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Interplay between tie strength 
and neighbourhood topology 
in complex networks
Maciej J. Mrowinski *, Kamil P. Orzechowski , Agata Fronczak  & Piotr Fronczak 

Granovetter’s weak ties theory is a very important sociological theory according to which a correlation 
between edge weight and the network’s topology should exist. More specifically, the neighbourhood 
overlap of two nodes connected by an edge should be positively correlated with edge weight (tie 
strength). However, some real social networks exhibit a negative correlation—the most prominent 
example is the scientific collaboration network, for which overlap decreases with edge weight. It 
has been demonstrated that the aforementioned inconsistency with Granovetter’s theory can be 
alleviated in the scientific collaboration network through the use of asymmetric measures. In this 
paper, we explain that while asymmetric measures are often necessary to describe complex networks 
and to confirm Granovetter’s theory, their interpretation is not simple, and there are pitfalls that one 
must be wary of. The definitions of asymmetric weights and overlaps introduce structural correlations 
that must be filtered out. We show that correlation profiles can be used to overcome this problem. 
Using this technique, not only do we confirm Granovetter’s theory in various real and artificial social 
networks, but we also show that Granovetter-like weight-topology correlations are present in other 
complex networks (e.g. metabolic and neural networks). Our results suggest that Granovetter’s 
theory is a sociological manifestation of more general principles governing various types of complex 
networks.

While this is not always the case, the weights of edges in networks are usually quantitative expressions of the 
mutual relationship between nodes. Be it the number of scientific collaborations between authors or the number 
of mentions in a social network, the weight of an edge often signifies the strength of the connection between 
nodes. It stands to reason that this strength must, in some way, correlate with the network’s structure—specifi-
cally, with the relative position of nodes and their neighbourhoods within the network.

Mark Granovetter, in his famous work strength of weak ties1,2, introduced a theory which aims to explain the 
aforementioned link between the weights of edges and the topology of the network. An example that illustrates 
Granovetter’s hypothesis can be found in Fig. 1, which shows two fully connected clusters of nodes. According 
to Granovetter, since virtually all nodes in each cluster have the same neighbourhoods, we should expect that 
edge weights (tie strengths) within clusters will be high. A single edge also connects the clusters. Edge weight 
of this connection should be low, as nodes at both sides of the link do not share any neighbours. Granovetter’s 
theory also states that weak ties, like the one connecting the clusters in our example, are crucial to the diffusion 
of information in the network and nodes that have access to such ties have an advantage over those that do not. 
In this work, however, we are only interested in the first part of the theory, that is in weight-topology correlations.

In more formal terms, the first part of Granovetter’s theory states that edge weight is positively correlated with 
the overlap of the neighbourhood of two connected nodes (see Fig. 2a). The overlap between neighbourhoods 
of node i and node j is defined in the following way3

where nij is the number of common neighbours of nodes i and j, ki and kj are degrees of nodes i and j. It is worth 
noting that overlap, as defined above, is a symmetric measure

(1)Oij =
nij

(ki − 1)+ (kj − 1)− nij
,

(2)Oij = Oji ,
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and we will refer to it as symmetric overlap to emphasize this fact. Similarly, weights w are also assumed to be 
symmetric, that is

Granovetter’s theory in this form—that is, a monotonically increasing relation between Oij and wij—has been 
empirically confirmed, to various extents, in real social networks3–10, like the mobile communication network. 
However, there are also counterexamples to the theory, one of which is the scientific collaboration network11–13. 
In this network, nodes represent authors, and an edge connects two authors if they co-authored at least one 
manuscript. The symmetric weight wij equals the number of manuscripts co-authored by authors i and j.

At first glance, the scientific collaboration network seems to defy Granovetter’s theory, as neighbourhood 
overlap, on average, decreases with edge weight for the majority of edges (see Fig. 2b). We have shown, however, 
that this supposed disagreement stems from improper definitions of weights and overlaps14. Or, more specifically, 
from the fact that symmetric measures cannot properly describe the properties of this network.

Figure 3 illustrates the problem with symmetric measures. Panel (a) shows two nodes, left l and right r, with 
degrees kl = kr = 4 . The nodes share two common neighbours. In this case, symmetric overlap equals

Since the degrees of both nodes are identical, the two common neighbours constitute the same fraction of 
the neighbourhood of each node. In such a scenario, symmetric overlap accurately reflects this observation 
from the standpoint of both nodes. However, symmetric overlap fails when assessing nodes with vastly different 
degrees. In Fig. 3b, the left node with kl = 4 shares two common neighbours with the right node, whose degree 
is kr = 16 . Intuitively, the left node should assign much greater significance to the two common neighbours than 
the right node. Symmetric overlap cannot be used as a measure of this significance, as for both nodes it equals

(3)wij = wji .

