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Identification 
of 6‑methyladenosine sites using 
novel feature encoding methods 
and ensemble models
Nashwan Alromema 1, Muhammad Taseer Suleman 2,6*, Sharaf J. Malebary 3, Amir Ahmed 4, 
Bandar Ali Mohammed Al‑Rami Al‑Ghamdi 5 & Yaser Daanial Khan 2

N6-methyladenosine (6 mA) is the most common internal modification in eukaryotic mRNA. Mass 
spectrometry and site-directed mutagenesis, two of the most common conventional approaches, 
have been shown to be laborious and challenging. In recent years, there has been a rising interest in 
analyzing RNA sequences to systematically investigate mutated locations. Using novel methods for 
feature development, the current work aimed to identify 6 mA locations in RNA sequences. Following 
the generation of these novel features, they were used to train an ensemble of models using methods 
such as stacking, boosting, and bagging. The trained ensemble models were assessed using an 
independent test set and k-fold cross validation. When compared to baseline predictors, the suggested 
model performed better and showed improved ratings across the board for key measures of accuracy.

6-methyladenosine (6 mA) is a derivative of adenosine, which is one of RNA’s four nucleosides. Adding a methyl 
group (CH3) to the 6th carbon atom of the adenine base in adenosine is a natural chemical alteration1,2. Methyl 
groups (CH3) are transferred from methyl donor molecules to the 6th carbon atom of the adenine base in adeno-
sine by the action of enzymes called methyltransferases3. 6-Methyladenosine is the product of this methylation 
process. It’s possible that different organisms and cell types use different methyltransferases for this procedure4. 
The chemical structure of 6 mA has been presented in Fig. 1.

Initially, this modification was primarily associated with prokaryotes, but subsequent research has demon-
strated its presence in eukaryotes, including humans. In recent years, the significance of 6-methyladenosine in 
biological functions has received considerable attention, including gene expression regulation, epigenetic regula-
tion, RNA metabolism and processing, DNA repair, and genome stability. Dysregulation of 6-methyladenosine 
has been implicated in various diseases such as Acute myelogenous leukemia5, Hypospadias6, Breast cancer7, 
Coronary heart disease8,9, Diabetes II10,11, Mental retardation12–14, Prostate cancer15, and Zika virus16. Abnormal 
levels of 6 mA have been associated with cancer, neurological disorders, and other diseases17,18. Understanding the 
role of this modification in disease contexts may provide insights into novel diagnostic or therapeutic approaches. 
The advent of sequence data provided a prospect for constructing computationally intelligent systems aimed at 
identifying m1A sites in RNA data samples. In a study conducted by Chen et al.19, they designed an identifier 
called iRNA3-3typeA, aimed at detecting 6 mA sites in the transcriptomes of Homosapiens and Mus musculus. 
To achieve this, they encoded the RNA samples using nucleotide chemical properties, employing a technique 
known as PseKNC (pseudo K-tuple nucleotide composition). This encoding process resulted in a feature vector 
containing 164 components. Machine learning models such as BayesNet, Naive Bayes, J48 Tree, and SVM as 
an operational algorithm were trained using the obtained feature vectors. The effectiveness of such models was 
measured with a combination of the Independent Set Test and cross validation. The results have shown that the 
proposed model achieved 0.81 sensitivity (Sn), 0.99 specificity (Sp), 0.90 accuracy (ACC), and 0.82 matthews 
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correlation coefficient (MCC) for Homosapiens species. Similarly, for Mus musculus 1.00 Sp, 0.77 Sn, 0.88 ACC 
and 0.80 MCC were recorded. In another study, Xu et al.20 proposed, 6 mA-Finder, an online tool for the identi-
fication of 6 mA sites in which a benchmark dataset for 6 mA sites were used built by Feng et al.21 and MethSmrt 
database22. In the research, seven different sequence encoding schemes were used including nucleic acid compo-
sition (NAC), composition of K-spaced nucleic acid pairs, accumulated nucleotide frequency, binary encoding 
method, trinucleotide composition, enhanced nucleic acid composition, and nucleotide chemical property. The 
extracted features were then utilized to train seven machine learning models. The machine learning models 
were then subjected to ten-fold cross validation, with the RF model revealing a maximum area under the curve 
(AUC) value of 0.86. Lu et al.23 developed iMRM, an online predictor of multiple RNA sites including m1A, 
6 mA, m5C, ψ, and A-to-I, using data samples of Homosapiens (HSP), Saccharomyces cerevisiae (SCV), and Mus 
musculus (MMS). Several feature extraction mechanisms were adopted, and a unique feature selection strategy 
was adopted by picking the 50 topmost features through the incremental feature strategy (IFS). As a feature-
learning model, XGBoost was utilized. Standard accuracy metrics such as accuracy, specificity, sensitivity, and 
the Matthews correlation coefficient were then applied for the model’s evaluation.

