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Efficient DNA‑based data storage 
using shortmer combinatorial 
encoding
Inbal Preuss 1,3*, Michael Rosenberg 2, Zohar Yakhini 1,3 & Leon Anavy 1,3

Data storage in DNA has recently emerged as a promising archival solution, offering space‑efficient 
and long‑lasting digital storage solutions. Recent studies suggest leveraging the inherent redundancy 
of synthesis and sequencing technologies by using composite DNA alphabets. A major challenge 
of this approach involves the noisy inference process, obstructing large composite alphabets. This 
paper introduces a novel approach for DNA‑based data storage, offering, in some implementations, 
a 6.5‑fold increase in logical density over standard DNA‑based storage systems, with near‑zero 
reconstruction error. Combinatorial DNA encoding uses a set of clearly distinguishable DNA shortmers 
to construct large combinatorial alphabets, where each letter consists of a subset of shortmers. We 
formally define various combinatorial encoding schemes and investigate their theoretical properties. 
These include information density and reconstruction probabilities, as well as required synthesis 
and sequencing multiplicities. We then propose an end‑to‑end design for a combinatorial DNA‑
based data storage system, including encoding schemes, two‑dimensional (2D) error correction 
codes, and reconstruction algorithms, under different error regimes. We performed simulations and 
show, for example, that the use of 2D Reed‑Solomon error correction has significantly improved 
reconstruction rates. We validated our approach by constructing two combinatorial sequences using 
Gibson assembly, imitating a 4‑cycle combinatorial synthesis process. We confirmed the successful 
reconstruction, and established the robustness of our approach for different error types. Subsampling 
experiments supported the important role of sampling rate and its effect on the overall performance. 
Our work demonstrates the potential of combinatorial shortmer encoding for DNA‑based data storage 
and describes some theoretical research questions and technical challenges. Combining combinatorial 
principles with error‑correcting strategies, and investing in the development of DNA synthesis 
technologies that efficiently support combinatorial synthesis, can pave the way to efficient, error‑
resilient DNA‑based storage solutions.

DNA is a promising media storage candidate for long-term data archiving, due to its high information density, 
long-term stability, and robustness. In recent years, several studies have demonstrated the use of synthetic DNA 
for storing digital information on a megabyte scale, exceeding the physical density of current magnetic tape-
based systems by roughly six orders of  magnitude1,2. Physical density is one of several quantitative metrics for 
evaluating the efficiency of DNA-based storage systems, measured by the data unit per gram of DNA. Another 
performance metric, which was introduced  in3, is called logical density, refering to the amount of data encoded in 
each synthesis cycle. Since DNA synthesis is the main cost component in DNA-based storage systems, increasing 
the logical density is the main focus of this work.

Research efforts in the field of DNA-based storage systems have mainly focused on the application of various 
encoding schemes, while relying on standard DNA synthesis and sequencing technologies. These include the 
development of error-correcting codes for the unique information channel of DNA-based data  storage4–8. Random 
access capabilities for reading specific information stored in DNA also require advanced coding  schemes9–11. Yet, 
despite the enormous benefits potentially associated with capacity, robustness, and size, existing DNA-based 
storage technologies are characterized by inherent information redundancy. This is due to the nature of DNA 
synthesis and sequencing methodologies, which process multiple molecules that represent the same information 
bits in parallel. Recent studies suggest exploiting this redundancy to increase the logical density of the system, by 
extending the standard DNA alphabet using composite letters (also referred to as degenerate bases), and thereby 
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encoding more than 2 bits per  letter12,13. In this approach, a composite DNA letter uses all four DNA bases (A, C, 
G, and T), combined or mixed in a specified predetermined ratio σ = (σA, σC , σG , σT ) . A resolution parameter 
k = σA + σC + σG + σT is defined, for controlling the alphabet size. The full composite alphabet of resolution 
k , denoted �k , is the set of all composite letters, so that �i∈(A,C,G,T}σi = k . Writing a composite letter is done by 
using a mixture of the DNA bases, determined by the letter’s ratio in the DNA synthesis cycle. Current synthesis 
technologies produce multiple copies, and by using the predetermined base mixture each copy will contain a 
different base, thus preserving the ratio of the bases at the sequence-population level.

While the use of numerical ratios supports higher logical density in composite synthesis, it also introduces 
challenges related to the synthesis and inference of exact ratios. Combinatorial approaches, which also consist 
of mixtures, address these challenges in a different way. Studies by Roquet et al. (2021) and Yan et al. (2023) 
contribute significantly to advancing DNA-based data storage technology. To encode and store data, Roquet et al. 
focus on a novel combinatorial assembly method for DNA. Yan et al. extend the frontiers of this technology by 
enhancing the logical density of DNA storage, using enzymatically-ligated composite  motifs13,14.

In this paper, we present a novel approach for encoding information in DNA, using combinatorial encoding 
and shortmer DNA synthesis, leading to an efficient sequence design and improved DNA synthesis and readout 
interpretation. The method described herein leverages the advantages of combinatorial encoding schemes while 
relying on existing DNA chemical synthesis methods with some modifications. Using shortmer DNA synthesis 
also minimizes the effect of synthesis and sequencing errors. We formally define shortmer-based combinatorial 
encoding schemes, explore different designs, and analyze their performance. We use computer-based simulations 
of an end-to-end DNA-based data storage system built on combinatorial shortmer encodings, and study its 
performance. To demonstrate the potential of our suggested approach and experimentally test its validity, we 
performed an assembly-based molecular implementation of the proposed combinatorial encoding scheme and 
analyzed the resulting data. Finally, we discuss the potential of combinatorial encoding schemes and the future 
work required to enable these schemes in large-scale DNA-based data storage systems and other DNA data 
applications.

Results
Design of shortmer combinatorial encoding for DNA storage
We suggest a novel method to extend the DNA alphabet while ensuring near-zero error rates.

Let � be a set of DNA k-mers that will serve as building blocks for our encoding scheme. Denote the elements 
in � as X1, . . . ,XN . Elements in � are designed to be sufficiently different from each other, to minimize mix-up 
error probability. Formally, the set is designed to satisfy d

(

Xi ,Xj

)

≥ d; ∀i �= j , with the minimal Hamming 
distance d serving as a tunable parameter.

Other design criteria can be applied to the shortmers in � , taking into consideration the properties of DNA 
synthesis, manipulation, and sequencing. These may include minimal Levenshtein distance, GC context, and 
avoiding long homopolymers. Clearly, any such filtering process will result in reduced alphabet size and reduced 
logical density.