(4)Olr = Orl =
2

(4− 1)+ (4− 1)− 2
=

2

4
=

1

2
.

(5)Olr = Orl =
2

(4− 1)+ (16− 1)− 2
=

2

16
=

1

8
.

Figure 1.   An example illustrating Granovetter’s theory. A detailed description can be found in the text.

Figure 2.   The average value of symmetric overlap as a function of symmetric weight for (a) Twitter, in which 
Granovetter’s theory holds, and (b) DBLP. In the second panel, for the majority of samples (cf. heatmap in 
Fig. 7a), the symmetric overlap decreases with the symmetric weight, defying Granovetter’s theory. Note that 
the white curve in Fig. 7a is equivalent to the curve in panel (b) in this figure (the only difference is that in this 
figure, the Y axis is not logarithmic, and we averaged the results arithmetically, instead of using the geometric 
mean like in Fig. 7. The curve in panel (a) is the same as the white curve in Fig. 5a.
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It is a low value, clearly skewed towards the node with the higher degree.
These two examples show that symmetric measures work properly when dealing with homogeneous networks, 

where we compare similar nodes—as was the case for many networks in which Granovetter’s theory was proven 
to hold. Non-homogeneous networks, like the scientific collaboration network, which is scale-free15,16 (there 
are often nodes with highly different degrees on both sides of an edge), require a different approach. The innate 
asymmetry of these networks suggests that one must use asymmetric measures instead of symmetric ones. In14, 
we introduced the asymmetric overlap Q:

with

Returning to the example from Fig. 3b, asymmetric overlap for the left node is

while for the right node, we have

These two values of overlap properly convey the importance of the shared neighbourhood from the perspec-
tive of each node separately. Asymmetric overlap reflects the asymmetric relationships of authors in the scientific 
collaboration network (and other non-homogeneous networks). What can be a large fraction of collaborators 
from the perspective of one author, can be a negligible fraction from the perspective of another author.

Symmetric definitions of weights suffer from similar issues in non-homogeneous networks. Symmetric weight 
in the scientific collaboration network usually equals the number of collaborations (co-authored articles) between 
two authors. However, the importance of a single collaboration depends on the total number of collaborations. If 
someone wrote only one paper in collaboration with an author who published tens or hundreds of manuscripts, 
then intuitively, the strength of that tie (the weight of the edge) should be greater from the perspective of the 
former author. Thus, in14, we also introduced the asymmetric definition of weight v:

where wij is the symmetric weight, and mi is the number of papers published by the i-th author. For asymmetric 
weights, we also have

Using asymmetric overlaps and asymmetric weights, we showed that Granovetter’s theory holds in the sci-
entific collaboration network. We also postulated that these are natural and intuitive tools capable of properly 
describing scale-free networks, with application to other problems, eg. link prediction17. However, these asym-
metric definitions introduce a certain non-obvious issue, especially when it comes to confirming Granovetter’s 
theory.

(6)Qij =
nij

ki − 1
,

(7)Qij  = Qji .

(8)Qlr =
2

4− 1
=

2

3
,

(9)Qrl =
2

16− 1
=

2

15
.

(10)vij =
wij

mi
,

(11)vij  = vji .

a)

b)

Figure 3.   Examples of two connected nodes with (a) similar and (b) vastly different degrees.
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The nature of this theory—or rather, the nature of the correlation between weights and overlaps postulated by 
Granovetter—is sociological. That is, the correlation must stem from actual social interactions between entities 
represented by nodes in the network. In contrast to that, measures defined in (6) and (10) introduce structural 
correlations to the mix—correlations that result from the topology of the network. It is not unreasonable to 
assume that the number of papers published by an author ( mi ) will relate in some way to the total number of 
collaborators ( ki)—intuitively, one can expect a positive correlation between these two variables. It raises the 
following questions: What are we really observing if we detect a correlation between asymmetric overlap and 
asymmetric weight? What is the source of that correlation? Are we truly confirming Granovetter’s theory, or are 
we merely misinterpreting the effects of the network’s topology? This paper aims to dispel these doubts using 
tools introduced in the next section.

