For instance, Zhao et al.16 
examined the vibration characteristics of FGC double beams at different temperatures and analyzed the influence 
of temperature on stiffness, damping, and resonance frequency. Akgöz et al.17 used mathematical models and 
numerical methods to investigate how thermal and shear deformations affect the dynamic performance of 
ceramic–metal functionally graded thick composite microbeams. Kim et al.18 employed the variational principle 
and finite element method to establish a mechanical model for functionally graded plates, considering geometric 
and material nonlinearity effects. They accurately predicted the mechanical behavior of the plates and validated 
the method’s effectiveness and accuracy through numerical examples and comparative analysis. Atmane et al.19 
studied the buckling properties of FGC plates under thermal loading. They investigated the effects of temperature 
and material gradeds on the plates and analyzed the buckling modes and critical temperature. Raza et al.20 
introduced random variables to describe material uncertainty and used probability statistical methods to 
analyze the impact of material uncertainty on the vibration characteristics of cracked FGC plates. Benachour 
et al.21 utilized the refined plate theory with four variables to investigate the free vibration of functional graded 
plates with arbitrary gradeds. Pandey et al.22 divided the laminated shell into multiple layers and used different 
finite element models to describe material property variations. Kapuria et al.23 utilized the third-order shear 
deformation theory to study the static mechanical properties and vibration characteristics of ceramic-based 
functionally graded beams. Eghtesad et al.24 utilized a corrected smoothed particle method to investigate the 
mechanical response of ceramic–metal functionally graded materials subjected to high-speed impact conditions.

In order to enhance the flexural stiffness and load-bearing capacity of functionally graded composite materials, 
researchers have developed a functionally gradient composite sandwich structure (FGCSS)25–27. Natarajan 
et al.28 established a precise theoretical framework for analyzing the bending and vibration characteristics of 
FGCSS. Meanwhile, Pandey et al.29 delved into the mechanical behavior and performance of sandwich structures 
fabricated from functionally graded materials. They formulated a mathematical model based on a higher-order 
layerwise theory to predict the response of FGCSS accurately under diverse loading conditions. Frostig et al.30 
investigated the nonlinear wrinkling phenomena of FGCSS with functionally graded cores utilizing an extended 
high-order methodology. Their research primarily focused on exploring the mechanical response of FGCSS 
subjected to various loading scenarios, taking into account the impact of material properties and geometric 
imperfections on wrinkling behavior. However, the core layer of the FGCSS is made of lightweight material 
instead of viscoelastic damping material, resulting in limited vibration damping performance.

In conclusion, researchers have extensively studied the preparation, mechanical properties, and potential 
applications of functionally graded composite materials and FGCSS. However, these structures have the 
disadvantage of poor damping  performance31,32. To address this limitation, researchers have developed 
functionally graded composite structures with viscoelastic polymers (FGCSVP). This innovative approach 
effectively tackles the issue by integrating viscoelastic polymers into the structure. As a result, the FGCSVP 
is capable of efficiently absorbing and dispersing vibrational energy. This leads to a significant reduction in 
vibration amplitude, and minimized dynamic response and vibration noise. The FGCSVP not only inherits the 
excellent performance of FGCMs but also demonstrates outstanding damping properties. So, the structure has 
broad application prospects in aerospace field, automotive industry, medical structure and other fields, such as 
aero-engine parts, automotive chassis components, artificial joints, and medical instruments. However, the panel 
layers in this structure are comprised of functionally graded composites, leading to more intricate constitutive 
relationships compared to isotropic materials. Yang et al.33 combined Fourier series with the Hamiltonian 
principle to derive a system of controlled differential equations involving nine unknown coefficients. The paper 
primarily investigated the impact of boundary conditions on the structural vibration characteristics when the 
graded indices of the upper and lower panels are identical. Nevertheless, the effects of elastic modulus, damping 
layer location, and aspect ratio on the dynamic behavior of FGCSVP have not been addressed. In the present 
study, a simplified dynamic model is established based on Rayleigh–Ritz theory to improve computational 
efficiency. The controlled differential equations generated by this model have only five unknown coefficients, 
which is four fewer than the unknown coefficients in the control differential equations in  reference33. The 
accuracy of the dynamic model is verified through published literature and ANSYS software. Furthermore, the 
influences of various structural parameters, such as elastic modulus, graded index, viscoelastic polymer layer 
position, aspect ratio, and layer thickness ratio, on the vibration and damping characteristics of the structure 
are analyzed and discussed under conditions where the graded indices of the upper and lower panels are either 
identical or different.

