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Inferring molecular inhibition 
potency with AlphaFold predicted 
structures
Pedro F. Oliveira 2, Rita C. Guedes 3 & Andre O. Falcao 1*

Even though in silico drug ligand-based methods have been successful in predicting interactions with 
known target proteins, they struggle with new, unassessed targets. To address this challenge, we 
propose an approach that integrates structural data from AlphaFold 2 predicted protein structures 
into machine learning models. Our method extracts 3D structural protein fingerprints and combines 
them with ligand structural data to train a single machine learning model. This model captures the 
relationship between ligand properties and the unique structural features of various target proteins, 
enabling predictions for never before tested molecules and protein targets. To assess our model, 
we used a dataset of 144 Human G-protein Coupled Receptors (GPCRs) with over 140,000 measured 
inhibition constants  (Ki) values. Results strongly suggest that our approach performs as well as state-
of-the-art ligand-based methods. In a second modeling approach that used 129 targets for training 
and a separate test set of 15 different protein targets, our model correctly predicted interactions 
for 73% of targets, with explained variances exceeding 0.50 in 22% of cases. Our findings further 
verified that the usage of experimentally determined protein structures produced models that 
were statistically indistinct from the Alphafold synthetic structures. This study presents a proteo-
chemometric drug screening approach that uses a simple and scalable method for extracting protein 
structural information for usage in machine learning models capable of predicting protein-molecule 
interactions even for orphan targets.

Keywords In silico drug discovery, Quantitative structure-activity relationship modeling (QSAR), Structure 
based virtual screening, Machine learning, Protein structure, Proteo-chemometrics

In the field of drug discovery, in silico approaches have been actively explored in numerous studies because of 
their potential to accelerate the full process and offer cost-effectiveness, as computer models should be able to pre-
screen huge molecular databases, selecting the most promising active compounds. Many new drug compounds 
have been successfully developed with the aid of computational  methods1,2. Currently, drug discovery pipelines 
take advantage of several in silico methods used in drug discovery. Some of these methods include computational 
identification of potential drug targets, virtual screening of large chemical libraries for effective drug candidates, 
optimization of hit compounds, and in silico assessment of their potential toxicity.

Approaches for in silico drug discovery can be broadly divided into ligand-based drug discovery (LBDD) 
and structure-based drug discovery (SBDD)1,3,4. SBDD techniques use both molecular and target structures to 
try to predict how molecules might bind and try to find molecules with high affinity, aiming to understand how 
drugs interact with proteins and to create more effective and specific medications. SBDD methods include some 
popular methods such as molecular docking and structure-based virtual  screening1,5–8.

On the other hand, LBDD generally uses only the chemical and structural characteristics of the ligands them-
selves and is used to identify and design new drugs based on the properties of known ligands or molecules for 
one specific target and, as such, requires some previous experimental results of binding activity, to create models 
that should be able to identify other molecules with similar activity profiles. The use of Quantitative Structure-
Activity Relationship (QSAR) models is one of the most used LBDD approaches, using generally a combination 
of state-of-the-art machine learning models and different representations of  molecules9,10. QSAR models, as 
most Machine Learning models, perform better when the dependent variable is the same for all observations. 
Therefore, for the large majority of QSAR studies, modelers select one specific target for which there is already 
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some quantitative data with actual observations and try to identify the characteristics of the molecules that 
potentiate similar behavior to the active ones in the data set (Fig. 1a). Depending on the quality and quantity of 
available data, it is nonetheless possible to develop robust and effective predictive models for individual targets 
for which there exists reliable molecular activity data.

By integrating QSAR models and machine learning into the drug discovery pipeline, researchers can effi-
ciently screen large chemical libraries, prioritize compounds for synthesis and testing, optimize lead compounds, 
and gain insights into the underlying structure-activity  relationships11. This approach has been shown to acceler-
ate the drug discovery process, reduce costs, and aid in the identification of novel drug candidates with improved 
potency, selectivity, and safety  profiles12.

One of the fundamental shortcomings of QSAR modeling is that models must be constructed from available 
data. For a target that has never been targeted in in vitro measurements, it is not generally possible to create any 
type of inference model. Some approaches have emerged that included target-based information into models 
like protein sequence  similarity13 or amino acid properties of ligand  sites14, yet all of these approaches either do 
not use the full protein structural information, or they require extensive knowledge of the protein structures, 
which may limit their applicability in large-scale analysis. The field of proteo-chemometrics15,16 methods aim to 
address these problems by making models using several targets with information from both targets and ligands, 
and therefore our approach can be classified among these methods.