Methods
Let us reiterate the problem mentioned in the Introduction and define it in a clearer and more tangible way. 
The main assumption behind Granovetter’s theory is that weights in social networks are not assigned to edges 
randomly. Instead, they quantify the strength of interpersonal interactions and follow various patterns dictated 
by the nature of these interactions. One such pattern is that the strength of interactions should be directly tied 
to the overlap between social circles of nodes. The higher the overlap, the greater the strength of interaction. It 
is an intuitive and relatable conclusion—for example, ties within a family, which is a densely connected social 
circle, should be stronger than ties within a workplace.

Assuming that Granovetter’s theory is correct, we could expect that in a network in which weights are assigned 
completely at random, the correlation between overlap and weight does not exist at all. By the same token, if 
we were to randomize weights in a network by shuffling them among the edges, such a procedure should also 
destroy the correlation between overlaps and weights. Unfortunately, while this is true for symmetric measures, 
asymmetric weights and overlaps still exhibit correlation even with randomised weights. The source of these 
correlations was mentioned in the previous section, and it is the structural correlation between mi and ki , which 
are in the denominators of the asymmetric measures.

In fact, for reasons that will be explained in detail in the next section, we will use a definition of asymmetric 
weight different to the one introduced in14. In this work, asymmetric weight will be defined as (cf. Eq. 10)

where si is the strength of the i-th node

Here, the structural correlations are even clearer. Since si ∝ ki
18 (for example, if we assume that all weights 

wij = 1 , then si is equal to ki),

and

we must have

The existence of the correlation between Qij and vij is largely independent of the distribution of symmetric 
weights wij in the graph. That is, if we were to shuffle existing weights between edges or assign completely new 
weights to edges according to some probability distribution, this structural correlation would still be present.

The challenge is, then, to decouple the structural correlations from Granovetter-like social correlations while 
keeping the asymmetric definitions of strengths and overlaps. Thankfully, this is hardly a new kind of problem, 
and there are tools capable of dealing with similar issues. More specifically, we are going to employ so-called 
correlation profiles19,20, which were used before to study mixing patterns in complex networks (correlations 
between node degrees at the ends of the same edge)21–24.

The idea behind correlation profiles is simple but powerful. One needs to compare the properties of the actual 
network with the properties of its randomised realisations (the null model). If the null model is chosen correctly, 
then the difference between random realisations and the actual network should result not from structural cor-
relations but, in our case, from sociological processes (which are not present in the null model) that govern the 
assignment of weights to edges.

Correlation profiles are constructed using two simple ratios. If we want to study some pattern p observed in 
a network, then we have to compare the number N(p) of occurrences of that pattern in the actual network with 
the average number 〈Nr(p)〉 of occurrences of the same pattern in randomised realisations of the network. Using 
these two numbers, we can define the ratio

(12)vij =
wij

si
,

(13)si =
∑

j

wij .

(14)vij ∝
1

si
,

(15)Qij ∝
1

ki
,

(16)Qij ∝ vij .
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If R(p) is close to 1, then there is no significant difference between the null model and the actual network. 
It follows that pattern p is associated with properties captured in the null model. On the other hand, if R(p) is 
higher or lower than 1, then there are mechanisms in the actual network that are responsible for the creation (or 
dissolution) of pattern p that are not present in the null model.

The second ratio—Z-score—is defined as

where �Nr(p) is the standard deviation of Nr(p) in the randomised realisations of the network. This ratio deter-
mines the statistical significance of R(p).

In most cases, correlation profiles are represented as two-dimensional images. To give a more concrete 
example, if we want to study the relation between overlap Q and weight v, we divide the Q − v plane into two-
dimensional bins of equal size on a log-log scale (we use a logarithmic scale because Q and v values span multiple 
decades). Patterns p correspond to pairs (v, Q) (each edge in the network introduces two such pairs) falling into 
corresponding bins.

We count the number of points N(pi) that fall into the i-th bin in the actual network (here, pi denotes a pat-
tern corresponding to a point falling into the i-th bin). Next, we create many random realisations of the network 
by shuffling symmetric weights and average over these realisations the number of points Nr(pi) that fall into the 
corresponding bin. Dividing these two numbers gives us the ratio R(pi) for the i-th bin. We repeat this proce-
dure for each bin (using the same random realisations), which gives us the full correlation profile. Z-scores are 
calculated in the same way.