In this research study, the main focus was on identifying meaningful characteristics within the sequences by 
analyzing the arrangement and location of nucleotide bases. Statistical moments were computed to streamline the 
extracted features, leading to reduced complexity. Independent set testing and k-fold cross-validation were used 
to assess the ensemble models’ efficacy. The models were quantitatively measured based on accuracy metrics like 
ACC, Sp, Sn, and MCC. The results indicated that the proposed model outperformed existing predictors in terms 
of all accuracy metrics, demonstrating its superiority in identifying 6 mA sites. The study involved several stages, 
including assembling a benchmark dataset, extracting relevant features, and formulating samples. Additionally, 
the researchers developed, trained, and tested the ensemble models to validate t8ir effectiveness. Furthermore, 
to facilitate the detection of 6 mA sites, a publicly accessible server was created, allowing others in the scientific 
community to utilize the model and its findings. Overall, the research encompassed a comprehensive approach, 
combining various stages to achieve reliable and accurate predictions of 6 mA sites in the studied transcriptomes.

Material and methods
Using RMBase24, 6 mA finder20, IMRM23, and iRNA3typeA25, RNA samples were gathered from three different 
species: Homosapiens (humans), Mus musculus (mouse), and Saccharomyces cerevisiae (yeast). The effectiveness 
of the models was measured by the independent test set and k-fold cross-validation as well. After obtaining the 
samples, homologous sequences were removed, leaving refined samples for feature extraction. The modified 
6 mA site in an RNA sample M(B) can be expressed as in (1).

The symbol “ A ” in the center represents modified 6 mA, and the subscript value L is 20. Thus, the total length 
of the nucleotide sequence is (2L +1). R−L represents the L ’s upstream nucleotide from the central adenosine ( A ) 
and R+L represents the L ’s downstream nucleotide. It is important to mention here that fixed length sequences 
were used. Table 1 contains the information regarding 6 mA positive (6 mA sites) and negative (non-6 mA sites) 
data samples. The dataset files have also been added as supplementary files.

(1)M(B) = R−LR−(L−1) . . .R−2R−1AR+1R+2 . . .R+(L−1)R+L

Figure 1.   Chemical structure of 6 mA with methyl group attached to the 6th carbon atom.
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Attributes development stage
The process of attribute extraction is vital in computational procedures as it aims to emphasize the distinctive 
attributes of a dataset. Recent progress in information and data sciences has been beneficial to biotechnology26. 
However, creating intelligent computational models that can effectively convert raw biological data into meas-
urable vectors poses a significant challene27. Since vectors are typically required as input for computational 
algorithms, it is essential that this sequence-pattern information be preserved during the transformation. Chou 
devised a method termed pseudo-amino acid composition for proteins (PseAAC)28 for inhibiting the information 
loss. The development of pseudo-K-tuple nucleotide composition (PseKNC) was motivated by the accomplish-
ments of pseAAC. Additionally, the current study employs a specific notation (2) to represent an RNA sequence 
C as

whereas,

Represents any nitrogenous base within an RNA sequence. In the research, the feature extraction method 
of PseKNC was combined with statistical moments for dimensionality reduction of features. The genomic data 
has been transformed into a generalized stable numerical representation, Y ′ , as expressed in (3). This approach 
enables the efficient analysis and interpretation of nucleotide sequences by capturing their fundamental attributes.

In the study, the variable, Y  , stands for a random numerical coefficient that represents an individual feature. 
Through transposing “ C ” in Eq. (2), the discrete coefficients, Yi , were derived for each position “i” (ranging from 
1 to ω) along the linear length of the sequence. These elements, as specified in Eq. (3), were crucial in determin-
ing the significance of the gene sequence.