The goal of this work is to present a different proteo-chemometric approach for modeling target based data, 
focusing on structural neighborhoods, so that the generated model may identify the specific target characteristics 
to which ligands may bind to. Following the main insights of proteo-chemometrics, it is aimed to produce a 
single model that should be able to make predictions for any combination of ligand and protein target. A suc-
cessful model should be able to make predictions for orphan targets or targets that were never even assessed or 
even isolated in in vitro essays. To accomplish this goal, it is required to have complete and sufficiently reliable 
protein structural information that can be used for modeling. To address this, the PDB database would be an 
obvious choice, however the inconsistency and incompleteness of many  entries17,18, with a significant percentage 
of these files having missing residues and incomplete protein  sections19,20 makes such usage difficult for many 
targets. Because of that, numerous software programs have been developed to address these  deficiencies21–23. 
This, coupled with the large number of structure determination methods, and a nonexistent standard structure 
for each protein, makes the usage of PDB data complex and error-prone. As a possible solution, and built from 
all the structural data available, AlphaFold, an Artificial Intelligence (AI) system, has demonstrated remarkable 

Figure 1.  Visual representation of the traditional QSAR approach (a) where the descriptors of the molecules 
with known activities are used to create a model capable of predicting activities for untested molecules. On the 
left (b), is a visual representation of the proposed proteo-chemometric methodology where fingerprints for 
multiple targets and molecules are used to create the model.
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accuracy in predicting protein  folding24. With the availability of over 200 million structures in the AlphaFold 
 Database25, researchers now have the opportunity to work with the structures of virtually any protein in exist-
ence. Therefore an obvious and simple solution for getting protein structures for modeling problem would be 
the usage of AlphaFold generated data, for which there are generated structures for most proteins catalogued 
in databases, and, despite the known  flaws26,27, would provide us general predicted structure data, that could be 
used for very large modeling efforts potentially encompassing full databases with millions of ligand-target biding 
activities. Further, and of special relevance to our work, it has been demonstrated that Alphafold structures have 
been used to enhance predictions of binding affinities for  GPCRs28. This same idea has been proposed in other 
studies(e.g.29) with a very different approach for encoding proteins and molecules (e.g.15,30) which use distinct 
approaches like ligand and target similarity, or encoding of protein amino-acid sequences, differing widely from 
the methods proposed in this study, as well as in the global objectives.

In summary this study has two general goals: A) to demonstrate that a method capable of the encoding 
3-Dimensional structures of proteins is capable of producing machine learning models that encompass both 
Target and Ligand information. This will be made possible by the wide availability of Alphafold predicted protein 
structures, as well as a much larger data set of binding activities provided by the ChEMBL  database31; and B) 
we aim to demonstrate that this approach is capable of making global models that are able to predict binding 
affinities for any target, even if no binding information is available. This will be accomplished by a very strict 
validation procedure, that cannot be measured through commonly available benchmarks (e.g.32,33), in which all 
the binding information for a set of targets will be totally hidden from the model during the training phase, so 
the model will have to make predictions for targets never used before.

It is important to state from the beginning that the  goal of this study is not to find the best machine learn-
ing algorithm to solve these types of problems, but rather to identify whether or not this modeling approach is 
capable of showing promise and finding definite signal in making predictions. The focus is not on searching for 
the best descriptor set for molecules, or even the best possible Machine Learning modelling approach, but rather 
to verify if the highly scalable approach developed, made possible by the wide availability of good structural data 
for virtually every protein in existence as provided by AlphaFold, is capable of making reliable inference even 
for targets without any structure measured. The authors further believe that no existing benchmark is extant 
that actually aims for validation with binding information for targets not present on the training set, and this is 
one of the critical goals of this study.

Methods
As stated above, the first fundamental idea for this study is to describe how to build a single Machine Learning 
model that includes both the ligand and the target structural data. The resulting model should be able to make 
inference both for unknown ligands and proteins (Fig. 1b). As such, after a set of proteins with available ligand 
activity data has been selected, the challenge is to select a way to encode the structures of the ligands and targets 
in a way that they could be used for fitting a Machine Learning model.