Vibration equation
Assumption and material property
To derive the governing equations, we have made several assumptions. Firstly, we neglect deformation in the 
thickness direction. Secondly, we disregard interlayer interface slip. Thirdly, we assume linear elastic material 
behavior for the FGCMs layers, where the stress–strain relationship follows Hooke’s law. Finally, it is important 
to note that the elastic parameters of the viscoelastic polymer layer exist in the form of complex modulus.

Figure 1 depicts the geometric model of FGCSVP and demonstrates variation of volume fraction Vc with 
plate thickness under different power-law indices p and k. In this model, h1 and h3 represent the height of the 
functional graded composite layer, while h2 denotes the height of the viscoelastic polymer layer.
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The functional graded composite layer typically consists of two materials: ceramic and metal in Fig. 1a. 
Ceramic is a non-metallic inorganic material known for its high hardness, wear resistance, and ability to 
withstand high temperatures. On the other hand, metals possess excellent electrical conductivity, thermal 
conductivity, and plasticity. By combining ceramic and metal, the benefits of both materials can be fully leveraged, 
resulting in a composite material with versatile properties. In the context of the functional graded composite 
layer, we make an assumption that the material properties change gradually and consistently throughout the 
thickness. To describe these properties, we can use the following expression:

where P indicates the material properties of constituents, which include Young’s modulus E(z) and density ρ(z) ; 
P1 and P2 represent the material properties of two different types of materials, respectively.

The viscoelastic polymers have a high capacity for generating internal friction. When exposed to vibration 
and noise, the molecular chains in these polymers experience frictional movement, which generates heat. This 
heat effectively absorbs the energy from the vibration and noise, converting it into heat and dissipating it. As a 
result, it reduces the transmission of vibration and noise, ultimately achieving the desired outcome of reducing 
vibration and noise. The elastic parameters of the viscoelastic polymer layer can be described using the constant 
complex modulus.

where E(ν) denotes the complex elastic modulus of the viscoelastic polymer; E∗ denotes the storage elastic modu-
lus of the viscoelastic polymer; G(ν) denotes the complex shear modulus of the viscoelastic polymer; G∗ denotes 
the storage shear modulus of the viscoelastic polymer; and ηv indicates the loss factor of the viscoelastic polymer.

Constitutive relationship
The displacements, denoted as Ui ,Vi ,W  , at any point within the functional graded composite layers can be 
expressed in terms of their components along the x, y, and z directions as follows:

(1)P(z) = (P1 − P2)

(

z

h1
+ 0.5

)p

+ P2 z ∈
[

−
h1

2
,
h1

2

]

(2)P(z) = (P1 − P2)

(

−
z

h3
+ 0.5

)p

+ P2 z ∈
[

−
h3

2
,
h3

2

]

(3)E(ν) = E∗(1+ iηv)

(4)G(ν) = G∗(1+ iηv)

Figure 1.  (a) Geometric model of FGCSVP; (b) variation of volume fraction Vc with plate thickness under 
different power-law indices p and k. 
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where ui, vi, and w represent the displacement of the middle plane of the functional graded composite layers 
along the x, y, and z axes, respectively.

The displacements along the x, y, and z directions at any point in the viscoelastic polymer layer are denoted 
as U2,V2,W  , respectively.

where u2, v2 represent the displacement of the middle plane of the viscoelastic polymer layer, respectively. α2 and 
β2 are the angles of the normal of the viscoelastic layer with respect to the x and y axes, respectively.