Statistical moments calculation
In this study, a feature vector of fixed length was created from genomic data by the utilization of statisti-
cal moments. Various moment distributions were investigated, as these moments revealed type-specific 
information29. A reduced feature set was formed by calculating the raw, central and Hahn moments, which 
decreased the length of the input vector30,31. This feature set took into account the magnitude and region of 
important moments, which enabled the differentiation of sequences serving different purposes. A key component 
of the feature vector was the moments. The study showed how the composition and relative position of bases 
in genomic and proteomic sequences affected the properties of such sequences32. The best mathematical and 
computational approaches for creating the feature vector took into account the relative positioning of bases in 
genomic sequences. The characteristics were transformed into succinct coefficients that reflected data trends 
and inconsistencies using raw, central, and Hahn moments31. The magnitude and positional changes of Raw 
and Hahn moments proved useful for deciphering the data included in the sequence. A sequences-derived two-
dimensional matrix, denoted as Qʹ, was formed, where each Qmn entry represents the nucleotide base at position 
‘n’ in the ‘mth’ sequence, as outlined in Eq. (4).

To capture position-dependent traits from the obtained attributes, raw moments were computed30. Raw 
moments are defined in Eq. (5), where the total count of raw moments is represented by the value of u + v. Up to 
the third-degree polynomial, coefficients E00 , E01 , E10 , E11 , E12 , E21 , E30 , and E03 were computed.

Central moments are significant because they are linked to the distribution’s composition and shape, rather 
than the nucleotide’s position33. The centroid (xy) was computed first and then it assist in central moments 
calculation34. In the current study, the researchers calculated the central moments and presented them as (6).

(2)C = C1,C2,C3, . . . ,Ci , . . . ,Cn

Ci ∈
{
A(adenine),C

(
cytosine

)
,U(uracil),G

(
guanine

)}

(3)Y ′ = [Y1Y2Y3Y4 . . .Yu . . .Y�]
T

(4)Q′ =




Q11 Q12 . . . Q1n

Q21 Q22 . . . Q2n

...
...

. . .
...

Qm1 Qm2 . . . Qmn




(5)Ejk =

m∑

c=1

m∑

d=1

cjdkβcd

Table 1.   Dataset information of positive and negative samples of 6 mA site.

Benchmark dataset Species Positive samples Negative samples

HS_3668 Homosapiens 1834 1834

MM_1752 Mus musculus 876 876

SC_2008 Saccharomyces Cerevisiae 1004 1004
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Orthogonal moments are favored for their effective representation of data with minimal redundancy. In 
comparison to Chebyshev and Krawtchouk moments, Hahn moments demonstrate superior performance. Even 
after transforming the initial sequences extensively into a fixed length, the reversibility characteristic of Hahn 
moments ensures that the predictor can encapsulate the impact of the entire data sequence within a concise 
feature vector35. The Eq. (7) is a representation of Hahn polynomials.

where (u,v) are parameters used to alter the polynomial’s form. As seen in Eq. (8), the Hahn moment can be 
defined in terms of a two-dimensional matrix M*M representing a sequence.

These statistical moments helped in removing the outliers, hence helping reducing features dimensionality.

Position Relative Incidence Matrix (PRIM)
The main goal of this study was to improve the predictive capabilities of the model. To achieve this objective, it 
was essential to develop a comprehensive feature extraction model. In this context, the position relative incidence 
matrix (PRIM) was introduced as a technique to depict and examine the relative arrangement of nucleotide bases 
concerning each other in the dataset36. The PRIM provides valuable information about the spatial arrangement 
of the bases, which can be critical in understanding the underlying patterns and characteristics of the genomic 
data37. By incorporating the PRIM into the feature extraction process, the researchers aimed to enhance the 
model’s ability to make accurate predictions and gain deeper insights from the nucleotide sequences. The matrix, 
WPRIM (9), is a 4× 4 matrix that represents the relative position of a single nucleotide, other nucleotides within 
a sequence.

Here, “K” denotes the location of a single nucleotide base with respect to every other base in the sequence. 
Nucleotide base pair occurrences like CC, GC, CA, …, GU, UU, UA etc. are important for feature extraction. 
To capture this information, a 16 × 16 matrix called XPRIM (10) was created, generating 256 coefficients. This 
matrix was utilized to examine the frequency and relative occurrences of these base pairings within the dataset.

In a similar manner, an additional matrix called YPRIM (11) was created to account for the tri-nucleotide 
base combinations (such as UAU, CGC, UCC, …, AUU, CAU, AAG). This matrix resulted in a total of 4096 
coefficients, reflecting the frequency of these tri-nucleotide combinations within the dataset. To further process 
these matrices, the central, Hahn, and raw moments were calculated for each of them, resulting in the forma-
tion of coefficients up to order 3. This step allowed the researchers to extract essential information and features 
from the matrices, capturing the patterns and characteristics of the nucleotide sequences more comprehensively.