Structural information of small molecules
The usage of molecular fingerprints has proven to be one of the most reliable methods for capturing struc-
tural information of small molecules, and has been used with success in many QSAR  studies34–36. The concept 
of molecular fingerprints is founded on the idea that the molecules structural and chemical characteristics 
can be encoded into a binary string, each bit corresponding to the presence or absence of a specific struc-
tural  characteristic37. Several reviews and comparative studies are extant, comparing the suitability of different 
approaches (e.g.37–39) and more sophisticated approaches using probabilistic  methods40 as well as promising 
new  results41 are emerging from using Shannon Entropy  descriptors42. However, the Extended- Connectivity 
Fingerprints (ECFPs)43 based on Morgan’s  algorithm44 have been consistently among the most common and 
reliable approaches and have been tested and used in several modeling studies (e.g.45,46). In ECFPs, each atom 
is extended through its covalent connections up to a predefined radius, defining a unique substructure in the 
molecule. Each of those substructures is then encoded as a fixed structure, then for each circular layer, paths are 
generated by considering all possible combinations of bonds and atom types within the radius. These paths are 
encoded and then hashed to create unique identifiers for the local chemical substructures (fragments) around 
each atom. Finally, each unique substructure obtained from the path encoding step is hashed into a fixed-length 
binary bit string. Each bit in the fingerprint corresponds to the presence (1) or absence (0) of a specific sub-
structure in the  molecule43.

Encoding protein structural features
Using structural features of small molecules data is a fairly common procedure in QSAR modeling, however it is 
still a challenge to incorporate structural features of proteins, for which even though there are several approaches, 
they differ in goal, method and simplicity of  application15,16,29,30,47. Thus, as referred, one of the primary goals of 
this study is to demonstrate a highly scalable and simple approach for incorporating proteins’ structural infor-
mation into QSAR modeling to enable predictions for multiple targets. The usage of fingerprinting for describ-
ing protein structures is not new, for instance the molecular surface interaction  fingerprinting47. Yet these are 
generated by deep-learning networks with the purpose of predicting protein pocket-ligand  and protein–protein 
interaction site predictions.

The approach followed here is actually of direct application to protein structures, with no learning procedure 
involved and is highly scalable and of fast application for any protein. The essential idea is actually similar to the 
above described Morgan fingerprints, however instead of following a covalent graph distance as in ECFP, for 
each atom in the protein, its 3D neighborhood is examined, checking the presence of amino acids within a given 
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radius from that atom. An amino acid is considered as part of a neighborhood if any of its atoms fall within the 
specified radius of that central atom. After sweeping all the atoms of the protein, duplicate entries are removed 
since certain atoms may share exactly the same neighbors set. This process results in a collection of proximal 
regions composed of protein residues for each protein. Each of those regions is then encoded as a string, which 
is sorted and then hashed into an integer. This value corresponds to an index that will be set to 1 in the result-
ing protein fingerprint. By using hash maps, it is possible that two different structures are hashed into the same 
index, thus highlighting the same bit. This is a hash collision and is assumed to occur in fingerprints, eventually 
becoming a source of errors. Depending on the bit size of the fingerprint array, this may not be very common, 
with the number of collisions decreasing as the number of bits considered increases.

In the example (Fig. 2) X represents an atom from Arginine at position 27 (coded as R27 ) of the protein 
sequence. Within a specified radius r, atom X is close to amino acids F24 , G25 and F27 . Therefore, its neighbor-
hood is defined as R23F24G25F27 . Although two phenylalanines ( F24andF27 ) are present, they appear in different 
positions in the protein sequence, so both will be included in the neighborhood structure, which is finally sorted 
into a final list of close amino acids encoded as as [FFGR]. This is coded into an integer (815, in this example) 
that will set its corresponding bit as one in the protein structure fingerprint array.

In summary, the method involves defining a radius, identifying amino acids within that radius, representing 
them as sets of different amino acids, and finally encoding it them into a binary vector using a hash function. 
The resulting binary vector whose size is defined beforehand is a representation of all residue topological pat-
terns in a single protein.

Fitting, evaluating and validating models
Machine learning algorithms are widely employed to develop QSAR models due to their ability to recognize com-
plex structural patterns related to the binding activity of a set of ligands to a given target. These algorithms can be 
trained on diverse chemical datasets to learn the relationships between molecular features and activity. Popular 
machine learning methods in QSAR include random  forests48, support vector machines (SVM)49 , artificial 
neural networks (ANN), and other ensemble methods,50,51. Like most supervised learning models, they require 
a thorough validation procedure, which is critical for their applicability beyond the boundaries of the  dataset35,52.

To effectively evaluate the proposed method, a three-step approach is necessary. (Fig. 3). In the first place, it 
is required to have a control baseline to which the produced results can be compared. As such, a set of classical 
single-target-QSAR modeling approaches is to be employed first, fitting current state-of-art models with separate 
data sets for each target. During this phase, data for each target will be split between training and validation sets, 
where a separated validation set is to be used once for assessing the quality of the produced  models52. (Fig. 3A). 
In this case, as in the others, it is important to clarify in Fig. 3 that the Fitted Models presented are not changed 
in any way by the validation set to produce Validated Models, but the models are validated in the sense that we 
used external and independent data sets to evaluate them and produce reliable statistics for each.