Note that N = |�| ≤ 4k . The elements in � will be used as building blocks for combinatorial DNA synthesis 
in a method similar to the one used for composite DNA  synthesis3. Examples of k-mer sets � are presented in 
Supplementary Sect. 8.3.

We define a combinatorial alphabet � over � as follows. Each letter in the alphabet represents a non-empty 
subset of the elements in � . Formally, a letter σ ∈ � , representing a subset S ⊆ �/∅ , can be written as an 
N-dimensional binary vector where the indices for which σi = 1 represents the k-mers from � included in the 
subset S. We denote the k-mers in S as member k-mers of the letter σ . For example, σ = (0, 1, 0, 1, 1, 0) represents 
S = {X2,X4,X5} and |�| = N = 6 . Figure 1a,b illustrate an example of a combinatorial alphabet using N = 16 , 
in which every letter represents a subset of size 5 of � . In Sect. “Binary and binomial combinatorial alphabets” 
includes a description of the construction of different combinatorial alphabets.

To write a combinatorial letter σ in a specific position, a mixture of the member k-mers of σ is synthesized. To 
infer a combinatorial letter σ , a set of reads needs to be analyzed to determine which k-mers are observed in the 
analyzed position (See Sects. “Binary and binomial combinatorial alphabets” and “Reconstruction probabilities 
for binomial encoding” for more details). This set of k-mers observed in the sequencing readout and used for 
inferring σ is referred to as inferred member k-mers. While the synthesis output and the sequencing readout will 
include different counts for the member k-mers, the determination of the set of inferred k-mers will force binary 
assignment for each k-mer to fit into the design scheme of combinatorial encoding.

From a hardware/chemistry perspective, the combinatorial shortmer encoding scheme can potentially be 
based on using the standard phosphoramidite chemistry synthesis technology, with some alterations (See Fig. 1b 
and Supplementary Sect. 8.1)15,16. First, DNA k-mers should be used as building blocks for the  synthesis17. Such 
reagents are commercially available for DNA trimers and were used, for example, for the synthesis of codon 
optimization DNA  libraries18,19. In addition, a mixing step should be added to each cycle of the DNA synthesis 
to allow mixing of the member k-mers prior to their introduction to the elongating molecules. Such systems are 
yet to be developed and current attempts for combinatorial DNA synthesis are based on enzymatic assembly of 
longer DNA  fragments13,14.

Similar to composite DNA encoding, combinatorial encoding requires the barcoding of the sequences using 
unique barcodes composed of standard DNA barcodes. This design enables direct grouping of reads pertaining 
to the same combinatorial sequence. These groups of reads are the input for the process of reconstructing the 
combinatorial letters.

The extended combinatorial alphabets allow for a higher logical density of the DNA-based storage system, 
while the binary nature of the alphabet minimizes error rates.
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Binary and binomial combinatorial alphabets
The main parameter that defines a combinatorial encoding scheme is the alphabet � . More specifically, it is the 
set of valid subsets of � that can be used as letters. We define two general approaches for the construction of � . 
Namely, the binomial encoding and the full binary encoding.

In the binomial encoding scheme, only subsets of � of size exactly K represent valid letters in � , so that every 
letter σ ∈ � consists of exactly K  member k-mers. Therefore, all the letters in the alphabet have the same 

Hamming weight K . w(σ ) = K , ∀σ ∈ � . This yields an effective alphabet of size |�| =
(

N
K

)

 letters, where each 

combinatorial letter encodes log2(|�|) = log2

(

N
K

)

 bits. An r-bit binary message requires r

log2

(

N
K

) synthesis 

cycles (and a DNA molecular segment with length kr

log2

(

N
K

) ). In practice, we would prefer working with alphabet 

sizes that are powers of two, where each letter will encode for 
⌊

log2

(

N
K

)⌋

 bits. Note that this calculation ignores 

error correction redundancy, random access primers, and barcodes, which are all required for message 
reconstruction. See Supplementary Sect. 8.2 and Fig. 1a, which illustrate a trimer-based binomial alphabet with 

N = 16 and K = 5 , resulting in an alphabet of size |�| =
(

16
5

)

= 4, 368 that allows to encode ⌊log2(4368)⌋ = 12 

bits per letter or synthesis position.
In the full binary encoding scheme, all possible nonempty subsets of � represent valid letters in the alphabet. 

This yields an effective alphabet of size |�| = 2N − 1 letters, each encoding for 
⌊

log2 (|�|)
⌋

= N − 1 bits.
From this point on, we focus on the binomial encoding.

Figure 1.  Our combinatorial encoding and synthesis approach. (a) Schematic view of a combinatorial 
alphabet (Encode legend). A set of 16 trimers, X1, . . . ,X16 , is used to construct 4096 combinatorial letters, 
each representing a subset of 5 trimers as indicated on the right and depicted in the grayed-out cells of the 
table. (b) A suggested approach for combinatorial shortmer synthesis. A modified synthesizer would include 
designated containers for the 16-trimer building blocks and a mixing chamber. Standard DNA synthesis is used 
for the barcode sequence (1), while the combinatorial synthesis proceeds as follows: The trimers included in 
the synthesized combinatorial letter are injected into the mixing chamber and introduced into the elongating 
molecules (2). The process repeats for the next combinatorial letter (3), and finally, the resulting molecules are 
cleaved and collected (4).
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Reconstruction probabilities for binomial encoding
In this section, the performance characteristics of binomial encoding are investigated. Specifically, we present a 
mathematical analysis of the probability of successfully reconstructing the intended message. In Sects. “An end-
to-end combinatorial shortmer storage system” and "Experimental proof of concept", results are presented from 
our simulations and a small-scale molecular implementation of the binomial encoding, respectively.

Reconstruction of a single combinatorial letter
Since every letter σ ∈ � consists exactly of the K member k-mers, the required number of reads for observing at 
least one read of each member k-mer in a single letter follows the coupon collector  distribution20. The number 
of reads required to achieve this goal can be described as a random variable R =

∑K
i=1Ri , where R1 = 1 and 

Ri ∼ Geom
(

K−i+1
K

)

, i = 2, . . . ,K . Hence, the expected number of required reads, is:

where Har(·) is the harmonic number.
The expected number of reads required for reconstructing a single combinatorial letter thus remains 

reasonable for the relevant values of K . For example, when using a binomial encoding with K = 5 the expected 
number of reads required for reconstructing a single combinatorial letter is roughly 11.5 , which is very close to 
the experimental results presented in Sect. "Experimental proof of concept".