Reverse position relative incidence matrix (RPRIM)
The objective of determining the feature vector is to efficiently accumulate significant data to build a solid predic-
tion model. In pursuit of obtaining more entrenched information within the sequences, a reverse position relative 
indices matrix (RPRIM) was generated by reversing the sequence order. To achieve this, the IRPRIM matrix was 
calculated according to the formula mentioned in Eq. (12). This approach aimed to extract additional valuable 
insights from the sequences, enhancing the model’s predictive capabilities by incorporating both the forward 
and reverse spatial arrangements of nucleotide bases.

(6)nij =

n∑

b=1

n∑

q=1

(b− x)i
(
q− y

)j
βbq

(7)hu,vn (r,N) = (N + V − 1)n(N − 1)n ×

n∑

k=0

(−1)k
(−n)k(−r)k(2N + u+ v − n− 1)k

(N + v − 1)k(N − 1)k

1

k!

(8)Hij =

N−1∑

q=0

N−1∑

p=0

βijh
ũ,v
j

(
q,N

)
hũ,vj

(
p,N

)
,m, n = 0, 1,N − 1

(9)WPRIM =



WA→A WA→G WA→U WA→C

WG→A WG→G WG→U WG→C

WU→A WU→G WU→U WU→C

WC→A WC→G WC→U WC→C




(10)XPRIM =




XAA→AA XAA→AG XAA→AU . . . XAA→j . . . XAA→CC

XAG→AA XAG→AG XAG→AU . . . XAG→j . . . XAG→CC

XAU→AA XAU→AG XAU→AU . . . XAU→j . . . XAU→CC

...
...

...
...

...
...

...
XGA→AA XGA→AG XGA→AU . . . XGA→j . . . XGA→CC

...
...

...
...

...
...

...
XN→AA XN→AG XN→AU . . . XN→j . . . XN→CC



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The statistical moments were incorporated on the RPRIM matrix to derive the which helped in reducing the 
features obtained from these matrices.

Frequency vector computation
In order to generate attributes for a sequence, both its positional and compositional information are crucial. 
Analyzing each nucleotide’s frequency within the sequence yields compositional information. The frequency 
of each nucleotide and nucleotide pair in the sequence was recorded in a vector, ℑ . The method for computing 
this frequency vector is outlined in Eq. (13). By creating this frequency vector, the researchers aimed to capture 
the essential compositional characteristics of the sequences, which can be valuable for subsequent analyses and 
predictive modeling.

where, πi , represents the count value of the ith nucleotide within an RNA sequence.

Creation of accumulative absolute position incidence vector (AAPIV)
The AAPIV is designed to provide comprehensive insights into the occurrence of each nucleotide base. This 
method considers both individual and paired nucleotide bases, resulting in the creation of three AAPIV vectors 
named VAAPIV4 (14), VAAPIV16 (15), and VAAPIV64 (16). These vectors were designed to encompass different levels 
of nucleotide base combinations, allowing for a more detailed representation of the data’s compositional aspects.

where, δi , can be calculated as provided in (17).

Reverse accumulative absolute position incidence vector (RAAPIV) generation
In order to better grasp the obscured patterns in the genetic data, the research study used the gene’s reverse 
sequencing. The name “reverse accumulative absolute position incidence vector” (RAAPIV) explicitly refers to 
this method of computing AAPIV by flipping the sequence. It involves analyzing the occurrence of individual 
and paired nucleotide bases in the reversed sequence. To perform this analysis, three vectors were calculated and 
labeled as VRAAPIV4 (18), VRAAPIV16 (19), and VRAAPIV64 (20). Each of these vectors represents different levels of 
nucleotide base combinations and helps uncover valuable compositional information within the reverse gene 
sequence. By considering the reversed sequence and using RAAPIV, the researchers aimed to gain additional 
insights and enhance their understanding of the underlying genetic patterns and characteristics in a more com-
prehensive manner.

(11)YPRIM =




YAAA→AAA YAAA→AAG YAAA→AAU . . . YAAA→j . . . YAAA→CCC

YAAG→AAA YAAG→AAG YAAG→AAU . . . YAAG→j . . . YAAG→CCC

YAAU→AAA YAAU→AAG YAAU→AAU . . . YAAU→j . . . YAAU→CCC

...
...

...
...

...
...