An illustration of R(pi) calculation can be found in Fig. 4. In this example, we concentrate on the middle bin. 
When weights are shuffled among edges during the creation of randomised graph instances (the null model), 
points on the Q − v diagrams change their positions. However, they only move along the v axis. The overlaps, 
which are independent of weights, do not change. Since the network’s topology is fully retained during weight 
shuffling, the null model leaves the structural correlations intact. In Fig. 4, points that will move into the middle 
bin after shuffling are orange, while the point that will move out of the middle bin is green. Arrows indicate where 
each of the relevant points will end up after shuffling. Thus, for the middle bin, we have

This value of R suggests that the processes responsible for the distribution of weights in the actual network 
remove points from the middle bin when compared with a random instance of the network, possibly prioritizing 
other bins in the diagram. While it is an oversimplification (especially since we used only one randomised net-
work instance instead of an entire ensemble, as required by the definition in Eq. (17)), this example demonstrates 
the main idea behind the correlation diagrams. The non-structural correlations can be singled out by comparing 
the positions of points on the Q − v diagrams corresponding to the actual network and its randomised instances.

Datasets

In14, we studied the validity of Granovetter’s theory only in the scientific collaboration network. In this work, 
wanting to test both the theory itself and the applicability of correlation profiles on a variety of different networks, 
we used 8 datasets in total:

•	 Twitter (source: https://​doi.​org/​10.​6084/​m9.​figsh​are.​13308​428.​v1)—the network of Twitter mentions12. Nodes 
represent Twitter users and weights correspond to the number of mentions.

•	 DBLP (source: https://​www.​aminer.​org/​citat​ion)—the scientific collaboration network (version 12). It con-
tains metadata about scientific articles25, including lists of authors and references. Nodes represent authors; 

(17)R(p) =
N(p)

�Nr(p)�
.

(18)Z(p) =
N(p)− �Nr(p)�

�Nr(p)
,

(19)R(middle bin) =
1

4
.

Figure 4.   An example illustrating the creation of correlation profiles—points in bins (a) before weight shuffling 
and (b) after shuffling.

https://doi.org/10.6084/m9.figshare.13308428.v1
https://www.aminer.org/citation
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two authors are connected if they co-authored at least one paper. Symmetric weight is equal to the total 
number of papers co-authored by two authors.

•	 Actor Movies (source: http://​konect.​cc/​netwo​rks/​actor-​movie/)—nodes represent actors, two actors are con-
nected if they appeared in the same film. Symmetric weight is equal to the number of films in which actors 
worked together.

•	 Record Labels (source: http://​konect.​cc/​netwo​rks/​dbped​ia-​recor​dlabel/)—nodes represent music artists, 
two artists are connected if they performed under the same record labels. Symmetric weight is equal to the 
number of record labels under which artists worked together.

•	 The Marvel Universe Social Network (source: https://​www.​kaggle.​com/​datas​ets/​csanh​ueza/​the-​marvel-​unive​
rse-​social-​netwo​rk/)—nodes represent heroes, two heroes are connected if they appeared in the same comic26. 
Symmetric weight is equal to the number of comics in which heroes appeared together.

•	 Flights (source: commercially available at https://​www.​icao.​int/)—network of passenger flights. Nodes rep-
resent airports, and weights correspond to the volume of traffic (number of passengers) between airports.

•	 Metabolic Network (source: https://​www.​ebi.​ac.​uk/​biomo​dels/​MODEL​63996​76120)—where nodes represent 
reactants, connected by an edge when they take part in the same reaction27. Symmetric weight equals the 
number of reactions sharing two given reactants.

•	 Caenorhabditis elegans (source: http://​konect.​cc/​netwo​rks/​dimac​s10-​celeg​ansne​ural/)—the neural network 
of Caenorhabditis elegans28. Nodes represent neurons, and an edge links two neurons if a synapse or gap 
junction connects them. Weights correspond to the total number of connections between neurons.

Not all of these networks are social networks, and some are artificial social networks. However, they all exhibit a 
Granovetter-like relationship between overlaps and weights. Table 1 contains information about the sizes of the 
largest connected components in the networks. We restricted our analysis to the largest components because it 
is likely that smaller components (especially in networks like DBLP) stem from the incompleteness of data and 
may introduce unwanted noise and artefacts to the results. However, correlation diagrams for entire networks 
are qualitatively equivalent to the ones presented in the manuscript.

Some of the networks we used can be represented as bipartite graphs (e.g. DBLP, Actor Movies—virtually 
all collaboration networks can be stored in this form) and recovered via appropriate projections29,30. These net-
works are undirected and have a well-defined notion of symmetric weight. One can also easily use (10) to define 
asymmetric weights in such networks, with mi equal to the degree of node i in the bipartite representation of 
a graph (which corresponds to the total number of collaborations for a given node—e.g. movies or scientific 
manuscripts). On the other hand, networks like Twitter or Flights are inherently directed, cannot be expressed 
as bipartite graphs and, consequently, Eq. (10) cannot be applied in a meaningful way.