By Chebyshev’s inequality (See Sect. "Reconstruction probability of a binomial encoding letter"), we can 
derive a (loose) upper bound on the probability of requiring more than E[R]+ cK reads to observe at least one 
read of each member k-mer, where c > 1 is a parameter:

For example, when using a binomial encoding with K = 5 , the probability of requiring more than 26.5 reads 
(corresponding to c = 3 ) is bounded by 0.18 , which is consistent with the experimental result shown in Fig. 5d.

Reconstruction of a combinatorial sequence
When we examine an entire K-subset binomial encoded combinatorial sequence of length l  , we denote by R(l) 
the required number of reads to observe K distinct k-mers in every position. Assuming independence between 
different positions and not taking errors into account, we get the following relationship between c and any desired 
confidence level 1− δ (See Sect. "Reconstruction probability of a binomial encoding letter" for details):

And therefore:

The number of reads required to guarantee reconstruction of a binomial encoded message, at a 1− δ 
probability, with K = 5, and l  synthesized positions, is thus KHar(K)+ cK when

Supplementary Table S2 shows several examples of this upper bound. As demonstrated in the simulations 
and the experimental results, this bound is not tight (See Sects. “An end-to-end combinatorial shortmer storage 
system” and "Experimental proof of concept").

Note that with an online sequencing technology (such as nanopore sequencing) the sequencing reaction can 
be stopped after K distinct k-mers are confidently observed.

To take into account the probability of observing a k-mer that is not included in � (e.g., due to synthesis or 
sequencing error), we can require that at least t > 1 reads of each of the K distinct k-mers will be observed. This 
is experimentally examined in Sect. "Experimental proof of concept", while the formal derivation of the number 
of required reads is not as trivial, and will be addressed in future work.

The above analysis is based only on oligo recovery, which depends solely on the sampling rate, ignoring 
possible mix-up errors (i.e., incorrect k-mer readings). This assumption is based on the near-zero mix-up 
probability attained by the construction of � , which maximizes the minimal Hamming distance between elements 
in � . In Sect. "Experimental proof of concept", this analysis is compared to experimental results obtained from 
using synthetic combinatorial DNA.

An end‑to‑end combinatorial shortmer storage system
We suggest a complete end-to-end workflow for DNA-based data storage with the combinatorial shortmer 
encoding presented in Fig. 2. The workflow begins with encoding, followed by DNA synthesis, storage, and 
sequencing, and culminates in a final decoding step. A 2D Reed-Solomon (RS) error correction scheme, which 
corrects errors in the letter reconstruction (for example, due to synthesis, sequencing, and sampling errors) and 

(1)E[R] =
∑K

i=1
E[Ri] = K

∑K

i=1

1

i
= KHar(K)

(2)P(|R − KHar(K)| ≥ cK) ≤
π2

6c2

(3)P(|R(l)− KHar(K)| ≥ cK) ≤ 1−
(

1−
π2

6c2

)l

< δ

(4)P(R(l) < KHar(K)+ cK) ≥
(

1−
π2

6c2

)l

≥ 1− δ

(5)c ≥
√

1/6π
(

1− (1− δ)1/l
)−1/2
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Figure 2.  End-to-end workflow of a combinatorial DNA storage system. A binary message is broken into 
chunks, barcoded, and encoded into a combinatorial alphabet (i). RS encoding is added to each chunk and each 
column (ii). The combinatorial message is synthesized using combinatorial shormer synthesis (iii), and the DNA 
is sequenced (iv). Next, the combinatorial letters are reconstructed (v). Finally the message goes through 2D RS 
decoding (vi), followed by its translation back into the binary message (vii).
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any missing sequences (such as dropout errors), ensures the integrity of the system. Table 1 shows the encoding 
capacities of the proposed system, calculated on a 1 GB input file with standard encoding and three different 
binomial alphabets (See Supplementary Sect. 8.5). All calculations are based on error correction parameters 
similar to those previously described (See Sect. "Information capacities for selected encodings")3,4,21,22. With these 
different alphabets, up to a 6.5-fold increase in information capacity is achieved per synthesis cycle, compared 
to standard DNA-based data storage. While different error correction codes can be used in this system, for our 
work we chose to implement a 2D RS.

An example of the proposed approach, using a binomial alphabet with N = 16 and K = 5 and 2D RS, is 
detailed below. A binary message is encoded into a combinatorial message using the 4096-letter alphabet. Next, 
the message is broken into 120-letter chunks, and each chunk is barcoded. The 12nt barcodes are encoded 
using RS(6,8) over GF(24) , resulting in 16nt barcodes. Each chunk of 120 combinatorial letters is encoded using 
RS(120,134) over GF(212) . Every block of 42 sequences is then encoded using RS(42,48) over GF

(

212
)

 (See 
Sect. "An end-to-end combinatorial storage system" for details).

To better characterize the potential of this proposed system, we implemented an end-to-end simulation using 
the parameters mentioned above. We simulated the encoding and decoding of 10 KB messages with different 
binomial alphabets and error probabilities, and then measured the resulting reconstruction and decoding rates 
throughout the process. Figure 3a depicts a schematic representation of our simulation workflow and indicates 
how the error rates are calculated (See Sect. "Reconstruction").

The results of the simulation runs are summarized in Fig. 3b–d. Each run included 30 repeats with random 
input texts of 10 KB encoded using 98 combinatorial sequences, each composed of 134 combinatorial letters 
and 16nt barcode, as described above. Each run simulated the synthesis of 1000 molecules on average per 
combinatorial sequence and sampling of a subset of these molecules to be sequenced. The subset size was drawn 
randomly from N(µ, σ = 100), where µ is a parameter. Errors in predetermined rates were introduced during 
the simulation of both DNA synthesis and sequencing, as expected in actual  usage23 (See Sect. "Synthesis and 
sequencing simulation with errors" for details on the simulation runs). Reconstruction rates and Levenshtein 
distances are calculated throughout the simulation process, as described in Fig. 3a.

Notably, the sampling rate is the dominant factor where even with zero synthesis and sequencing errors, low 
sampling rates yield such poor results (Fig. 3c) that the RS error correction is unable to overcome (Fig. 3d). The 
effect of substitution errors on the overall performance is smaller and they are also easier to detect and correct. 
This is because substitution errors occur at the nucleotide level rather than at the trimer level. The minimal 
Hamming distance d = 2 of the trimer set � allows for the correction of single-base substitutions. The use of 2D 
RS error correction significantly improved reconstruction rates, as can be observed in Fig. 3b.