Based on the continuity of interlaminar displacement, we establish the relationship between the functional 
graded composite layers and the viscoelastic polymer layer as follows:

The strain of the functional graded composite layers and the viscoelastic polymer layer can be described as 
follows:

The stress distribution within the functional graded composite layers and the rubber layer can be described 
in the following way:

(5a)Ui(x, y, z, t) = ui(x, y, t)− z(i)
∂w

∂x

(5b)Vi(x, y, z, t) = vi(x, y, t)− z(i)
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2
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Derivation of governing equations
To accurately capture the complex dynamics of the structure, the strain and kinetic energies of the FGCSVP are 
formulated separately.

where the variable ρi represents the density of the ith layer, while the variable ρ represents the density of the 
FGCSVP.

The boundary conditions of FGCSVP are defined as simply supported on all four sides. In accordance with 
Navier’s procedure for addressing the vibration displacement equation, the displacement parameters were rep-
resented using Fourier series, as demonstrated below.

where U (1)
mn ,V

(1)
mn ,U

(3)
mn ,V

(3)
mn ,Wmn are coefficients in displacement function.

The equations of motion are acquired in accordance with the Rayleigh–Ritz  method34.

By substituting Eqs. (9–12) into Eq. (13), we can simplify the characteristic equation and express it in matrix 
form as follows:

where [X] =
[

U
(1)
mn ,U

(3)
mn ,V

(1)
mn ,V

(3)
mn ,W

]T
; the symbol [K] represents the stiffness matrix, while the symbol [M] 

denotes the mass matrix.
We can calculate the circular frequency and loss factor of the FGCSVP by applying the following equation.  

A program will be developed to solve for the dynamic parameters of FGCSVP, based on Eqs. (1–15). By 
inputting the material and dimensional parameters of FGCSVP, the program will calculate the natural frequencies 
and loss factors. To validate the accuracy of the proposed theoretical model, the calculated results will be 
compared with published literature and ANSYS simulation results. Once the model is validated, it will be used 
to investigate the influence of different structural parameters on the dynamic performance of FGCSVP. Figure 2 
presents a flowchart illustrating the theoretical approach.

Model validation
To confirm the validity of the theoretical model and methods presented in this paper, two test configurations will 
be examined. Firstly, the non-dimensional dynamic parameters of the functionally graded composite structure 
will be calculated using Eqs. (1–15). Subsequently, the calculated results will be compared to the findings reported 
in published literature. Secondly, the ANSYS software is employed to compute the natural frequencies and loss 
factors of FGCSVP. Subsequently, the obtained results are juxtaposed with those derived from the theoretical 
method in the present study. By considering these test configurations and conducting the necessary comparisons, 
the accuracy and reliability of our proposed model and methods can be evaluated.
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First case
Firstly, we calculate the first through fifth natural frequencies of a functionally graded composite plate without 
embedded viscoelastic polymer using the theory described in this paper. In order to evaluate the accuracy of the 
computational results, a comparison is made between the results obtained from this paper and those obtained 
from  reference35. The material parameters used in this study were adopted from the materials provided in 
 reference35. The material parameters of ceramics are shown below: ρc = 3800Kg/m3, Ec = 380GPa, and µc = 0.3 . 
The material parameters of metal are shown below: ρm = 2700Kg/m3, Em = 70GPa, and µm = 0.3.

 Table 1 provides a comparison between the results obtained from the theoretical model developed in this 
study and the results reported in  reference35. The non-dimensional frequency utilized in this section is denoted 
as � = ωa2

√
ρch/Dc  , where Dc is flexural rigidity. Although the results in Table 1 closely resemble those pre-

sented in  reference35, certain deviations can be observed. These deviations mainly stem from the differences in 
theoretical assumptions and constitutive models between the two theoretical frameworks. In  reference35, the 
neglect of transverse shear deformation in the structure leads to a lower calculation accuracy compared to the 
theoretical model proposed in this paper.

