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Optical property dataset 
of inorganic phosphor
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Developing inorganic phosphor with desired properties for light-emitting diode application has 
traditionally relied on time-consuming and labor-intensive material development processes. 
Moreover, the results of material development research depend significantly on individual researchers’ 
intuition and experience. Thus, to improve the efficiency and reliability of materials discovery, 
machine learning has been widely applied to various materials science applications in recent years. 
However, the prediction capabilities of machine learning methods fundamentally depend on the 
quality of the training datasets. In this work, we constructed a high-quality and reliable dataset that 
contains experimentally validated inorganic phosphors and their optical properties, sourced from the 
literature on inorganic phosphors. Our dataset includes 3952 combinations of 21 dopant elements in 
2238 host materials from 553 articles. The dataset provides material information, optical properties, 
measurement conditions for inorganic phosphors, and meta-information. Among the preliminary 
machine learning results, the essential properties of inorganic phosphors, such as maximum 
Photoluminescence (PL) emission wavelength and PL decay time, show overall satisfactory prediction 
performance with coefficient of determination ( R2 ) scores of 0.7 or more. We also confirmed that the 
measurement conditions significantly improved prediction performance.

Because the material properties of color-conversion inorganic phosphor essentially determine the suitable 
applications and effectiveness of white light-emitting diodes (LEDs), developing inorganic phosphor materials 
with desired levels of durability, energy conversion efficiency, and power consumption is  crucial1–5. Inorganic 
phosphors are generally formed by substituting (doping) the luminescent center atoms, such as Eu2+ or Mn2+ , 
in a host crystal  structure6–8. These materials absorb some blue-light emission from the InGaN LED chip and 
re-emit light of a longer wavelength, resulting in white light including a wide range of visible  wavelengths9,10. 
Conventional research aiming to develop novel inorganic phosphor materials has relied on time-consuming and 
labor-intensive trial-and-error  experiments10–12. For this reason, comprehensive investigations regarding novel 
inorganic materials in unexplored material spaces require a large amount of resources and time.

Recently, the Brgoch group employed machine learning (ML) to predict the Debye temperature based on a 
dataset of the calculated bulk and shear  moduli13. Using this ML approach, they discovered a novel inorganic 
phosphor of the desired Debye temperature and density functional theory (DFT) band gap. However, the appli-
cability of existing inorganic phosphor datasets is limited in real-world applications for two reasons. First, most 
existing datasets were constructed by collecting the calculated properties of the materials, which inevitably 
contain errors resulting from the calculation methods. Second, the existing datasets only contain limited types 
of physical properties of inorganic phosphor materials.

A well-refined training dataset is crucial for successful ML in data-driven materials science. However, con-
structing a large dataset containing various materials requires substantial time and effort to generate experimental 
observations because time-consuming and labor-intensive material synthesis and property measurement experi-
ments must be conducted. Although theoretical approaches could be used instead, the practicality of creating 
a theoretical dataset through calculation methods such as DFT is also limited owing to the high computational 
costs of the calculation methods. An efficient alternative to constructing a large materials dataset is collecting 
data from the  literature13–15. Although data collected from the literature can be biased toward several material 
groups, materials datasets collected from literature searches are attractive in ML for materials science because 
they can provide many experimental observations on the target materials.

For data-driven research on inorganic phosphors, we conducted a literature search to construct a materi-
als dataset that contains experimentally synthesized inorganic phosphors and their experimentally measured 
physical properties. We refer to this inorganic phosphor optical property dataset as the IPOP  dataset16. We col-
lected eight essential physical properties of inorganic phosphors, such as photoluminescence (PL) maximum 
wavelengths, Commission Internationale de I’Eclairage (CIE) coordinates, lifetime, and quantum efficiency. In 
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addition to the physical properties, we also collected the measurement conditions to ensure the reliability of the 
dataset. The IPOP dataset contains 16,023 observations of 2238 host  materials16. To the best of our knowledge, 
this dataset is the largest public dataset of inorganic phosphors. The IPOP dataset can be used for data-driven 
discovery of novel inorganic phosphors beyond a simple dataset search by employing high-throughput screening 
based on the prediction models trained on the dataset. This high-throughput screening can also be conducted on 
general-purpose datasets that contain large amount of inorganic materials, such as Pearson’s Crystal  dataset17. In 
addition to dataset construction, we conducted an ML experiment using the IPOP dataset to obtain preliminary 
ML results. In the prediction results part, we will briefly discuss the ML results on our inorganic phosphor dataset.

Results and discussion
Inorganic phosphor data collection
We collected the data for the inorganic phosphor dataset from 553 articles on inorganic phosphors directly 
downloaded from Springer Nature, American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, 
and IOPscience (Supplementary Fig. S1). We searched for articles using keywords such as “PL”, “PL excitation”, 
“decay time”, “quantum efficiency”, and “thermal quenching temperature”. datasets were collected mainly to col-
lect quantitative data regarding the optical properties of inorganic phosphors. Our dataset comprises composi-
tion information and optical property information on a total of 3,952 inorganic phosphors, and the inorganic 
phosphor dataset was limited to cases involving up to two dopants (first and second dopants).