To assess the effect of using the suggested approach on the cost of DNA-based data storage systems, we 
performed an analysis of the different cost components. In brief, we analyzed the effect on the number of 
synthesis cycles and the number of bases to sequence, taking into account the required sequencing depth to 
achieve a desired reconstruction probability (See Sect. "Cost analysis"). Figure 4 depicts the costs of storing 1 GB 
of information using different combinatorial alphabets. Clearly, combinatorial DNA encoding can potentially 
reduce DNA-based data storage costs as the alphabet size grows and each letter encodes more bits. This is 
especially relevant in comparison with the composite encoding scheme presented  in3. While both methods 
increase the logical density by extending the alphabet using mixtures of DNA letters/k-mers and thus reducing 
the synthesis cost (See Fig. 4a), a crucial difference lies in the effect on sequencing costs. Composite DNA uses 
mixed letters with varying proportions of the different letters, which makes reconstruction very challenging 
in larger alphabets and results in very high sequencing costs that undermine the reduced synthesis costs. On 
the other hand, combinatorial DNA encoding uses binary mixtures, which are much simpler to reconstruct, 
therefore maintaining the sequencing costs relatively constant as the alphabet grows (See Fig. 4b). For assessing 
the sequencing costs, we used a coupon collector model presented  in24 to calculate the required sequencing 
depth that ensures a decoding probability with an error rate of less than 10−4 (See Supplementary Sect. 8.5). In 
comparison with the composite encoding scheme, our analysis demonstrates a required sequencing depth that 
grows moderately. Figure 4c analyzes the normalized overall cost, based on different assumptions regarding the 
ratio between synthesis costs and sequencing costs, Csyn : Cseq . With a cost ratio of 500:1, 1000:1, 2000:1, it is 
evident that synthesis costs outweigh the fluctuations in sequencing costs, indicating a monotonic reduction 
in overall costs. This is an improvement compared to the composite DNA approach presented  in3, where costs 
are reduced only up to a certain alphabet size, and then increase again due to the increased sequencing cost. In 
combinatorial DNA encoding, costs continue to drop, while alphabet size increases.

Table 1.  Logical densities for selected encoding schemes. The numbers represent encoding a 1 GB binary 
message using oligos with 14nt barcodes + 2nt RS (standard DNA), and 120 payload letters (from � ) with 14 
extra RS for the payload (the payload and its RS is combinatorial with N and K as indicated).

Type N K

(

N

K

) Bits 
per
letter

Alphabet
size

Bits 
per
sequence

Number of 
sequences Reed Solomon (RS)

Bits per synthesis 
cycle, payload only

Bits per synthesis 
cycle Fold increase

Standard 2 4 240 33,333,334 38,095,248 1.57 1.40 1.0

Binomial 16 3 560 9 512 1,080 7,407,408 8,465,616 7.05 6.30 4.5

Binomial 16 5 4,368 12 4,096 1,440 5,555,556 6,349,248 9.40 8.40 6.0

Binomial 16 7 11,440 13 8,192 1,560 5,128,206 5,860,848 10.19 9.10 6.5
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Experimental proof of concept
To assess and establish the potential of large combinatorial alphabets, we performed a small-scale experimental 
proof of concept study demonstrating the encoding and decoding of a 96-bit input message, which is equivalent 
to the text “DNA Storage!”. Since combinatorial DNA synthesis technology is not yet available, we demonstrated 
the combinatorial approach using Gibson assembly as an ad-hoc imitation for combinatorial synthesis. We 
constructed two combinatorial sequences, each containing a barcode and four payload cycles over a binomial 
alphabet with N = 16 and K = 5 . The assembly was performed using DNA fragments composed of a 20-mer 
information sequence and an overlap of 20 bp between adjacent fragments, as shown in Fig. 5a. The assembled 
DNA was then stored and sequenced for analysis using Illumina Miseq (See Table 3 and Sect. "Cost analysis" for 
details about the sequencing procedures).

The sequencing output was then analyzed using the procedure described in Sect. “Decoding and analysis”. 
Both combinatorial sequences were successfully reconstructed from the sequencing reads, as presented in Fig. 5b, 
and Supplementary Figs. S1, S2, and S3. The experiment also demonstrated the robustness of the binomial DNA 
encoding for synthesis and sequencing errors, as described in Fig. 5c. We observed a minor leakage between the 
two synthesized sequences, which was overcome by the reconstruction pipeline (See Fig. 5c, and Supplementary 
Figs. S1, S2, and S3). Note that there is a partial overlap between the member k-mers of the two sequences.

For comparison, a recent study  by14 encoded the 84-bit phrase “HelloWord” using a different encoding 
and synthesis approach. A comparison between the two experiments is shown in Table 2. For example, while we 
used Gibson assembly as our synthesis method, they introduced a new method called Bridge Oligonucleotide 
Assembly. We encoded 12 bits per synthesis cycle and assembled four combinatorial fragments in each 
sequence,  while14 encoded 84 bits in a single combinatorial cycle. Our 96-bit were split and encoded using two 
combinatorial sequences, while they encoded the same 84-bits message, in its full format, on eight different 

a b

c d
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RS RS
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ivi ii iii
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Payload RS

RS RS
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1 2 3

8 7 6
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Figure 3.  Simulation of an end-to-end combinatorial shortmer encoding. (a) A schematic view of the 
simulation workflow. A text message is translated into a combinatorial message (1), and encoded using RS 
error correction on the barcode and payload (2). Each block is encoded using outer RS error correction (3). 
DNA synthesis and sequencing are simulated under various error schemes, and the combinatorial letters are 
reconstructed (4–5). RS decoding is performed on each block (6) and on each sequence (7) before translation 
back to text (8). The Roman numerals (i-iv) represent the different error calculations. (b) Error rates in different 
stages of the decoding process. Boxplot of the normalized Levenshtein distance (See Sect. "Reconstruction") 
for the different stages in a simulation (30 runs) of sampling 100 reads, with an insertion error rate of 0.01. The 
X-axis represents the stages of error correction (before 2D RS decoding (iv), after RS payload decoding (iii), and 
after 2D RS decoding (ii)). (c,d) Sampling rate effect on overall performance. Normalized Levenshtein distance 
as a function of sampling rate before RS decoding (c) and after 2d RS decoding (ii). Different lines represent 
different error types (substitution, deletion, and insertion) introduced at a rate of 0.01.
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sequences repeatedly. Our N = 16 and 5 combinatorial factor, while their N = 96 and a higher 32 combinatorial 
factor.