...
YAAC→AAA YAAC→AAG YAAC→AAU . . . YAAC→j . . . YAAC→CCC

...
...

...
...

...
...

...
YN→AAA YN→AAG YN→AAU . . . YN→j . . . YN→CCC




(12)IRPRIM=




I1→1 I1→2 I1→3 . . . I1→y . . . I1→j

I2→1 I2→2 I2→3 . . . I2→y . . . I2→j

I3→1 I3→2 I3→3 . . . I3→y . . . I3→j

...
...

...
...

...
Ix→1 Ix→2 Ix→3 . . . Ix→y . . . I4→j

...
...

...
...

...
IN→1 IN→2 IN→3 . . . IN→y . . . IN→j




(13)ℑ = {π1,π2, . . . ,πn}

(14)VAAPIV4 =
{
δ1,δ2,δ3,δ4,

}

(15)VAAPIV16 =
{
δ1,δ2,δ3, . . . , δ15,δ16,

}

(16)VAAPIV64 =
{
δ1,δ2,δ3,..., δ63,δ64

}

(17)δi =

n∑

k=1

pk

(18)VRAAPIV4 =
{
τ1,τ2,τ3,τ4

}

(19)VRAAPIV16 =
{
τ1,τ2,τ3,..., τ16

}
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Feature vector formulation
The culmination of the feature extraction process yielded a cohesive feature vector, meticulously crafted to 
serve as the foundational input for the computational model. This ultimate feature vector, an amalgamation of 
522 distinct values, emanated from the comprehensive analysis encompassing PRIM, RPRIM, FV, AAPIV, and 
RAAPIV computations. Each feature vector represented an individual sample, and binary classification assigned 
“1” to positive samples and "0" to negative samples. Table 2 contains the detail of the number of features obtained 
from each vector or matrix individually.

Ensemble models development and training
Ensemble methods have gained popularity in the field of machine learning due to their enhanced prediction 
capabilities as compared to conventional single-model approaches36,38. These methods combine the strengths 
of multiple models to achieve better overall performance, and they can be classified into parallel and sequential 
methods. Parallel ensemble methods, such as bootstrap aggregation (or bagging), involve training multiple 
models concurrently on different subsets of the data. Sequential ensemble methods, on the other hand, involve 
training models sequentially, with each subsequent model learning from the errors of the previous one. In the 
context of the investigation mentioned, three distinct ensemble models were applied including stacking, bag-
ging, and boosting.

Stacking ensemble
Stacking, in the realm of machine learning, stands as a sophisticated ensemble technique designed to amalgamate 
and synthesize the predictions generated by multiple classification or regression models.39,40. In this approach, 
the base-level models are first trained, and their outputs are then used as features for the meta-model. This meta-
model leverages the knowledge of the base models to make more accurate and robust predictions. The current 
investigation employed four base models, including an artificial neural network (ANN), a k-nearest neighbor 
(KNN), a support vector machine (SVM), and a decision tree (DT). The gradient boost classifier was chosen as 
the meta-classifier to combine the outputs of these base models. Hyperparameter optimization is a vital phase in 
machine learning, as it ensures that each model performs at its best. All the base learners and the meta learners 
were hyper tuned to get optimized results.

Bagging ensemble
In the research, bagging ensemble methods were utilized in a specific manner. The trained samples were split 
into smaller subsamples to build the base models. This was done using a subsampling approach with replacement 
and row sampling41. In other words, subsets of the original training data were randomly selected, and some data 
points might appear in multiple subsets due to replacement. These subsets were then used to train individual 
base models, and their predictions were combined to form the final ensemble prediction42. This approach helps 
improve the model’s accuracy and generalization by introducing diversity among the base models and reducing 
the risk of overfitting. This strategy ensures that each base model is trained on a different subset of the data, pro-
moting diversity among the individual models and reducing the overall variance of the ensemble. The test data 
were evaluated using the trained base models, and the final forecast was obtained through a voting mechanism, 
which typically involves majority voting for classification tasks or averaging for regression tasks. Four bagging 
models, namely the bagging classifier, random forest, extra tree, and decision tree classifier, were developed and 
trained as part of the investigation. All the bagging classifiers received hyperparameter adjustment to improve 
the results.