Having defined the baseline approach, the first core method of this work involves creating a Unified Model 
coupling all structural data for all molecules and target proteins in the data set, as described above. The funda-
mental idea is to generate a single model that should be able to make predictions for different combinations of 
ligands and target proteins. For this approach, a random separation of data between training and validation sets 
is performed, meaning that all targets could potentially appear both in the training and validation sets (Fig. 3B). 
Once again, the validation set is used only once for assessing the quality of the produced model. This approach 
would allow to assess how well the target structural data is able to subsume the requirement for individual models.

Figure 2.  Generating proteins structural fingerprints from close amino acids.
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The Unified Model, as defined above, although even if yielding positive results, does not allow us to address 
the primary problem we are a trying to address, which is making ab initio predictions for targets never before 
assessed, as data from all targets may appear scattered through both the training and validation sets. As such, 
a third modeling approach was devised, where a single model is fitted using data resulting from a subset of 
all targets, and the produced model is validated with the data from the left over targets (Fig. 3C). If this latter 
approach proves successful, it indicates the possibility of using structural data from both ligands and protein 
targets for general inference, even for proteins that were never assessed for binding affinity or even isolated in in 
vitro studies. This, expectedly much more challenging approach, creates a Blind Model, as the generated model 
will be tested on data from targets that it has never “observed” before.

Figure 3.  The three modeling approaches followed. (A) Baseline individual QSAR models without any target 
based information; (B) Unified model with both ligand and target structure data with randomly selected data 
from all targets for validation; (C) Unified Blind model built with data from a subset of targets using data from 
an unknown target for validation.
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Model validation
The general fitting and validation procedure procedure starts with a data set split where each for each model’s 
data is randomly divided into training and validation sets, with the training set comprising 80% of the data. 
For model quality assessment, a 5-fold cross-validation it applied to the training set, for eventually identifying 
the optimal hyper-parameters for the model fitting approach. The evaluation metrics used were the Root Mean 
Squared Error (RMSE) and Ratio of Explained Variance (RVE). Finally, when the resulting model is selected 
and evaluated, it is then validated on the validation set, which is used only once, and the results are recorded. 
This was the approach followed for the generation of Baseline Models and the Unified Model.

For the Blind Model, a different approach was followed for train validation split, where a set of targets is 
selected, randomly or according to a specific criterion, and all their their binding affinities are removed from the 
main data set, which will be used for training. The removed set of target data will become the validation data.

Data processing
The data collected for this study can be divided into two main categories: compound bioactivity and protein 
structures. To retrieve the compound bioactivity data, two resources, UniProt,53 and  ChEMBL31, were used. A 
specific family of proteins was chosen, namely G-protein-coupled receptors (GPCRs), which are widely recog-
nized as successful therapeutic targets for various  diseases54,55. The UniProt website was employed to search for 
the desired proteins and obtain their corresponding identifiers (IDs). The search was filtered to include only 
human proteins that had undergone human curation (SwissProt). These protein IDs were then utilized to search 
the ChEMBL database and retrieve the related target IDsand corresponding biological activities. In this process, 
we selected the inhibition constant (Ki) bioactivity, as it is more precise than IC50 and its value is independent 
of the concentration of the substrate.

Data retrieval, processing and curation
As referred, all molecular structures were retrieved from ChEMBL. Even though this repository is standardized 
and manually curated, incomplete, contradictory, or uncertain data may occasionally arise. To ensure comparabil-
ity across different essays that encompass different targets, it is necessary to address these issues with a common 
set of rules. As such, the following procedures were followed for all situations: 

1. Activity values with incorrect units for the given activity type were excluded. All other activity values were 
converted to nanomolar (nM), which was the predominant unit type.

2. Activity values with an activity relation of “ = ” and no corresponding value, or lacking an activity relation 
and activity comment, or an activity comment indicating activity without a specified value were excluded. 
Only active compounds with actual measurements were included in the analysis.

3. If there were two or more measurements for the same target and compound, their difference was checked, 
and if it exceeded one order of magnitude, the most recent measurement was selected; otherwise, the average 
of the logarithm of the measurements was calculated and used.

4. If there were one or more activities with reported values, but at least one activity had a sign of “<” or “ ≤ ” 
in the activity relation (indicating activity below a certain threshold, but the exact value is unknown), this 
information was saved as observations. In the case of multiple activities with “<” or “ ≤ ” relations, the report 
with the highest value was selected .