To test the effect of random sampling on the reconstruction of combinatorial sequences, we performed a 
subsampling experiment with N = 500 repeats, presented in Fig. 5d–f. We subsampled varying numbers of reads 
from the overall read pool and ran the reconstruction pipeline. Note that, as explained, the reconstruction of a 
single binomial position requires finding K = 5 inferred k-mers. That is, observing five unique k-mers at least 
t  times. We tested the reconstruction performance using t = 1, 2, 3, 4 and recorded the effect on the successful 
reconstruction rate and required number of reads.

For t = 1 , reconstruction required analyzing 12.26 reads on average. These included 0.45 reads that contained 
an erroneous sequence that could not be mapped to a valid k-mer, and thus ignored. Note that the design 
of the set � of valid k-mers allows us to ignore only the reads for which the Hamming distance for a valid 
k-mer exceeded a predefined threshold ( d = 3 ). If we ignored all the reads containing a sequence with non-zero 
Hamming distance to all k-mers, we would have skipped 2.26 extra reads, on average.

As expected, requiring t = 2 copies of each inferred k-mer resulted in an increase in the overall number of 
analyzed reads. Reconstruction of a single combinatorial letter required analyzing an average of 21.6 reads with 
0.83 skipped and 3.99 non-zero Hamming distance reads. The complete distribution of the number of reads 
required for the reconstruction of a single position using t = 1, 2 is presented as a histogram in Fig. 5d.

To reconstruct a complete combinatorial sequence of 4 positions, we required the condition to hold for all 
positions. For t = 1 , this entailed the analysis of 55.60 reads on average, out of which 1.04 reads were identified 
as erroneous and thus ignored, and with 7.36 non-zero Hamming distance reads. For t = 2 , an average of 102.66 
reads were analyzed with 1.97 skipped and 13.24 non-zero Hamming distance reads. The complete distribution 
of the number of reads required for reconstructing a complete combinatorial sequence using t = 1, 2 is presented 
as a histogram in Fig. 5e.

Note that these results correspond to the analysis presented in Sect. “Reconstruction probabilities for binomial 
encoding”, for the reconstruction of a single binomial position and a complete binomial sequence. Calculating 
the bound presented in Supplementary Table S2, with K = 5 and l = 4 , yields a requirement of approximately 

a b

c

Figure 4.  Cost analysis for a combinatorial DNA-based data storage system using different alphabets. (a) 
synthesis cost as a function of the alphabet size (presented as bit per letter, for simplicity). The cost is calculated 
as the number of synthesis cycles required for storing 1 GB of information. (b) Sequencing cost as a function 
of the alphabet size. Similarly to (a). (c) Normalized total cost as a function of the alphabet size for different 
synthesis-to-sequencing cost ratios. Costs are normalized by the total cost of a standard DNA-based system.
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140 reads to obtain 1− δ = 0.99 probability of reconstruction. Clearly, this is well above the observed number 
of 55.60 reads. Note, as explained, the calculated bound is a loose bound.

The reconstruction procedure ends with a set of inferred k-mers that represent the inferred combinatorial 
letter. This set is not guaranteed to be correct, especially when using t = 1 , which means that noisy reads may 
result in an incorrect k-mer included in the inferred letter. Figure 5f depicts the rate of incorrect reconstructions 
as a function of the number of required copies for each inferred k-mer ( t = 1, 2, 3, 4 ). Note that with t ≥ 3 results 
in 100% successful reconstruction. This, however, comes with a price, where more reads must be analyzed.

Discussion
In this study, we introduced combinatorial shortmer encoding for DNA-based data storage, which extends the 
approach of composite DNA by resolving some of its sensitivity related issues. Combinatorial shortmer encoding 
allows for increased logical density while maintaining low error rates and high reconstruction rates. We explored 
two encoding schemes, binary and binomial, and evaluated some of their theoretical and practical characteristics. 
The inherent consistency of the binomial encoding scheme, where every letter in the sequence consists of exactly 
K distinct member k-mers, ensures uniformity in the encoded DNA sequences. This approach not only simplifies 
the reading process, but also allows for a more streamlined decoding. For instance, technologies like nanopore 
sequencing enable continuous sequencing until all k-mers at a given position are confidently observed.

Our suggested approach is designed to inherently overcome base substitution errors, which are the most 
common errors expected in every DNA-based data storage system that includes DNA sequencing. This is 
achieved by the selection of a set of N k-mer building blocks to be resilient to single-base substitutions. Other 
considerations may also be incorporated in the selection of the set of valid k-mers, taking into account any 
biological, chemical, or technological constraints. This represents an inherent tradeoff in DNA-based data storage 
between sequence constraints and information density. Insertion and deletion errors, which usually originate 
in the synthesis process, are more challenging to overcome. We introduced a 2D RS error correction scheme 
on the shortmer level, allowing for a successful message reconstruction even with error levels exceeding those 
expected in reality.

Our study highlights the significant effect of sampling rates on the overall performance of the system. The 
accuracy and completeness of sequence reconstruction require each of the sequences to be observed with a 
sufficiently high coverage. Our subsampling experiments underpin this observation, demonstrating the need 
for calibration of sampling rates to ensure the desired fidelity in DNA-based data storage. The crucial role of 
the sampling rate was also highlighted  in3. However, while composite DNA uses mixed letter with varying 
proportions of the different letters, the combinatorial encoding, studied in this current work, uses binary mixtures 
and does not rely on proportions. This potentially allows scaling up the combinatorial encoding without a 
significant effects on the required sampling rates.

Combinatorial DNA coding can potentially reduce the overall costs of DNA-based data storage. Considering 
both sequencing costs, which fluctuate, and synthesis costs, which consistently drop, the increase in the 
alphabet size is accompanied by a decrease in overall cost. However, combinatorial DNA synthesis or assembly 
is still unavailable for large-scale commercial use. Thus, further development of combinatorial DNA synthesis 
technologies will continue to impose limitations and constraints on combinatorial encoding, and determine 
the overall costs.