Next, the formula (1–15) of this paper is applied to calculate the first through fourth natural frequencies 
and loss factors of a functionally graded composite plate with viscoelastic polymer. Subsequently, the calculated 
results are compared with those in  reference33. To maintain conciseness, the thickness ratio of each part from 
bottom to top is denoted by a combination of three numbers, such as "1-1-1" or "1-2-1". The material parameters 
used in this study were adopted from the materials provided in  reference33. The non-dimensional frequency 
utilized in this section is denoted as � = ωb2/h

√
ρ0/E0 , ρ0 = 1kg/m3 , E0 = 1GPa.

 Tables 2 and 3 provides a comparison between the results obtained from the theoretical model developed 
in this study and the results reported in  reference33. The remarkable agreement between the results obtained in 
this study for the non-dimensional dynamic parameters and those reported in the open literature is evident. 

Figure 2.  A flowchart for the theoretical approach.

Table 1.  First through fifth non-dimensional frequency.

a/b Sources �1 �2 �3 �4 �5

0.2
Present 9.547 10.48 12.483 15.052 27.154

Reference28 9.6035 10.712 12.626 15.374 26.678

0.5
Present 11.474 18.354 29.812 38.971 45.837

Reference28 11.543 18.468 30.333 39.246 46.461

1
Present 18.354 45.837 45.837 73.264 91.518

Reference28 18.468 46.171 46.171 74.288 93.723

2
Present 45.837 73.264 118.852 155.212 182.418

Reference28 46.171 73.874 121.330 156.980 185.840
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The deviation observed between the two theoretical calculation results can be mainly attributed to the varying 
assumptions that were made and the differing descriptions of the material deformation behavior. In contrast to 
 reference33, the controlled differential equations generated by this model contain only five unknown coefficients, 
representing a reduction of four unknown coefficients. Consequently, the theoretical model presented in this 
paper boasts higher computational efficiency compared to the theoretical model in  reference33.

Second case
By employing ANSYS, we were able to simulate the behavior of the proposed model under various conditions 
and compare the results with the theoretical predictions. However, due to the complexity of the FGCSVP, directly 
obtaining the loss factor using ANSYS software is not feasible. Instead, we employed the modal strain energy 
 method36,37 to indirectly calculate the loss factor of the entire structure based on strain energy. In the finite ele-
ment numerical simulation, the geometric model was divided into small elements, and the modal strain energy of 
each element was extracted. The strain energies of elements with the same material were then summed to obtain 
the strain energy of a specific material. By combining the strain energies of different materials, we obtained the 
strain energy of the entire structure. Equation (16) demonstrates the calculation of the modal loss factor for the 
entire structure. This factor is determined by dividing the dissipated energy of the viscoelastic polymer layer 
by the strain energy of the entire structure. Specifically, the strain energy of the viscoelastic polymers layer is 
multiplied by the loss coefficient of the viscoelastic polymer to obtain the dissipated energy of the rubber layer. 
The result is then divided by the strain energy of the whole structure. This approach ensures a more accurate 
representation of the dissipation characteristics and overall performance of the structure. Therefore, we utilized 
a combination of ANSYS software and the modal strain energy method to solve for the first four natural frequen-
cies and the first four loss factors of the functionally graded composite damping structure, aiming to verify the 
accuracy of the theoretical model proposed in this paper.

where ηV is the loss factor of viscoelastic polymer, Ur
V is modal strain energy of viscoelastic polymer layer, and 

Ur
S is the total modal strain energy.

For the ANSYS simulation, the SOLID 185 element type was utilized. The simulation model was divided 
into 80 elements in the length and width directions, and 6 elements in the thickness direction (2 elements were 
allocated for each upper and lower skin layer, and 2 elements for the viscoelastic polymer layer). The structural 
model adopted simple support boundary conditions along all four sides. The material parameters of the function-
ally graded composite layer are shown in "First case", while the material parameters of the viscoelastic polymer 

(16)ηr =
ηVU

r
V

Ur
S

Table 2.  First through fourth natural frequencies (a/b = 1, a/h = 0.05, p = k = 0.1).