Boosting ensemble
This approach is designed to optimize the model based on the output of the preceding model in the sequence43. 
It operates sequentially, with each model focusing on reducing the differentiable loss by learning from the errors 
of the previous model44. This process helps boost the overall performance of the ensemble by combining the 
strengths of multiple weak learners. In the current investigation, several boosting ensemble training approaches 

(20)VRAAPIV64 =
{
τ1,τ2,τ3, . . . , τ64

}

Table 2.   Number of features obtained from each vector and matrix.

Vector/matrix Features obtained (Dimensions)

PRIM ( EPRIM , ǓPRIM , LPRIM) 90

RPRIM ( RRPRIM ) 90

Frequency vector 84

AAPIV ( SAAPIV4 , SAAPIV16 , SAAPIV64) 84

RAAPIV ( JRAAPIV4 , JRAAPIV16, JRAAPIV64) 84

Two-dimensional matrix, H′ 90

Total 522
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were employed, including gradient boosting and histogram-based gradient boosting (HGB). Figure 2 depicts 
the concept diagram of ensemble model implementation for the current research study, which includes stacking, 
boosting, and bagging.

Evaluation metrics
For the current research, Sn, Sp, ACC and MCC were employed to assess the predictive models. TP denotes the 
6 mA sites, while TN signifies the non-6 mA sites. Similarly, FN represents the count of modified sites that were 
true 6 mA sites but erroneously classified as non-6 mA sites. Moreover, FP indicates the total number of falsely 
identified 6 mA sites. It’s crucial to emphasize that these measurements are applicable solely to single-class sys-
tems. The equations for accuracy metrics are referenced in (21).

Figure 2.   Methodology of current research study.
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Results and discussion
The independent set was created using the standard “train-test split” method with a 70% training and 30% testing 
dataset. There were 2599 positive and negative train samples. The test samples were 1115 positive and negative 
samples. It is important to mention that training and test samples were separate from each other. Table 3 contains 
the results of independent set test revealed by the models. Whereas Fig. 3 depicts the area under curve (AUROC) 
of the ensemble model in independent testing.

The cross-validation approach is a systematic and rigorous methodology employed to comprehensively evalu-
ate the performance of a model by utilizing all available samples in a dataset. The dataset is divided into “k” 
disjoint folds or partitions, where each fold is used as a testing set once while the remaining “k−1” folds are used 
for training the model. This process is repeated multiple times to ensure a more stringent and robust test45. In 
this specific study, “k” was set to 10, meaning the dataset was split into 10 folds. Each time the cross-validation 
is performed, nine folds are used for training, and the model is tested on the remaining single fold. This proce-
dure is repeated 10 times in total to ensure a comprehensive estimation of the model’s performance. The cross-
validation results are listed in Table 4, presenting the model’s performance metrics across all the 10 folds. This 
approach helps assess the model’s generalization ability and its consistency in handling different subsets of the 
data. Moreover, ROC curves have been representing k-fold cross validation results in Fig. 4. The violin plot is a 
graphical representation that combines elements of a box plot and a kernel density plot to display the distribution 
of numerical data for one or more groups46.

A violin plot has a central white dot indicating the median, which is the middle value when sorted in ascend-
ing order. The violin’s interquartile range (IQR) is a black bar in the middle. Dark black lines from the black bar 
to the lower and higher neighboring values indicate the data range within 1.5 times the IQR from the lower and 
upper quartiles. Figure 5 exhibits the violin graphs illustrating the accuracy values obtained from each fold for 

(21)





Sn =
TP

TP+ FN
0 ≤ Sn ≤ 1

Sp =
TN

TN+ FP
0 ≤ Sp ≤ 1

Acc = TP+ TN /(TP+ FP+ FN+ TN)0 ≤ Acc ≤ 1

MCC = (TP*TN− FP*FN)/
�

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)− 1 ≤ MCC ≤ 1

Table 3.   Independent testing result of Bagging, Boosting and stacking Ensemble Models.

Model ACC​ Sp Sn MCC F1-score AUROC

Bagging

Random Forest 0.97 0.94 0.90 0.93 0.97 0.98

Extra Tree Classifier 0.93 0.90 0.95 0.86 0.95 0.97

Decision Tree 0.96 0.93 0.98 0.91 0.97 0.95

Bagging classifier 0.97 0.95 0.97 0.95 0.98 0.99

Boosting
Gradient Boost 0.99 0.98 0.97 0.98 0.99 0.99

HGB 0.98 0.97 0.99 0.96 0.98 0.99

Stacking 0.96 0.97 0.95 0.92 0.94 0.99

 Stacking Base Model KNN 0.75 0.69 0.79 0.47 0.75 0.76

 Stacking Base Model DT 0.96 0.93 0.97 0.91 0.91 0.97

 Stacking Base Model ANN 0.92 0.86 0.94 0.82 0.91 0.93

 Stacking Base Model SVM 0.93 0.89 0.96 0.86 0.93 0.94

Figure 3.   ROC curve of independent testing (A) Stacking Ensemble. (B) Bagging Ensemble. (C) Boosting 
Ensemble.
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the top-performing models in the stacking, bagging, and boosting categories. Employing supervised machine 
learning models can be advantageous for different classification tasks. However, relying solely on numerical 
predictions may not suffice.