Figure 1a, b shows the element frequencies for the hosts and dopants of the collected inorganic phosphor 
dataset. The dataset mainly contains host materials such as oxide, phosphide, boride, silicate, and fluoride. Fur-
thermore, our dataset’s host materials include alkali metals such as Li, Na, and K, alkaline earth metals such as 
Mg and Ca, and transition metals such as Y, Mo, W, and Zn. As for dopant elements, the dataset mainly includes 
rare-earth elements (REEs) such as Eu, Sm, Tb, and Dy and elements such as Mn and Bi. In addition, transition 
metals are rarely included. In total, our dataset contains 21 types of dopant elements. Among the first dopants, 
Eu appears most frequently, as shown in Fig. 1c. More than half of the first dopants of the inorganic phosphors 
use Eu. In addition to Eu, elements such as Ce, Mn, Dy, and Tb are utilized as first dopants in many cases (more 
than 200). Additionally, the information about second dopants of inorganic phosphors is also shown in Fig. 1d.

As illustrated in Fig. 2, we collected the optical and thermal stability properties for inorganic phosphor based 
on figures, tables, or specific quantitative values mentioned in the original articles. To simplify the process of 
collecting quantitative values from spectral data, we included only the peak positions ( �PL,max ) with the maxi-
mum intensities of PL in the data. (Fig. 2a) Considering the importance of PL excitation (PLE) data, these data 
were collected up to the third maxima ( �PLE,max(1st) , �PLE,max(2nd) , �PLE,max(3rd) ), whereas Fig. 2b only shows the 
first maxima of the PLE data. Distribution information for �PLE,max(2nd) and �PLE,max(3rd) can be confirmed by 
consulting Supplementary, Fig. S2. We also included temperature conditions of the PL and PLE measurements 
as fundamental parameters in the dataset and intentionally excluded optical properties measured below room 
temperature (RT) to prioritize the development of novel inorganic phosphor materials that work well at RT and 
above and can be directly applied industrially. In addition, our dataset provides the X and Y coordinates ( XCIE 
and YCIE ) in the CIE chromaticity diagram, which are crucial characteristics for determining the applications of 
inorganic phosphors. By applying ML using the collected CIE coordinates dataset, we can estimate what color 
light will be emitted using only simple information about the inorganic phosphor (e.g., composition).

Furthermore, we collected data on the properties of inorganic phosphors that were difficult to manage owing 
to the sparsity of the data, such as PL decay time ( τPL ), quantum efficiency ( QEint for internal, QEext for exter-
nal), and thermal quenching temperature (T50). For the PL decay time ( τPL ), we collected the lifetime (from an 
excited state to a ground state) of electrons measured by time-resolved PL (TRPL) experiments. The PL decay 
data were typically fitted using the multi-exponential function I(t) = �iIi exp(−t/τi) , where Ii and τi are the 
amplitude and time constant, respectively. In each case, we took the component that contributed the most to 
the fitting among multiple time constants and included it in our dataset. External quantum efficiency ( QEext ) 
is an industrially valuable property, and internal quantum efficiency ( QEint ) can also be utilized as an essential 
material characteristic. We included these two parameters separately in the dataset. Furthermore, we collected 
thermal quenching temperature data for industrial use. Therefore, we excluded papers that reported T50 values 
below RT by performing PL measurement experiments at cryogenic temperatures.

Our dataset comprises 3952 combinations of 21 dopant atoms in 2238 host materials. The dataset contains 
four types of data: (1) material information of the host material and dopant element; (2) measurement condi-
tions such as wavelength of excitation and monitoring energy; (3) target properties of inorganic phosphors 
including maximum emission position, decay time, and quantum efficiency; and (4) meta-information such as 
source document digital object identifier (DOI), tag number, local outlier factor (LOF) score, materials project 
(MP) ID, and inorganic crystal structure database (ICSD) ID. The format of the inorganic phosphor dataset is 
described in Table 1. Material information and measurement conditions correspond to input information, and 
target physical properties correspond to output information. Furthermore, meta-information (MP-ID ,ICSD-ID) 
on the structure that best matches the original composition of each host material is included in our dataset. Using 
the link information for the material structure, we can download the structure file for the corresponding host 
material in the MP and perform ML using crystal structure dataset, such as crystal graph convolutional neural 
 networks18. Additionally, users can conduct data research by referring to the outlier factor (LOF-Score) value 
and determining whether the data are unnecessary. A data example of Lu3Al4.994O12Mn0.003Mg0.003 is presented 
in Table 2. Data that are not reported in the literature, such as thermal quenching temperature, are indicated as 
NaN (not a number).
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Dataset statistical analysis
We aim to provide industry and academia with a high-quality and trustworthy dataset of the optical properties 
of inorganic phosphors. Therefore, we collected data from 549 published papers that were cited more than 10 
times, excluding self-citations, as of March 21, 2024 (Only 4 papers were cited less than 10 times) using the fol-
lowing procedure. Two researchers with sufficient background in materials and measurement of optical properties 
of inorganic phosphors designed the dataset through discussion and consultation. Afterward, one researcher 
focused on collecting the data, while the other focused on validating and cross-checking the collected dataset.