While our proof-of-concept experiment showed success on a small scale, there are complexities to be 
addressed in considering large-scale applications. These include synthesis efficiency, error correction, and 
decoding efficiency. Nonetheless, the resilience of our binomial DNA encoding for both synthesis and sequencing 
errors highlights its practical potential and scalability. One specific aspect is the effect of combinatorial encoding 
on possible sequence-related constraints. While sequences with unwanted compositions (e.g., containing 
homopolymers) will unavoidably be part of the synthesized mixtures, the uniform sampling of the combinatorial 
shortmers in each position, together with the independence of the different positions, guarantees that only very 
few such sequences will be aythesized. In particular—these will not interfere with successful reconstruction. 
Another challenging aspect of scaling up combinatorial DNA systems is the need to use longer DNA k-mers to 
construct larger sets with the desired constraints. This may make the combinatorial synthesis impractical and 
will require balancing the increase in logical density with the technological complexity.

Several future research directions emerge from our study. First, it is important to develop error correction 
methods for better handling insertion and deletion errors. One approach for achieving this goal, is to adjust 
sampling rates: optimizing the sampling rate, especially in large-scale experiments, can lead to data retrieval at 
high accuracy. While our study highlighted the role of sampling rates in achieving desired outcomes, delving 
deeper into the underlying theory will lead to more improvements. For example, based on theoretical bounds of 
sampling rates, more concrete recommendations can be provided for real-world applications. The development 
of error correction codes, designed specifically to overcome the error types that characterize combinatorial 
encoding, is another important direction for future research. Most notably, transitioning from small-scale proof-
of-concept experiments to larger-scale implementations is an important next step. Evaluating the scalability of 
our method across various scales and complexities will be enlightening, especially when considering synthesis 
efficiency and error rates. Finally, the consideration of advanced sequencing technologies could redefine the 
potential and efficacy of our proposed method, including its future practical implementation.

To sum up, combinatorial DNA synthesis and sequence design are important beyond the scope of DNA-based 
data storage. Generating combinatorial DNA libraries is an efficient tool in synthetic biology, better supporting 
large-scale experiments. DNA synthesis technologies that can incorporate a combinatorial synthesis of longer 
DNA fragments will enable the design and generation of more DNA libraries with applications in data storage 
and beyond.
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Methods
Reconstruction probability of a binomial encoding letter
Let the number of reads required for reconstruction be a random variable R =

∑K
i=1Ri where R1 = 1 and 

Ri ∼ Geom
(

K−i+1
K

)

, i = 2, . . . ,K . Hence, the expected number of required reads, is:

where Har(·) is the harmonic number.
Using the independence of Ri , the variance of R can be bound by  (See25):

By Chebyshev’s inequality, we get an upper bound (a loose bound) on the probability of requiring more than 
E[R]+ cK reads to observe at least one read of each member k-mer:

Let c = b π√
6
 , or b = c

√
6

π
 , and we obtain:

Or specifically:

We now turn to address the reconstruction of an entire oligo of length l  . Let R(l) be the random variable 
representing the number of reads required to have observed all the K member k-mers in every position. Setting 
any δ > 0 , if we show that P(R(l) > m) ≥ 1− δ , then we know that by accumulating m reads the probability of 
correct full reconstruction is more than 1− δ . From Eq. (11), and assuming independence of the positions (in 
terms of observing all K member k-mers), we get Eq. (12):

From which we can extract c , so that:

Which yields:

This process allows us to evaluate the sequencing depth complexity. For example, consider l = 100 and 
δ = 0.01 . We want to find c , so that using KHar(K)+ cK reads will reconstruct the entire sequence with 0.99 
probability. We therefore set:

(6)E[R] =
∑K

i=1
E[Ri] = K

∑K

i=1

1

i
= KHar(K)

(7)Var(R) =
∑K

i=1
Var(Ri) < K2

(

1

12
+

1

22
+ · · · +

1

K2

)

<
π2

6
K2

(8)P(|R − E(R)| ≥ bσ) ≤
1

b2

(9)P

(

|R − E(R)| ≥ b
π
√
6
K

)

≤
1

b2

(10)P(|R − E[R]| ≥ cK) ≤
π2

6c2

(11)P(|R − KHar(K)| ≥ cK) ≤
π2

6c2

(12)P(R(l) < KHar(K)+ cK) ≥
(

1−
π2

6c2

)l

(13)
(

1−
π2

6c2

)l

≥ 1− δ

(14)
c ≥

π
√

6
(

1− (1− δ)
1
l

)

Figure 5.  Experiment analysis. (a) A schematic view of the Gibson assembly. Each combinatorial sequence 
consists of a barcode segment and four payload segments (denoted as cycles 1–4). (b) Reconstruction results 
of the two combinatorial sequences. The color indicates read frequency, and the member k-mers are marked 
with orange boxes. (c) The distribution of reads over the 16 k-mers in an example combinatorial letter. 
Overlaid histograms represent the percentage of reads for each of the 16 k-mers for the same position in our 
two combinatorial sequences. This, in fact, is an enlarged view of the two c4 columns of panel b. (d) Required 
number of reads for reconstructing a single combinatorial letter. A histogram of the number of reads required 
to observe at least t = 1, 2 reads from K = 5 inferred k-mers. The results are based on resampling the reads 500 
times, the data represents cycle 4. (e) Required number of reads for reconstructing a four-letter combinatorial 
sequence. Similar to d. (f), Reconstruction failure rate as a function of the required multiplicity t  . Erroenous 
reconstruction rate shown for different values of required copies to observe each inferred k-mer ( t = 1, 2, 3, 4 ). 
The mean required number of reads for reconstruction is displayed using a secondary Y-axis in the dashed lines.

◂
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And get:

And therefore, using 128 reads guarantees reconstruction with 0.99 probability.

An end‑to‑end combinatorial storage system
In Sect. “An end-to-end combinatorial shortmer storage system” we propose an end-to-end combinatorial storage 
system, as follows.

Combinatorial encoding and padding
A binary message is encoded using a large k-mer combinatorial alphabet (e.g., trimer-based alphabet of size 
|�| = 4096 letters, with N = |�| = 16 ), resulting in r = 12 bits per combinatorial letter. The binary message is 
zero-padded to ensure its length is divisible by r prior to the combinatorial encoding. The complete message is 
broken into sequences of set length l = 120 , each sequence is then marked with a standard DNA barcode and 
translated using the table presented in the Encode legend (See Supplementary Sect. 8.2).

The length of the complete combinatorial sequence must be divisible by the payload size l  and by the block 
size B . As described in Fig. 6, this is ensured using another padding step, and the padding information is included 
in the final combinatorial sequence.

Error correction codes
The 2D error correction scheme includes the use of three  RS26 encodings: on each barcode, on the payload part 
of each sequence, and an outer error correction code on each block of sequences.