5. If there were no defined activities (with an ’=’ type relation) but one or more activities for the same compound 
and target reported with “<” or “ ≤ ” in the activity relation, the transformed value would be calculated for 
the activity with the highest concentration.

6. No distinction was made for activities with an activity relation of “>” or “ ≥ ” (as these generally do not imply 
activity, but rather inactivity) and therefore the molecule was assigned as not active for that target.

After making the aforementioned data standardization, the log(Ki) values were further transformed to ensure 
that they fell within the range of 0 to 1, in a score denominated spKi for scaled pKi

35,45. This score considers all 
Ki values below 1.0 nM as very active, therefore with a score of 1.0, Ki a concentration above 10,000 nM as a 
non-active, therefore having a score of 0.0, with all other cases receiving a value from a linear interpolation of 
the log(Ki) (Equation 1).

This representation is readily understandable, making easier the interpretation of results. Any molecule active 
wih Ki values below 1, appear with the highest score, and no difference is made for even lower concentrations, as 
these are exceedingly active molecules On the other hand no difference whatsoever is made between molecules 
with Ki values below 10,000 or inactive, as these typically have no physiologically measured effect. Scaling all 
other values between 0 and 1 further allow us to readily understand the activity profile of any given ligand-target 
interaction value from inactive to extremely potent in a linear scale.

The final data sets were constructed based on the available information on inhibitory constants for each pair 
of small molecule - protein target. In total, about 197 different Human GPCRs with available Ki activities were 
identified. Out of these, 50 had less than 40 Ki values and thus were discarded, and finally, 3 did not show suf-
ficient variability in Ki values, and were eliminated as well. This amounted to 144 targets with 141,225 different 
activities for a total of 69,879 distinct molecules.

(1)spKi =







0 if Ki ≥ 10, 000 nM or inactive,
1 if Ki ≤ 1.0 nM,
4−log10(Ki)

4 otherwise



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8252  | https://doi.org/10.1038/s41598-024-58394-z

www.nature.com/scientificreports/

Data transformation
For generating the molecular fingerprints, the RDKit toolkit, an open-source cheminformatics  library56, was 
employed to all structures retrieved from ChEMBL. RDKit provided the required functionality for generating 
Morgan Fingerprints from the molecular structures, using a molecular radius of 3, and a number of bits of 2048, 
which is commonly denominated ECFP6, for Extended Connectivity FingerPrints with radius equal to 3.

Regarding the structural information of proteins, the structure files were obtained from the AlphaFold 
 Database25, and the process described previously was followed to derive the corresponding protein fingerprints 
from the protein structures. The source code for generating the protein fingerprints is made available as Sup-
plementary Material. A 5.0Å distance was selected for atom radius for building the protein fingerprints. Each 
amino acid unique pattern was hashed into a 16,381 bit array (the first prime number below 214 = 16, 384).

The much larger array size required for protein fingerprints dwarfed the 2048 bits used for molecular struc-
tures. This in itself might not be a problem, however the same exact fingerprint patterns are going to be present 
for all molecules having any binding activity recorded for each specific target. As only a limited number of targets 
was tested, this redundancy could significantly hinder model learning. To address this issue, it was decided to 
use a dimensional reduction approach that could encompass all the protein structural information in the data set 
albeit with a much smaller number of columns. The approach followed was the standard Principal Component 
Analysis (PCA), which was exclusively applied to the protein fingerprints. The fingerprints for small molecules 
were used directly as they appeared in the resulting data sets. The number of components selected should either 
match the total number number of existing targets or capture at least 99% of the data variance.

Model fitting
The modeling effort was completed in Python, primarily using the scikit-learn machine learning  libraries57. An 
initial model pre-screening phase was used where different types of machine learning approaches were tested for 
all models. The variety of models used were Random  Forests58, Support Vector Machines for  Regression59 and 
Gradient Boosting  Methods60. In this preliminary screening, Random Forests with default parameters appear 
to be very robust producing in general the best results, and were selected for all modeling approaches reported. 
The only parameter that was changed from the default was the number of trees, which was increased to 200.