Gaining a comprehensive understanding of the definite decision boundary that outlines the different groups 
is crucial. Consequently, the classification algorithms employed in this research were examined using a decision 
surface to enhance their accuracy. A decision surface map is a visual representation where a trained machine 
learning system predicts a coarse grid covering the input feature space. Figure 6 shows the decision surface plots 
of the classification algorithms applied in the current study. By examining these plots, one can gain insights 
into how the algorithms differentiate between the various classes and the effectiveness of their decision-making 
process. This information can be valuable for refining the models, improving their accuracy, and ensuring more 
reliable outcomes in categorization tasks.

For in-depth performance analysis of 6 mA-iEnsem, a few deep learning models were deployed and evalu-
ated including one dimensional—convolutional network (1D-CNN), long short-term memory (LSTM) and 

Table 4.   10-Fold cross validation results.

Model ACC​ Sp Sn MCC F1-score AUROC

Bagging

Random Forest 0.97 0.96 0.98 0.94 0.94 0.99

Extra Tree Classifier 0.93 0.90 0.94 0.85 0.95 0.97

Decision Tree 0.96 0.95 0.98 0.92 0.94 0.96

Bagging classifier 0.97 0.97 0.97 0.95 0.95 0.99

Boosting
Gradient Boost 0.99 0.98 0.99 0.97 0.95 0.98

HGB 0.99 0.98 0.98 0.97 0.93 0.97

Stacking 0.95 0.91 0.97 0.89 0.90 0.98

 Stacking Base Model KNN 0.75 0.68 0.79 0.46 0.75 0.79

 Stacking Base Model DT 0.96 0.94 0.97 0.92 0.95 0.96

 Stacking Base Model ANN 0.91 0.86 0.94 0.81 0.91 0.96

 Stacking Base Model SVM 0.94 0.90 0.96 0.86 0.94 0.98

Figure 4.   ROC curve of k-fold cross validation (A) Stacking Ensemble. (B) Bagging Ensemble. (C) Boosting 
Ensemble.

Figure 5.   Violin charts of 10-Fold cross validation (A) Stacking ensemble. (B) Bagging ensemble and (C) 
boosting ensemble.
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bidirectional LSTM (Bi-LSTM). The Test Accuracy scores revealed by these deep learning models have been 
mentioned in Table 5.

It can be inferred from the results mentioned in Table 5 that the proposed model, 6 mA-iEnsem, revealed high 
accuracy score as compared to deep learning models deployed for cross comparison. It can also be observed that 
deep learning models did not perform well for 6 mA site prediction using the same data samples. The foremost 
reason for this is the requirement of large number of samples for training to achieve optimal results. In many 
cases, acquiring such extensive datasets, particularly in the context of m6A site prediction, can be challenging 
due to the limited availability of experimentally validated samples. Moreover, the employment of ensemble-based 
techniques for sequence encoding helps in gaining deeper insights into the underlying biological features and 
mechanisms driving m6A site prediction. While deep learning methods undoubtedly offer powerful capabili-
ties for sequence representation learning, the preference for ensemble methods in the current research is driven 
by considerations such as data availability, interpretability, and the desire for methodological diversity and 
benchmarking.

Comparison with preexisting predictors
The model, 6mA-iEnsem, was built based on the Gradient Boost ensemble model which revealed optimized 
accuracy scores during assessment. It was then compared with existing predictors, namely 6mAFinder, IMRM, 
and irna3typeA, using independent datasets. The scores revealed that the 6mA-iEnsem model outperformed 
the other predictors, achieving an accuracy (ACC) of 0.99, specificity (Sp) of 0.98, sensitivity (Sn) of 0.97, and 
Matthew’s correlation coefficient (MCC) of 0.98. The comparative results have been mentioned in Table 6. The 
proposed model, 6mA-iEnsem, demonstrated superior performance due to its utilization of ensemble mod-
els that were trained with meticulous attention to detailed attributes. By employing novel feature extraction 
mechanisms, the model effectively extracted both obscured and evident features. These mechanisms involved the 
utilization of diverse matrices and vectors, which enabled precise targeting of position and composition-related 
characteristics. Furthermore, rigorous hyperparameter tuning of computationally intelligent models contributed 

Figure 6.   Boundary visualization of ensemble models: (A) Input data. (B) Stacking. (C) Random Forest. (D) 
ExtraTree. (E) Decision Tree. (F) Bagging. (G) Gradient Boost. (H) Histo Gradient.