• Each barcode is encoded using a systematic RS(6,8) code over GF(24) , transforming the unique 12nt barcode 
into a 16nt sequence.

• Each 120 combinatorial letter payload sequence is encoded using an RS(120,134) code over GF(212) , resulting 
in a sequence of length 134 combinatorial letters.

• To protect against sequence dropouts, an outer error correction code is used on the columns of the matrix 
(See Fig. 6). Each block of B = 42 sequences, is encoded using a RS(42,48) RS code GF

(

212
)

 . This is applied 
in each column separately.

For simplicity, Fig. 6 demonstrates the encoding of ~ 0.1 KB using shorter messages with simpler error 
correction codes. The following parameters are used:

• A barcode length of 6nt encoded using RS(3,5) code over GF
(

24
)

 to get 10nt.
• A payload length of l = 12 encoded using RS(12,18) over GF

(

29
)

 for the 
(

16
3

)

 binomial alphabet.
• A 10-sequence block encoded, column-wise, using a (10,15) RS code over GF(29).

(15)
(

1−
π2

6c2

)100

≥ 0.99

(16)c ≥
π

√

6
(

1− (0.99)0.01
)

= 127.94

Table 2.  Comparison of our experiment with data  from14.

This work Yan et al.14

Message length (bits) 96 84

Logical density (bits/ Synthesis Cycle) 12 84

Sequence length (Cycles) 4 1

Number of sequences 2 8

Number of unique k-mers (N) 16 96

Number of unique k-mers in each letter (K) 5 32

Sequence length 220 bp 75 bp

Barcode length 20 bp 25 bp

Space / Adjacent fragments 20 bp 25 bp, same in all BC

Payload length 20 bp 25 bp

Sequencing method Ilumina Miseq Nanopore

Synthesis Gibson Assembly Bridge Oligonucleotide Assembly

Amount of space / Adjacent fragments 6 1
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The 824 bits are first padded to be 828 = 92 ∗ 9 . The 92 combinatorial letter message is split into 7 sequences of 
12 letters and an additional sequence of 8 letters. Finally, a complete block of 12 sequences (total of 10 ∗ 12 = 120 
letters) is created by padding with one additional sequence of 12 letters and including the padding information 
as the last sequence.

Synthesis and sequencing simulation with errors

• Simulating the synthesis process. DNA molecules pertaining to the designed sequences are synthesized 
using combinatorial k-mer DNA synthesis (See Fig. 1b). For each combinatorial sequence, we first determine 
the number of synthesized copies by sampling from X ∼ N(µ = 1000, σ 2 = 100) . Let x be the number of 
copies for a specific sequence. Next, for every position in the sequence, we uniformly sample x independent 
k-mers from the set of member k-mers of the combinatorial letter in the specific position. We concatenate 
the sampled k-mers to the already existing x synthesized molecules.

• Error simulation. Synthesis and sequencing errors are simulated as follows. Error probabilities for deletion, 
insertion, and substitution are given as parameters denoted as Pd , PI , and Ps respectively. Deletion and 
insertion errors are assumed to occur during k-mer synthesis and thus implemented on the k-mer level (i.e., 
an entire k-mer is deleted or inserted in a specific position during the synthesis simulation). Substitution 
errors are assumed to be sequencing errors and hence implemented on a single base level (i.e., a single letter 
is substituted, disregarding the position within the k-mer).

• Mixing. Post synthesis, molecules undergo mixing to mirror genuine molecular combinations. This is 
achieved through a randomized data line shuffle using an SQLite database, enabling shuffle processes even 
for sizable input  files27.

Figure 6.  Example of message coding, including padding and RS error correction. Encoding of a ~ 0.1 KB 
message into a 512 letter binomial alphabet ( N = 16,K = 3) . First, bit padding is added, included here in 
the letter 1σ257 . Next, block padding is added, included here in 2σ1 and 3σ1 . Padding information is included in the 
last sequence of all blocks. The last sequence holds the number of padding binary bits. In this example, 4σ149 
represents 148 bits of padding, composed of 4+ (4 ∗ 9)+ (12 ∗ 9)bits , 4 bits from 1σ257 , 4 letters from 2σ1 and 12 
letters from 3σ1.
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• Reading and sampling. From the simulated synthesized molecule set, a subsample of predefined size 
S ∗ numberofsynthesizedseqeunces is drawn, simulating the sampling effect of the sequencing process.

Reconstruction

• Barcode decoding The barcode sequence of each read is decoded using the RS(6,8) code.
• Grouping by barcode The reads are then grouped by their barcode sequence to allow the reconstruction of 

the combinatorial sequences.
• Filtering of read groups Barcodes (set of reads) with less than 10% of the sampling rate S reads are discarded.
• Combinatorial reconstruction For each set of reads, every position is analyzed separately. The K  most 

common k-mers are identified and used to determine the combinatorial letter σ in this position. Let 
� be the difference between the length of the analyzed reads and the length of the designed sequence. 
� = l − len(read) . Reads with |�| > k − 1 are discarded from the analysis. Invalid k-mers (not in �) are 
replaced by a dummy k-mer Xdummy.

• Missing barcodes Missing barcodes are replaced with dummy sequences to enable correct outer RS decoding.
• Normalized Levenshtein distance Levenshtein distance between the observed sequence O and the expected 

sequence E is  calculated28,29. Normalized Levenshtein distance is calculated by dividing the distance by the 
length of the expected sequence:

Cost analysis
Synthesis cost estimation was performed using the logical density calculation presented in Supplementary 
Sect. 8.5 and Supplementary Table S1. To calculate the sequencing costs, we used the coupon collector model 
presented  in24 to assess the required sequencing depth given the combinatorial alphabet. Figure 4b indicates the 
total number of reads required for reconstructing the sequences, calculated as the required sequencing depth 
multiplied by the number of sequences from Supplementary Sect. 8.5 and Supplementary Table S1. The analysis 
was  per formed on the  fol lowing set  of  combinator ia l  a lphabets :  Standard DNA, 
(
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Proof of concept experiment
The proof-of-concept experiment was performed by imitating combinatorial synthesis using Gibson assembly 
of larger DNA fragments. Each DNA fragment was composed of a 20-mer information sequence and an overlap 
of 20 bp between adjacent fragments, as depicted in Fig. 5a. Two combinatorial sequences were designed, each 
composed of a barcode fragment, 4 payload fragments, and Illumina Miseq P5 and P7 anchors at the ends. The 
information fragments included in each combinatorial position were chosen from a set of 16 sequences with 
sufficient pair-wise distance. The full list of DNA sequences and the design of combinatorial sequences is listed 
in Supplementary Sect. 8.6.