Modal Numbers Results

Non-dimensional frequency �

1–1-1 1-2-1 1-8-1 2-1-2 2-1-1 2-2-1

1
Present 0.353 0.251 0.103 0.440 0.468 0.358

Reference33 0.354 0.252 0.107 0.439 0.466 0.358

2
Present 0.874 0.615 0.216 1.088 1.161 0.885

Reference33 0.873 0.616 0.218 1.085 1.155 0.883

3
Present 0.874 0.615 0.216 1.088 1.161 0.885

Reference33 0.873 0.616 0.218 1.085 1.155 0.883

4
Present 1.393 0.978 0.325 1.737 1.854 1.412

Reference33 1.390 0.979 0.329 1.727 1.836 1.406

Table 3.  First through fourth loss factors (a/b = 1, a/h = 0.05, p = k = 0.1).

Modal Numbers Results

Loss factors η(%)

1-1-1 1-2-1 1-8-1 2-1-2 2-1-1 2-2-1

1
Present 3.75 6.94 48.72 3.07 2.41 3.49

Reference33 3.75 6.93 48.43 3.08 2.42 3.50

2
Present 1.54 2.92 28.16 1.26 0.98 1.43

Reference33 1.54 2.91 27.99 1.26 0.99 1.44

3
Present 1.54 2.92 28.16 1.26 0.98 1.43

Reference33 1.54 2.91 27.99 1.26 0.99 1.44

4
Present 0.97 1.85 19.79 0.79 0.62 0.90

Reference33 0.97 1.84 19.59 0.79 0.62 0.91
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are shown below: ρp = 999Kg/m3, Ep = 2.684MPa, µp = 0.498 , and ηV = 0.9683. The corresponding calculation 
results are displayed in Table 4.

As shown in Table 4, the errors between the natural frequencies and loss factors calculated by ANSYS and 
those obtained from the theoretical model developed in this paper are all within 4%. This confirms the validity 
of our theoretical model. Furthermore, we utilize this validated model to analyze the impact of the structure’s 
size and material parameters on its dynamic performance.

Results and discussions
In this section, we demonstrate the effects of graded index, damping layer position, aspect ratio, and layer thick-
ness ratio on the first-order dimensionless natural frequency (FO-DNF) and first-order loss factor (FO-LF) of 
FGCSVP using a mutually verified model. Unless specified otherwise, the non-dimensional frequency used in 
this section is denoted as � = ωb2/h

√
ρ0/E0 , ρ0 = 1kg/m3 , E0 = 1GPa.

Effects of the graded index of functional graded composite material layer on dynamic 
performance of FGCSVP
The initial investigation focused on the impact of the graded index of the functional graded composite material 
layer on the structural properties. Figure 3a,b illustrates the effect of the graded index on the structural vibration 
characteristics, considering different thickness ratios of each layer. From Fig. 3a,b, it is evident that the FO-DNF 

Table 4.  Comparison of finite element calculation results with those of this paper (a = 1 m, a/b = 1, h/a = 0.05, 
hc = hv = hb, p = 0).

Modal numbers

Frequency (Hz) Modal loss factor

First Second Third Fourth First Second Third Fourth

ANSYS 74.630 186.89 186.89 292.35 0.0482 0.0194 0.0194 0.0126

Present 75.956 187.106 187.106 298.246 0.0466 0.0193 0.0193 0.0122

Error 1.78% 0.12% 0.12% 2.02% − 3.32% − 0.52% − 0.53% − 3.18%
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Figure 3.  Impact of graded index on the dynamic performance of FGCSVP with varying structural parameters; 
(a) h/a = 0.05, a/b = 1, h1 = h3, h2/h = 1/3, η = 0.9683; (b) h/a = 0.05, a/b = 1, h1 = h3, h2/h = 1/3, η = 0.5.
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of the structure rises with an increase in the graded index. However, when the graded index is large, the FO-DNF 
becomes less responsive to changes in the graded index. Conversely, the FO-LF of the FGCSVP decreases as the 
graded index increases. Moreover, as the graded index increases, the rate at which the FO-LF decreases slows 
down. This can be attributed to the fact that as the graded index increases, the proportion of ceramic materials 
in the entire structure also increases. Ceramic materials typically have a much higher elastic modulus than metal 
materials. Consequently, the increase in ceramic materials enhances the stiffness of the overall structure, thereby 
elevating the FO-DNF. However, the increase in ceramic materials leads to a decrease in its ability to dissipate 
energy during dynamic deformation.