In order to standardise our approach to the networks under study and overcome problems associated with 
Eq. (10), we decided to symmetrise all directed networks and assumed that symmetric weight in their undirected 
equivalent is equal to the average of weights in both directions:

where Vij and Vji are weights of directed edges. At the same time, we abandoned the definition of asymmetric 
weight introduced in14, and settled on definition (12) instead (where asymmetry is achieved by normalising sym-
metric weight—that is by dividing it by the strength of a node). While it may seem as counter intuitive—directed 
networks are converted to undirected ones using Eq. (20), only to be converted again to directed networks using 
Eq. (12)—this approach allows us to treat all networks, both directed and undirected ones, in the same way and 
to compare results.

Results
Correlational profiles for Twitter, a real social network, are shown in Fig. 5. Panels (a) and (b) contain, for com-
parison with their asymmetric counterparts, heatmaps of the symmetric overlap O as a function of symmetric 
weight w for the actual network and the null model. It is worth noting that, in many cases, symmetric weights 
are integers, and edges are often characterized by the same weight values. This makes edges indistinguishable 

(20)wij =
Vij + Vji

2
,

Table 1.   Sizes of largest connected components in the datasets.

Dataset Nodes Edges Type

Twitter 510,136 5,210,278 Directed

DBLP 2,851,120 24,965,776 Bipartite

Actor movies 374,511 30,029,678 Bipartite

Record labels 11,078 117,798 Bipartite

Marvel 6403 343176 bipartite

Flights 1292 24,925 Directed

Metabolic network 3160 29,210 Bipartite

Caenorhabditis elegans 297 4296 Undirected

http://konect.cc/networks/actor-movie/
http://konect.cc/networks/dbpedia-recordlabel/
https://www.kaggle.com/datasets/csanhueza/the-marvel-universe-social-network/
https://www.kaggle.com/datasets/csanhueza/the-marvel-universe-social-network/
https://www.icao.int/
https://www.ebi.ac.uk/biomodels/MODEL6399676120
http://konect.cc/networks/dimacs10-celegansneural/
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from one another, which is a problem associated with using symmetric weights. Asymmetric weights are free of 
this issue, which is their additional benefit.

Panel (c) contains heatmaps for the asymmetric overlap Q as a function of asymmetric weight v. A clear, 
Granovetter-like relation is visible—overlap increases with weight. However, almost the same relation is present 
in panel (d), which contains the equivalent heatmap for the null model (the same network with shuffled edges). 
These two panels show the root of the issue with the asymmetric definitions of weights and overlaps. Granovetter’s 
theory dictates how weights should be distributed in a graph. If the theory is correct, then we should reasonably 
expect that there is no correlation between Q and v in the null model—the shuffling procedure should destroy 
any deliberate (from the perspective of Granovetter’s theory) placement of weights. Unfortunately, such a cor-
relation is also present in the null model due to the network’s topology. Moreover, at first glance, the relation 
between Q and v seems to be very similar in the actual network and the null model.

This is where the correlation profiles come into play. By comparing panels (c) and (d)—that is, by dividing 
counts in bins in c) by counts in corresponding bins in d), which creates the correlation profile R, Eq. (17)–we 
can easily find the differences between the null model and the real network. Panel (e) shows such a profile. We 
can also see a Granovetter-like relation visible there—linear (on a log-log scale) clusters of bins such that more 
edges fall into these clusters in the actual networks than in the null model. It strongly suggests that Granovetter’s 
theory is indeed correct and that sociological processes that govern the distribution of weights in real networks 
result in higher weights assigned to edges with higher values of overlaps. These results are statistically significant, 
which is confirmed by Z-scores in panels (f).

We calculated correlation profiles and Z-scores for all networks presented in the previous section. More 
examples can be found in Figs. 6 and 7, which show profiles for the network of flights and DBLP. Note that in 
the case of DBLP, the average symmetric overlap is a decreasing function of symmetric weight for the majority 
of samples—it is precisely this behaviour that necessitates the introduction of asymmetric measures. Results for 
asymmetric measures presented in both figures are qualitatively equivalent to the ones in Fig. 5. Once again, we 
can see a correlation between Q and v in both the actual network and the null model. A Granovetter-like relation 
is prominent in panel (e), suggesting that the processes responsible for the distribution of weights in this network 
prefer to assign higher weight values to edges characterised by higher overlap values. This observation holds 
true for all the networks examined in our study (correlation profiles for the remaining networks are available in 
Supplementary Figs. S1–S5 available online).