DNA assembly and sequencing
Payload, barcode, and P7 anchor fragments with 20 bp overlaps for the purpose of Gibson assembly were 
produced by annealing complementary oligonucleotides manufactured by Integrated DNA Technologies (IDT). 
Oligos were dissolved in Duplex Buffer (100 mM Potassium Acetate; 30 mM HEPES, pH 7.5; available from 
IDT) to the final concentration of 100 micromolar. For annealing, 25 µl of each oligo in a pair were combined 
to the final concentration of 50 micromolars. The oligo mixes were incubated for 2 min at  940 C, and gradually 
cooled down to room temperature. The annealed payload oligos that belonged to the same cycle (5 oligos total) 
were mixed to the final concentration of 1 micromolar per oligo—a total of 5 micromolar, by adding 2 µl of each 
annealed oligo into the 90 µl of nuclease-free water—a final volume of 100 µl. Annealed barcode and P7 anchor 
oligos were also diluted to the final concentration of 5 micromolar in nuclease-free water, after thorough mixing 
by vortexing. The diluted oligos were stored at −20 °C.

Immediately prior to the Gibson assembly, payload oligo mixes, barcode, and P7 anchor oligos were further 
diluted 100-fold to the final working dilution of 0.05 pmol/microliter in nuclease-free water. Gibson reaction 
was assembled by adding 1 µl (0.05 pmol) of barcode, 4 × cycle mixes, and P7 anchor to the 4 µl of nuclease-free 
water and supplemented with 10 µl of NEBuilder HiFi DNA assembly master mix (New England Biolabs (NEB)) 
to the final volume of 20 µl, according to the manufacturer instructions. The reactions were incubated for 1 h 
at 50 °C, and purified with AmpPure Beads (Thermo Scientific) at 0.8X ratio (16 µl of beads per 20 µl Gibson 
reaction) to remove free oligos / incomplete assembly products. After adding beads and thorough mixing, 
the reactions were incubated for 10 min at room temperature and then placed on a magnet for 5 min at room 
temperature. After removing the sup, the beads were washed twice with 100 µl of 80% ethanol. The remaining 
washing solution was further removed by a 20 µl tip, and the beads dried for 3 min on the magnet with an open 
lid. After removing from the magnet, the beads were resuspended in 22 µl of IDTE buffer (IDT), incubated for 
5 min at room temperature, and then placed back on the magnet.

20 µl of eluate were transferred into the separate 1.7 ml tube. 5 µl of the eluted DNA were used as a template 
for PCR amplification combined with 23 µl of nuclease-free water, 1 µl of 20 micromolar indexing primer 5, 

(17)Normalized Levenshtein distance (O,E) =
Levenshtein distance (O,E)

|O|
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1 µl of 20 micromolar indexing primer 7, and 10 µl of rhAMPseq master mix v8.1—a total of 40 µl. After initial 
denaturation of 3 min at 95 °C, the PCR reaction proceeded with 50 cycles of 15 s at 95 °C, 30 s at 60 °C, and 30 s 
at 72 °C, followed by final elongation of 1 min at 72 °C and hold at 4 °C. The PCR reactions were purified with 
Ampure beads at 0.8X ratio (32 µl beads per 40 µl of PCR reaction) as outlined above, and eluted in 22 µl IDTE 
buffer. The concentration and the average size of the eluted product were determined by Qubit High Sensitivity 
DNA kit and Agilent 2200 TapeStation system with D1000 high-sensitivity screen tape respectively. The eluted 
product was diluted to 4 nM concentration, and used as an input for denatured sequencing library preparation, 
per manufacturer instructions. The sequencing was performed on Illumina Miseq apparatus (V2 chemistry, 
2 × 150 bp reads) using 6 picomolar denatured library supplemented with 40% PhiX sequencing control.

Decoding and analysis
This section outlines the key steps involved in our sequencing analysis pipeline, aimed at effectively processing 
and interpreting sequenced reads. The analysis pipeline gets the sequencing output file containing raw reads in 
“.fastq” format and a design file containing the combinatorial sequences.

Analysis steps:

1. Length filtering. We saved reads that were 220 bp in length, retaining only those corresponding to our 
designed read length.

2. Read retrieval. We carefully checked each read for the presence of BCs, universals, and payloads. To keep 
our data accurate, we discarded reads where the BCs, universals, or payloads had a Hamming distance of 
more than 3 errors.

3. Identifying inferred k-mers. For every BC and each cycle, we counted the K  most common k-mers. We 
then compared these with the design file to quantify those matching (Fig. 5b) (See Table 3).

Information capacities for selected encodings
Table 1 illustrates the logical densities derived from encoding a 1 GB binary message using oligonucleotides with 
a 12nt barcode and an additional 4nt for standard DNA RS error correction, and a 120 letters payload with 14 
extra RS for the payload in combinatorial encoding schemes with parameters N and K.

The densities were calculated as follows:

(18)Bits per Letter =
⌊

log2

((

N
k

))⌋

(19)Alphabet Size = 2Bits per Letter

(20)Bits per Sequence = Bits per Letter × Payload length.

(21)Number of Sequences = ⌈
Message Size in bits

Bits per Sequence
⌉

(22)Number of sequences padded : Total number of sequences after padding for the block size

(23)Padding is = Block Size −
(

Number of Sequences%Block Size
)

(24)Number of sequences with RS =
Number of sequences padded

Block Size
× Block Size AfterRS

Table 3.  Summary of sequencing reads analyzed in the study. The table shows the total number of reads 
obtained, the number filtered by length (220 bases) for analysis, and the counts of reads associated with BC1, 
BC2, and those that did not have any recognizable barcode (No BC).

Reads Count

Total PF reads 2,634,683

Reads of length 220 2,139,071

BC1 1,365,295

BC2 768,755

No BC 5021
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Data availability
The raw data is available in ENA (European Nucleotide Archive). The datasets generated and/or analyzed 
during the current study are available in the ENA (European Nucleotide Archive) repository, Accession 
Number—ERR12364864.

Code Availability
Implementation of the algorithms and instructions on how to use them can be found in the GitHub repository in 
the following links: https:// github. com/ Inbal Preuss/ dna_ stora ge_ short mer_ simul ation, https:// github. com/ Inbal 
Preuss/ dna_ stora ge_ exper iment.
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