Comparing Fig. 3a with Fig. 3b, we can see that the FO-LF of the structure in Fig. 3a is significantly higher 
than that in Fig. 3b, while there is no significant difference in the FO-DNF. This difference can be attributed to 
the higher loss factor of the viscoelastic damping material used in the structure depicted in Fig. 3a compared 
to that in Fig. 3b. As a result, the former has a greater capacity for dissipating energy during dynamic deforma-
tion. Moreover, we have noticed that the FO-LF of the structure with a thickness ratio of 1-1-1 is greater when 
compared to the structure with a thickness ratio of 2-2-1. Although the structure with a thickness ratio of 1-1-1 
contains less viscoelastic polymer material than the 2-2-1 ratio, the arrangement of the viscoelastic polymer layer 
differs between the two structures, which contributes to this discrepancy. Therefore, the FO-LF of the former is 
greater than that of the latter. Next, we will investigate the impact of the viscoelastic polymer layer position on 
the vibration and damping characteristics of the structure.

Effects of position of the damping layer on dynamic performance of FGCSVP
In this section, we have examined how the position of the viscoelastic polymer layer affects the FO-DNF and 
the FO-LF of the FGCSVP. The impact of the viscoelastic polymer layer’s position on these factors is depicted in 
Fig. 4. From Fig. 4, it is evident that when the ratio of h1 to h3 is 1, the structure exhibits the highest FO-LF and 
the lowest FO-DNF. This indicates that placing the viscoelastic polymer layer in the center of the plate maximizes 
the structure’s ability to dissipate energy during dynamic deformation while minimizing its stiffness. Among the 
three different graded index structures illustrated in Fig. 4, the structure characterized by graded index values 
of k = 1 and p = 0.5 exhibits a higher FO-LF. Conversely, the structure with graded index values of k = 1 and p = 2 
displays a higher FO-DNF. Further observation reveals that when the ratio of h1 to h3 is small, the FO-DNF and 
FO-LF of structures with three different graded indices are very close to each other. However, as the ratio of 
h1 to h3 increases, the differences in the FO-DNF and FO-LF of structures with three different graded indices 
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Figure 4.  Impact of the values h1/h3 on the dynamic performance of FGCSVP with varying structural 
parameters; (a) h/a = 0.05, a/b = 1, h1 = h3, h2/h = 1/3; (b) h/a = 0.04, a/b = 1, h1 = h3, h2/h = 1/3.
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gradually become more pronounced. This can be attributed to the fact that the graded index of the lower cortex 
is denoted by p, while the graded index of the upper cortex is denoted by k. As the ratio of h1 to h3 increases, the 
thickness of the lower panel layer with the graded index of p increases, while the thickness of the upper panel 
layer with the graded index of k decreases. In other words, the proportion of the thickness of the lower panel layer 
with different graded indexes in the overall structure also increases. Therefore, as the ratio of h1 to h3 increases, 
the differences in dynamic performance among the three structures with different graded indexes in the lower 
panel become more pronounced. Comparing Fig. 4a and Fig. 4b, it can be observed that when the value of h/a 
is smaller, the structure experiences a larger first-order loss factor.