Table 5.   Accuracy values revealed by deep learning models deployed for the current research.

Model Accuracy

1D-CNN 0.82

Bi-LSTM 0.79

LSTM 0.83

Table 6.   Comparison with preexisting models.

Model

Independent set test

ACC (%) Sp Sn MCC

irna-3typeA 84.6 0.93 0.88 0.91

IMRM 70.5 0.95 0.85 0.83

6MAFinder 83.5 0.83 0.83 0.67

6mA-iEnsem 99.9 0.98 0.97 0.98
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to the development of a more resilient framework. Through exhaustive testing, the model’s robustness was 
enhanced. The integration of various ensemble classifiers facilitated comprehensive cross-comparison of each 
model’s performance, further enhancing the model’s effectiveness. This comprehensive approach ensured that 
the 6mA-iEnsem model not only outperformed existing models but also exhibited a higher level of reliability 
and accuracy in its predictions.

Detecting 6 mA sites is crucial due to the significant role this RNA modification plays in various biological 
functions. To achieve this, researchers have devised an extensive strategy involving feature development and 
representation, amalgamating multiple computational models, and employing diverse testing methodologies. 
The current research introduces an innovative approach to feature extraction, leveraging a concise set of matrices 
and vectors. Drawing from the same pool of RNA samples utilized in prior studies, this investigation pioneers 
novel methodologies for feature extraction. By employing these advanced techniques, the research successfully 
uncovers obscured features inherent within the sequences. The focal point of this study lies in the refinement 
and development of feature extraction methodologies. Through the creation of specialized matrices and vectors, 
the research endeavors to extract both overt and covert traits from the RNA samples. These indicated tools are 
meticulously crafted to unveil hidden features embedded within the sequences, contributing to the construc-
tion of more robust computational models. The utilization of these specialized matrices and vectors not only 
enhances the extraction process but also facilitates the development of computational models with heightened 
accuracy and reliability. By pinpointing both overt and concealed features, these models are poised to optimize 
the identification of 6 mA sites, thereby advancing the field of genomic research. As a result of this approach, a 
predictive model has been developed, surpassing existing models in accurately identifying 6 mA sites. Its accuracy 
in identifying modified 6 mA sites has been demonstrated through various testing methodologies, indicating 
its potential usefulness in research. Overall, the development of this predictive model represents a significant 
advancement in the field of RNA modification research, providing a valuable tool for researchers in their efforts 
to better understand and treat diseases associated with 6 mA sites.

Webserver
A publicly accessible server for the proposed model has been made available to the research community that can 
be accessed through https://​6ma-​iensem-​tas.​strea​mlit.​app/.

Conclusion
The objective of this research study was to identify a common post-transcriptional modification called 6-methy-
ladenosine (6 mA) in RNA sequences using ensemble methods. Predicting 6 mA sites is crucial due to its asso-
ciation with various human disorders, including Acute myelogenous leukemia, Hypospadias, Breast cancer, 
Coronary heart disease, Diabetes II, Mental retardation, Prostate cancer, and Zika virus. To achieve this, a novel 
feature extraction mechanism was developed, considering both the position and composition of nucleotides 
within RNA sequences. Moments were computed for dimensionality reduction of the feature set. Several ensem-
ble models, including stacking, bagging, and boosting, were developed, and trained using the resultant feature set. 
The proposed ensemble model, 6mA-iEnsem, emerged as the best performer based on the rigorous testing and 
evaluation. A comparative analysis against existing predictors revealed that 6mA-iEnsem consistently achieved 
the highest scores across all accuracy metrics. As a result, the proposed model demonstrated enhanced accuracy 
in identifying modified 6 mA sites, showcasing the effectiveness of the methodologies employed in this study.

Data availability
The code and data of the current research is available at https://​github.​com/​tasee​rsule​man/​6mA-​iEnsem.
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