There is another way to test Granovetter’s theory—it is possible to calculate the correlation between overlaps 
and weights for the null model and the actual network. If Granovetter’s theory is correct, then correlations in 
the real network should be stronger than in the null model. Figure 8 shows these correlations for all networks we 
studied. Considering the non-linearity of data, we decided to use the Spearman correlation and calculate it for 
logarithms of weights and overlaps. As can be seen, in all cases, there is a stronger positive correlation between 
weights and overlaps in the actual network, which supports Granovetter’s theory.

Figure 5.   Correlation profiles for Twitter. (a) Heatmap for the actual network—symmetric weights. (b) 
Heatmap for the null model (randomised network)—symmetric weights. (c) Heatmap for the actual network—
asymmetric weights. (d) Heatmap for the null model (randomised network)—asymmetric weights. (e) 
Correlation profile (R). (f) Z-score (Z). The white lines in (a,b) correspond to the average O as a function of w, 
on (c,d)—the average Q as a function of v. The line in panel (e) is the same as in (c).



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7811  | https://doi.org/10.1038/s41598-024-58357-4

www.nature.com/scientificreports/

Summary and concluding remarks
Due to the asymmetric nature of many human interactions (or, more generally, any interactions), symmetric 
measures cannot be universally used to describe social networks14,31. As we have shown, asymmetry is required in 
order to deal with such networks properly. For example, asymmetric measures can be used to confirm Granovet-
ter’s theory in the network of scientific collaborations, which was considered a counterexample to said theory. 
However, asymmetric measures—depending on their definitions—are not easy to interpret and require careful 
and deliberate handling.

Figure 6.   Correlation profiles for the network of flights. (a) Heatmap for the actual network—symmetric 
weights. (b) Heatmap for the null model (randomised network)—symmetric weights. (c) Heatmap for the actual 
network—asymmetric weights. (d) Heatmap for the null model (randomised network)—asymmetric weights. 
(e) Correlation profile (R). (f) Z-score (Z). The white lines in (a,b) correspond to the average O as a function of 
w, on (c,d)—the average Q as a function of v. The line in panel (e) is the same as in (c).

Figure 7.   Correlation profiles for DBLP. (a) Heatmap for the actual network—symmetric weights. (b) 
Heatmap for the null model (randomised network)—symmetric weights. (c) Heatmap for the actual network—
asymmetric weights. (d) Heatmap for the null model (randomised network)—asymmetric weights. (e) 
Correlation profile (R). (f) Z-score (Z). The white lines in (a,b) correspond to the average O as a function of w, 
on (c,d)—the average Q as a function of v. The line in panel (e) is the same as in (c).
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In the case of the asymmetric overlap Q and asymmetric weight v, as defined in Eqs. (6) and (12), the problem 
with interpretation stems from the superfluous correlations introduced by the definitions of these measures. In 
fact, there are two layers of correlation that one needs to be wary of when analysing the relationship between Q 
and v. The first layer is purely structural, induced by the network’s topology. The strength of a node s (the sum 
of weights over edges connecting the node to its neighbours) is correlated with the node’s degree, resulting in a 
correlation between Q and v. The second layer of correlations, the one we are truly interested in when confirming 
Granovetter’s theory, is tied to the sociological processes that govern the distribution of weight between edges 
in the network. We assume that higher weight values will be assigned to edges with higher overlap values, which 
is not obvious, unlike the previous correlation. The problem is that correlations from both sources overlap, and 
a method that would allow us to differentiate between them is needed.

In this paper, we have shown that correlation profiles can be used to achieve this goal. The idea behind them 
is simple but effective—-by randomising weights in a graph (shuffling them), we destroy the second kind of cor-
relations, leaving only the structural correlations intact. Then, by comparing weights in the actual graph with its 
randomisations, we can determine how exactly the sociological processes responsible for weight distribution in a 
given network assign weights to edges. Our analysis shows that in the network we studied, a clear Granovetter-like 
relationship is present in the correlation diagrams (see Fig. 5e for Twitter and Fig. 6e for the network of flights). 
That is, higher weight values are assigned, on average, to edges with higher overlap values—to the point that a 
monotonic relation (in the average sense on a log-log plot) is visible in the diagrams. This result truly confirms 
Granovetter’s theory.

Moreover, not only did we study social networks and artificial social networks, but we also calculated cor-
relation profiles for different kinds of networks—for example, the neural network of Caenorhabditis elegans or 
the metabolic network. These networks also exhibit a Granovetter-like relation between overlaps and weights, 
which suggests that Granovetter’s theory is a sociological manifestation of more general principles governing 
complex networks.