Effects of aspect ratio on dynamic performance of FGCSVP
Next, we investigate the impact of the value a/b on the FO-DNF and FO-LF of the structure. Figure 5 illustrates 
the influence of the value a/b on the FO-DNF and FO-LF of the FGCSVP. As shown in Fig. 5, the FO-DNF of the 
structure decreases as the value a/b increases. Specifically, when the value a/b is 3, the decline rate the FO-DNF 
is approximately 0. On the other hand, the FO-LF increases with an increase in the value a/b, although the rate 
of increase slows down as the value a/b increases. By comparing Fig. 5a and Fig. 5b, it can be observed that 
regardless of the value of h2/h, the dimensionless FO-DNF and FO-LF exhibit the same trend of change with 
respect to the value a/b.

Effects of layer thickness ratio and elastic modulus on dynamic performance of FGCSVP
Finally, the vibration and damping characteristics of FGCSVP with different values h2/h and elastic modulus are 
studied. Table 5 illustrates the impact of h2/h values on the FO-DNF and the FO-LF. From Table 5, it is evident 
that as the value of h2/h increases, the FO-DNF of FGCSVP decreases, while the FO-LF increases. Additionally, 
as shown in Table 5, enhancing the elastic modulus of metal or ceramic materials leads to an increase in the 
FO-DNF and a decrease in the FO-LF of the FGCSVP.

This is mainly because the elastic modulus measures how a material responds to stress, indicating its ability 
to resist deformation under external load. A higher elastic modulus means a stronger resistance to deformation 
and results in a stiffer structure. By increasing the elastic modulus of ceramics or metals in functionally graded 
materials, the overall stiffness of the structure is indirectly enhanced, leading to a higher natural frequency. 
However, it is worth noting that increasing the elastic modulus of metals or ceramics also reduces their ability 
to dissipate energy during dynamic deformation.

     

(a)

    

(b)

1.0 1.5 2.0 2.5 3.0 3.5
0.20

0.25

0.30

0.35

0.40

0.45

0.50

k=1, p=1

k=1, p=2

k=1, p=0.5

N
o

n
-d

im
en

si
o

n
al

  
 f

re
q

u
en

cy
 

a/b
1.0 1.5 2.0 2.5 3.0 3.5

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

k=1, p=1

k=1, p=2

k=1, p=0.5

F
ir

st
-o

rd
er

  
fa

ct
o

r

a/b

1.0 1.5 2.0 2.5 3.0 3.5
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

k=1, p=1

k=1, p=2

k=1, p=0.5

N
o

n
-d

im
en

si
o

n
al

  
 f

re
q

u
en

cy
 

a/b
1.0 1.5 2.0 2.5 3.0 3.5

0.015

0.020

0.025

0.030

0.035

0.040

0.045

k=1, p=1

k=1, p=2

k=1, p=0.5

F
ir

st
-o

rd
er

  
fa

ct
o

r

a/b

Figure 5.  Impact of aspect ratio on the dynamic performance of FGCSVP with varying structural parameters; 
(a) h/a = 0.05, h1 = h3, h2/h = 1/3; (b) h/a = 0.05, h1 = h3, h2/h = 1/5.
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Conclusions
This study introduces a dynamic analysis model for FGCSVP, which has been validated by comparing the results 
with those obtained from finite element modal strain energy analysis and published literature. The model is then 
utilized to investigate the structural dynamic properties. The study also explores and illustrates the variations of 
FO-DNF and FO-LF. Based on the findings, the following conclusions can be drawn:

When the upper and lower skins are symmetrical, and the viscoelastic polymer layer is positioned within the 
neutral layer of the overall structure, the FGCSVP can achieve maximum FO-LF while minimizing FO-DNF.

Increasing the graded index of functional graded composite materials can enhance their FO-DNF and reduce 
the FO-LF of the FGCSVP. When the graded index is large, the FO-DNF and FO-LF of the FGCSVP become 
less sensitive to changes in the graded index of the material.

The FO-DNF of the FGCSVP decreases as the value of a/b increases. When a/b reaches 3, the decline rate 
of its FO-DNF is approximately 0. On the other hand, the FO-LF of the FGCSVP increases with the increase of 
a/b, but the rate of increase slows down as a/b increases.
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