Results
As described above, three different approaches were followed for the 144 targets selected. Firstly, a baseline pure 
QSAR model was developed, where each model was individually trained and validated for each target using only 
molecular structural data. Secondly, a unified model that includes both ligand and protein data, where the train-
ing and the validation sets containing data from all protein targets. Lastly, a blind inference model was trained 
using data from a set of targets, with the validation set including only targets that were not on the training set, 
randomly selected. This latter approach was supplemented with one further refinement, a Semi-Blind model 
where the targets used for validation were selected as being similar to others in the training set. To accomplish 
this, from the 144 protein set, the Jaccard similarity, using the computed structural protein fingerprints, was 
computed between all proteins. Then the 15 closest pairs were identified and, for each pair, one protein was 
selected, including all its measured binding activities to form the validation set (Table 1). For both the Blind 
and Semi-Blind models, no information about any elements of the validation set was present in the training set.

For the Baseline QSAR models, the final model statistics (Table 2) were computed as a weighted average of 
the individual model statistics. On the other hand, for the unified models, since the proportion of ligands for 
different targets might vary significantly between training and test sets, an extended cross-validation procedure 

Table 1.  List of testing targets for the semi-blind modelling approach and respective similar targets on the 
training set.

Target GeneID Name N. Activities Similar target on training set Similarity

HCRTR1 Orexin receptor type 1 1574 Orexin receptor type 2 0.110

CHRM4 Muscarinic acetylcholine receptor M4 853 Muscarinic acetylcholine receptor M2 0.159

CHRM5 Muscarinic acetylcholine receptor M5 780 Muscarinic acetylcholine receptor M1 0.115

ADRB3 Beta-3 adrenergic receptor 335 Beta-1 adrenergic receptor 0.087

ADRA2B Alpha-2B adrenergic receptor 558 Alpha-2A adrenergic receptor 0.105

ADRA2C Alpha-2C adrenergic receptor 683 Alpha-2A adrenergic receptor 0.116

DRD5 D(1B) dopamine receptor 526 D(1A) dopamine receptor 0.136

CXCR1 C-X-C chemokine receptor type 1 102 C-X-C chemokine receptor type 2 0.186

HTR1B Serotonine receptor 1B 1040 Serotonine receptor 1D 0.096

HTR2C Serotonine receptor 2C 2633 Serotonine receptor 2A 0.094

SSTR1 Somatostatin receptor type 1 185 Somatostatin receptor type 4 0.083

CCR1 C-C chemokine receptor type 1 160 C-C chemokine receptor type 3 0.096

DRD3 D(3) dopamine receptor 5106 D(2) dopamine receptor 0.098

OPRK1 Kappa-type opioid receptor 3907 Delta-type opioid receptor 0.090

CCR5 C-C chemokine receptor type 5 160 C-C chemokine receptor type 2 0.116
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was adopted, as the same general model architecture selected, was fitted to different data partitions and validated 
separately. The process was repeated 10 times, and the results represent an average of all results. In the blind 
and semi-blind approaches, this would naturally not be an issue, and the validation was conducted using all the 
bioactivities from targets that were not used for training.

Aggregated results of the four approaches are presented in Table 2. Full results can be found in the Supple-
mentary Information. As expected, the baseline models, having the advantage of being fit with direct knowledge 
of each protein target, generally exhibit slightly better performance. On the other hand, the unified model, which 
does not require separate models, show impressive precision in its inference results, averaging just slightly below 
the QSAR models. This in itself reveals that the approach followed and the protein structure representation used 

Table 2.  Results of all modeling approaches - RMSE - corresponds to the Root Mean Squared Errors of all 
predictions; RVE is the weighted average of the Ratio of the Variance Explained.

Model Training set size Testing set size RMSE RVE

Baseline QSAR 112,217 28,122 0.167 0.683

Unified model 112,271 28,068 0.167 0.677

Blind model 132,854 7,485 NA NA

Semi-blind model 121,737 18,602 0.301 0.208

Figure 4.  Comparing validation results of Baseline QSAR models and Unified Model for Root Mean Squared 
Error (RMSE) and Ratio of Variance Explained (RVE) for 144 targets.
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was capable of identifying structural relationships between ligands and targets, strongly suggesting that the 
proposed approach can effectively capture protein-ligand relationships and yield results comparable to those 
obtained using traditional QSAR approaches.

It is possible to have a more encompassing view of of how the baseline models compare to the unified model 
in Fig. 4, where the results for all 144 targets are presented. The scatter plots represent the model results for RVE 
and RMSE for all 144 targets tested on the Baseline models versus the Unified model. It is possible to verify that 
in general difficult models for QSAR show similar behavior when compared to the unified model. Yet, there are 
several models that appear significantly to the left of the 45◦ line. For these targets, there is an obvious benefit in 
the usage of the Unified approach, where the protein structural data coupled with a much larger training data 
set have an expected quality better than the counterpart QSAR models. This suggests that the larger database 
used to make the models and the inclusion of structural information for these targets positively impacted the 
prediction of pKi. The box plots in the same figure illustrate the general behavior of the models for each of the 
individual protein target. For the RVE, the QSAR-based approach reached a median of 0.658, just slightly above 
0.641 for the Unified model. Additionally, it can further be verified that there are much more low-performance 
outliers in the baseline models, evident in the large trail of target predictions with very low RVE and consequently 
high RMSE values, reinforcing the idea that the information contained in the protein structure representation 
is capable of aiding in the prediction results of difficult targets to model.