On the one hand, we believe that this result is intuitive, as one can generally expect that if two nodes share 
a large portion of their neighbourhoods, then the strength of the connection between these nodes will likely 
be high. On the other hand, we hypothesise that the recently popularised theory of hidden metric spaces32–35, 
possibly coupled with other notions (e.g. complementarity36), can provide a more formal explanation of this 
phenomenon. According to this theory, the topology of some networks and the values of weights can be explained 
by the existence of metric spaces in which these networks can be embedded—the connections in the network 
are determined, roughly speaking, by the positions of nodes in the hidden space. Such a structured way of deter-
mining (or explaining the topology of) neighbourhoods of nodes and edge weights likely leads to a correlation 
between weights and overlaps. The hidden metric space models can be applied to both unipartite and bipartite 
networks37 (in the latter case, they successfully explain some peculiar properties of these kinds of networks), 
which is especially interesting from the perspective of our work, considering that many networks we studied, and 
many real networks in general, have a bipartite representation. Moreover, some of the numerical experiments 
we performed indicated that a Granovetter-like relationship (albeit weak) could be present in projections of 
random bipartite graphs. Thus, networks with bipartite representations may be more prone to exhibit a relation 
between overlaps and weight similar to those presented in this paper. It should be emphasized, however, that 
the explanation of Granovetter’s theory by hidden metric space models is still only a hypothesis and a possible 
and interesting direction for future studies.

Figure 8.   Spearman correlation between asymmetric overlaps and asymmetric weights in the real network as a 
function of the corresponding correlation in the null model.
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Another interesting direction for future research is tied to link prediction. Recently, it was shown that link 
prediction methods that take advantage of link asymmetry are superior to traditional methods based on sym-
metric measures17. Thus, it is natural to assume that the tools presented in this paper could be helpful in link 
prediction and the knowledge on the two sources of correlations—structural and sociological—could be utilised 
to improve prediction of hidden network connections. Unfortunately, this problem is not simple. On the one 
hand, different link scores used in similarity-based prediction methods that are based on Eq. (6) and/or link 
weights (see e.g. Tab. III in17) do not distinguish between the various possible origins of shared portions of nodes’ 
neighbourhoods (whether two nodes share a neighbour due to sheer statistics or due to their sociological rela-
tionship). On the other hand, one could modify existing scores taking into account the non-linear dependency 
between both types of correlations visible in the correlation profiles. For example, one of the most promising 
scores defined in17 is a sum of two terms: the first term, f1(nij , ki , kj) , is based on structural properties of nodes 
i and j, while the second term, f2(vzi , vzj) , takes into account weights of links between these nodes and their 
neighbours z. One could propose an alternative score which is based on a different functional relation between 
these two terms. However, we believe such a relation would be case-dependent since the shape of the correla-
tion profiles presented in this paper differs between networks. Thus, we leave this problem for future research.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The code that supports the findings of this study is available from the corresponding author upon request.

Received: 12 February 2024; Accepted: 28 March 2024

References
	 1.	 Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).
	 2.	 Granovetter, M. S. Getting A Job: A Study of Contacts and Careers (University of Chicago Press, 2018).
	 3.	 Onnela, J.-P. et al. Structure and tie strengths in mobile communication networks. PNAS 104, 7332–7336 (2007).
	 4.	 Easley, D. & Kleinberg, J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 

2010).
	 5.	 Eagle, N., Macy, M. & Claxton, R. Network diversity and economic development. Science 328, 1029–1031 (2010).
	 6.	 Pajevic, S. & Plenz, D. The organization of strong links in complex networks. Nat. Phys. 8, 429–436 (2012).
	 7.	 Grabowicz, P. A., Ramasco, J. J., Moro, E., Pujol, J. M. & Eguiluz, V. M. Social features of online networks: The strength of inter-

mediary ties in online social media. PLoS One 7, e29358 (2012).
	 8.	 Szell, M. & Thurner, S. Measuring social dynamics in a massive multiplayer online game. Soc. Netw. 32, 313–329 (2010).
	 9.	 Szell, M. & Thurner, S. Social dynamics in a large-scale online game. Adv. Complex Syst. 15, 1250064 (2012).
	10.	 Šuvakov, M., Mitrović, M., Gligorijević, V. & Tadić, B. How the online social networks are used: Dialogues-based structure of 

myspace. J. R. Soc. Interface 10, 20120819 (2013).
	11.	 Ke, Q. & Ahn, Y.-Y. Tie strength distribution in scientific collaboration networks. Phys. Rev. E 90, 032804 (2014).
	12.	 Ubaldi, E., Burioni, R., Loreto, V. & Tria, F. Emergence and evolution of social networks through exploration of the adjacent pos-

sible space. Commun. Phys. 4, 28 (2021).
	13.	 Pan, R. K. & Saramäki, J. The strength of strong ties in scientific collaboration networks. Europhys. Lett. 97, 18007 (2012).
	14.	 Fronczak, A., Mrowinski, M. J. & Fronczak, P. Scientific success from the perspective of the strength of weak ties. Sci. Rep. 12, 5074 

(2022).
	15.	 Newman, M. E. J. Networks: An Introduction (Oxford University Press, 2010).
	16.	 Dorogovtsev, S. & Mendes, J. The Nature of Complex Networks (Oxford University Press, 2022).
	17.	 Orzechowski, K. P., Mrowinski, M. J., Fronczak, A. & Fronczak, P. Asymmetry of social interactions and its role in link predict-

ability: The case of coauthorship networks. J. Informetr. 17, 101405 (2023).
	18.	 Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. PNAS 101, 

3747–3752 (2004).
	19.	 Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).
	20.	 Maslov, S., Sneppen, K. & Zaliznyak, A. Detection of topological patterns in complex networks: Correlation profile of the internet. 

Phys. A 333, 529–540 (2004).
	21.	 Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).
	22.	 Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).
	23.	 Fronczak, A. & Fronczak, P. Networks with given two-point correlations: Hidden correlations from degree correlations. Phys. Rev. 

E 74, 026121 (2006).
	24.	 Litvak, N. & van der Hofstad, R. Uncovering disassortativity in large scale-free networks. Phys. Rev. E 87, 022801 (2013).
	25.	 Tang, J. et al. Arnetminer: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’08, 990–998 (Association for Computing Machinery, 2008).
	26.	 Alberich, R., Miro-Julia, J. & Rossello, F. Marvel universe looks almost like a real social network (2002). arXiv:​cond-​mat/​02021​74.
	27.	 Li, C. et al. Biomodels database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC 

Syst. Biol. 4, 92 (2010).
	28.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
	29.	 Newman, M. E. J. & Park, J. Why social networks are different from other types of networks. Phys. Rev. E 68, 036122 (2003).
	30.	 Zhou, T., Ren, J., Medo, M. & Zhang, Y.-C. Bipartite network projection and personal recommendation. Phys. Rev. E 76, 046115 

(2007).
	31.	 Mattie, H., Engø-Monsen, K., Ling, R. & Onnela, J.-P. Understanding tie strength in social networks using a local “bow tie’’ frame-

work. Sci. Rep. 8, 9349 (2018).
	32.	 Allard, A., Serrano, M. Á., García-Pérez, G. & Boguñá, M. The geometric nature of weights in real complex networks. Nat. Com-

mun. 8, 14103 (2017).
	33.	 Serrano, M. A. & Boguñá, M. The Shortest Path to Network Geometry: A Practical Guide to Basic Models and Applications. Elements 

in the Structure and Dynamics of Complex Networks (Cambridge University Press, 2022).
	34.	 Boguñá, M. et al. Network geometry. Nat. Rev. Phys. 3, 114–135 (2021).

http://arxiv.org/abs/cond-mat/0202174


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7811  | https://doi.org/10.1038/s41598-024-58357-4

www.nature.com/scientificreports/

	35.	 Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. Phys. Rev. E 82, 
036106 (2010).

	36.	 Budel, G. & Kitsak, M. Complementarity in complex networks (2023). arXiv:​2003.​06665.
	37.	 Kitsak, M., Papadopoulos, F. & Krioukov, D. Latent geometry of bipartite networks. Phys. Rev. E 95, 032309 (2017).

Acknowledgements
This research was funded by the POB Research Centre Cybersecurity and Data Science of Warsaw University of 
Technology within the Excellence Initiative Program-Research University (ID-UB).

Author contributions
A.F. and P.F. conceived and planned the study, M.J.M. wrote the manuscript, M.J.M. and K.P.O. performed 
research, wrote simulations and analysed data, all authors analysed the results and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​58357-4.

Correspondence and requests for materials should be addressed to M.J.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://arxiv.org/abs/2003.06665
https://doi.org/10.1038/s41598-024-58357-4
https://doi.org/10.1038/s41598-024-58357-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Interplay between tie strength and neighbourhood topology in complex networks
	Methods
	Datasets
	Results
	Summary and concluding remarks
	References
	Acknowledgements