The Blind and Semi-Blind inference models, in a way, aim to understand whether it is possible to extend the 
inference to targets never addressed in any models. After extensive testing it was observed that, with a valida-
tion data set created from a random partition of target data, we could not identify any structural patterns able 
to make predictions. Even though all proteins come from the same family with known common structural pat-
terns (GPCRs) we could not identify any signal from data and validation results were indistinct from random 
predictions.

For the case of the Semi-Blind inference, model results are in general positive. For the large majority of targets 
it was possible to detect clear patterns that resulted in effective prediction signal with RVE values above 0.2. Such 
a score may appear as a low threshold, but this was to be expected as the problem is very hard. It is not uncom-
mon, even in QSAR studies, to reach such low prediction values, even in the 144 baseline QSAR models in this 
study, for about 6 targets, RVE values were below 0.2. - of those, two were actually selected for semi-blind testing, 
namely CCR5 and CCR1 - On this aspect it is crucial to bear in mind that, when using the Blind and Semi-Blind 
approaches, we are essentially predicting bioactivities for targets for which we lack any prior binding affinity data, 
as no information whatsoever about them is present in the training set. Consequently, it is natural and expected 
for the results to be less favorable compared to those obtained using the previous approaches. Nonetheless, for 
the Semi-Blind model it is evident that the model is still capable of capturing a part of the relationships between 
the structural features and the measured spKis. This suggests the potential usefulness of this approach even for 
ab initio predictions, when data for a target was not available. In Table 3, we present the results achieved for each 
individual target for all 3 approaches (Baseline, Unified and Semi-Blind), and it is worth noting that some cases 
exhibit particularly promising outcomes. Noteworthy results were obtained for CHRM4, SSTR1, and HTR1B, 
with an RVE exceeding 0.5.

Table 3.  Comparison of results for all 15 validation targets of the semi-blind model.

Gene

Baseline 
models Unified model

Semi-blind 
model

RMSE RVE RMSE RVE RMSE RVE

HCRTR1 0.163 0.660 0.204 0.493 0.288 0.059

CHRM4 0.147 0.770 0.169 0.735 0.221 0.576

CHRM5 0.159 0.617 0.168 0.623 0.270 0.357

ADRB3 0.142 0.709 0.191 0.486 0.244 0.222

ADRA2B 0.169 0.497 0.177 0.519 0.204 0.358

ADRA2C 0.187 0.612 0.178 0.624 0.267 0.214

DRD5 0.154 0.755 0.186 0.621 0.280 0.270

CXCR1 0.136 0.608 0.205 0.348 0.279 -0.248

HTR1B 0.182 0.740 0.206 0.667 0.243 0.556

HTR2C 0.173 0.655 0.211 0.476 0.283 0.103

SSTR1 0.190 0.692 0.175 0.695 0.249 0.536

CCR1 0.192 0.141 0.169 0.402 0.235 0.045

DRD3 0.171 0.691 0.217 0.497 0.338 0.118

OPRK1 0.174 0.734 0.204 0.630 0.315 0.242

CCR5 0.255 0.110 0.233 0.223 0.394 -0.040
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Discussion
The results of the proposed approach suggest that the approach is capable of making valid activity predictions. 
First the Unified model showed that including structural target data is capable of producing a single model that 
is at least as good as separated QSAR modeling approaches, and secondly that it was capable of producing valid 
molecular inhibition inferences even for targets not present in the training set, albeit it is important that these 
have a given degree of structural similarity with at least one element in the training set.

In this study we actually covered two separate issues for ligand-target inhibition modelling: the first one was 
the proposed protein fingerprinting approach for identifying structural patterns, and the second one was the 
usage of Alphafold predicted structures, as these are readily available for most proteins known. Now the question 
is whether or not it would be possible to make similar inferences using current PDB structures, and whether the 
predictions would be of similar quality to the ones from Alphafold, or perhaps even better, as they do not come 
from simulated data. To achieve this goal, for our 144 targets we searched the availability of PDB structures, of 
which we found only 113 (approximately 78.5% ), not all of them complete. For many of the targets, more than 
one PDB structures were available, and the criterion selected was to use the structure and chain with the largest 
representation. Thus if one structure for a given protein captured only 87 residuals and another 395, the largest 
structure would be selected. This approach makes sense, so as to make the results directly comparable with the 
Alphafold based structures. Secondly we produced the target fingerprints using exactly the same procedure and 
parameters as described above (radius=5.0 Å and 16,381-bit fingerprints). Thirdly we recomputed the Principal 
Components for the new protein fingerprint data, as the dataset was smaller and slightly different from the 
original one and finally joined the projected protein data to the molecular activities.

For this comparison it was deemed sufficient to fit a new Unified Model as the differences from using PDB 
based data would emerge directly from it. Therefore two new model fitting procedures were executed, one with 
the PDB based data and another for the same targets and data, but using the Alphafold predicted structures. 
The data was partitioned into training and testing as before, using exactly the same partitions for both models. 
For model fitting we used the same procedure as above, using a Random Forest Regressor,increasing only the 
number of estimators to 200, as before. Results are very good overall but statistically indistinguishable (Table 4), 
suggesting that the approach indeed was able to capture structural characteristics from both sources of protein 
structure data. (The full source code for data processing as well as the resulting data sets is provided in the GitHub 
repository named below

Processing raw PDB files from the PDB database is a complex process that requires several decisions for 
each individual protein. This is then when it becomes apparent the benefits of using Alphafold, even in the case 
where actual structures are known, as its usage was straightforward. The AlphaFold PDB files were easier to 
read and process, and finally, as results show, there was no benefit perceived in using the original experimentally 
determined data.

Conclusions
This work had two essential goals. The first one A) had the purpose of showing that our approach of encoding 
protein structural information was capable of being used in a machine learning model that encompassed both 
target and ligand information. This was clearly achieved as the results of the Unified model unmistakably dem-
onstrate, with results on par to individually fitted to QSAR models, and for goal B) we aimed to demonstrate that 
this modeling approach was capable of producing models for targets even if no binding information is available. 
The Semi Blind models also clearly suggested that this was the case. Even if the results were not homogeneous for 
all targets, and the quality of the predictions was not on par to the Unified models, there was again a significant 
result, which is very promising for tackling several existing problems in drug development.

Results from the AlphaFold Unified model were further compared with a new data set generated from experi-
mentally determined protein structural data, and the results were actually statistically indistinguishable, sug-
gesting that AlphaFold predicted structures were at least as good as crystallographically determined structures.

These results should be the inception for further research. Namely, to understand how to improve on the pro-
tein fingerprints collection and processing, as it is known that several amino acids show similar properties, and 
therefore several amino acid patterns should display similar behaviour, in similar structural conformations. Using 
such an enhanced representation could eventually produce a more comprehensive set of fingerprints, that would 

Table 4.  Result comparison of Unified Models, for the original data set and 113 targets with PDB data - RMSE 
- Root Mean Squared Errors of all predictions; RVE - Ratio of the Variance Explained.

Model N. of targets Training set size Testing set size RMSE RVE

Original unified model 144 112271 28068 0.167 0.677

PDB structures 113 97592 24398 0.170 0.724

Alphafold structures 113 97592 24398 0.170 0.725
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not require the usage of dimensionality reduction techniques. Other paths of research should include the usage 
of more sophisticated machine learning models, like deep learning models, that have provided excellent results 
with other proteo-chemometric  approaches29,30,47. These models, however, would require much larger data sets, 
which, given the general availability of bioactivity data in public repositories, is a distinct possibility and should 
guarantee the feasibility of fitting very large models, possibly encompassing the full druggable human proteome, 
or even covering other species. The availability of structural data for virtually every protein in existence, as made 
available by AlphaFold, makes the development of such models simple and direct, unveiling their potential for 
application. Overall, these findings open up many possibilities for advancing research and understanding in the 
field, potentially providing a significant improvement in drug discovery and target prediction through improved 
machine learning approaches and comprehensive structural representations.

Data availability
The data sets generated and/or analysed during the current study are available in the GitHub repository https:// 
github. com/ aofal cao/ ProtL igMod el The full source code for data processing and model fitting and testing is made 
available on GitHub in the above URL, and as supplementary material three different files are provided: SupMat 
1 -The full results of the approaches for Baseline models, Unified Model and Semi-blind models. (3 CSV files in 
Zip format). SupMat 2 - Source code for Protein Fingerprint Generation (Python File) Requires a list of Uniprot 
IDs in a file and the set of AlphaFold predicted structures in PDB format
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