Figure 3 presents an overall summary of the final collected dataset. As shown in Fig. 3a, among the 3952 
inorganic phosphors we collected, only 1.9% were binary compound hosts, 17.2% were ternary compounds, 
56.7% were quaternary compounds, and the remaining 24.3% were hosts with five or more elements. Quaternary 
compounds accounted for the most significant proportion, which means that most inorganic phosphors currently 
being studied have complex host structures composed of four or more elements. We also analyzed the distribution 
of inorganic phosphors according to the number of dopants. We found that 63.6% of cases were single-doped, 
and the remaining cases (35.4%) were doped with two elements. This shows that studies using multiple dopants 
to improve the properties of inorganic phosphors are being actively conducted.

Figure 3b, c shows the histograms of �PL,max and �PLE,max(1st) . Most of the �PL,max is located in the region of 
visible light emission (380–700 nm). Two peaks near 540 nm and 620–640 nm indicate that research on green 
and red conversion phosphors is commonly conducted. The PLE of phosphors with a visible emission range 
mainly occurs in around 400 nm region in Fig. 3c, which is a region that overlaps somewhat with the emission 
wavelength of the typical InGaN-based LED (around 400–450 nm). It is difficult to efficiently visualize the data 
distribution of decay time, τPL , if original values are used. Thus, we analyzed the distribution of the logarithmic 
decay time, log10τPL values, as shown in Fig. 3d. Each peak can be identified in the τPL region with sub-µs , µs , 
and ms time scales. Interestingly, the τPL does not have continuous values; instead, the values are clustered and 
distributed in a specific area. The CIE chromaticity coordinates calculated from the emission spectra of phosphors 
were separated into XCIE and YCIE , shown in Fig. 3e, f. YCIE is mainly concentrated between 0.3 and 0.4, whereas 
XCIE is distributed over a relatively wide area. Figure 3g displays the temperature-dependent distribution of T50 
values extracted from temperature-dependent emission spectra. To experimentally obtain the value of T50, 
conducting PL measure experiments at various temperatures is necessary. Thus, T50 values are not expected to 
be widely reported in the literature. Nevertheless, we collected and provided 300 T50 data points in this study. 
About 80% of the T50 values are distributed between 400 K and 600 K. The external and internal quantum 

Table 1.  Description of the inorganic phosphor dataset.

No. Column name Unit Data type Description

1 Tag – Float The numbering of data points

2 Inorganic phosphor – String Composition of phosphor

3 Host – String Host composition of phosphor

4 1st dopant – String 1st dopant atom of phosphor

5 1st dopant valency – Float Valency of 1st dopant atom

6 1st dopant concentration – Float Doping concentration of 1st dopant

7 2nd dopant – String 2nd dopant atom of phosphor

8 2nd dopant valency – Float Valency of 2nd dopant atom

9 2nd dopant concentration – Float Doping concentration of 2nd dopant

10 Temp. (K) K Float Measurement temperature

11 Emission max. (nm) nm Float Maximum PL emission wavelength, �PL,max

12 CIE X coordinate – Float X coordinate in CIE chromaticity diagram, XCIE

13 CIE Y coordinate – Float Y coordinate in CIE chromaticity diagram, YCIE

14 Int. quantum efficiency (%) – Float Internal quantum efficiency, QEint
15 Ext. quantum efficiency (%) – Float External quantum efficiency, QEext
16 Thermal quenching temp. (K) K Float Thermal quenching temperature, T50

17 Excitation source (nm) nm Float Wavelength of excitation source, �exc
18 1st excitation max. (nm) nm Float 1st Maximum PLE wavelength, �PLE,max(1st)

19 2nd excitation max. (nm) nm Float 2nd Maximum PLE wavelength, �PLE,max(2nd)

20 3rd excitation max. (nm) nm Float 3rd Maximum PLE wavelength, �PLE,max(3rd)

21 Log10 Decay time ( log10 [ns]) log10[ns] Float Logarithmic value of PL decay time,τlog ,PL
22 Decay time (ns) ns Float Photoluminescence decay time, τPL
23 Monitoring energy (nm) nm Float Decay time and PLE monitoring wavelength, �mon

24 Reference – String Source document DOI

25 Publisher – String Abbreviation for journal publisher

26 MP-ID – String Materials project ID

27 ICSD-ID – String Inorganic crystal structure database ID

28 LOF-Score – Float Local outlier factor score
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Table 2.  Optical properties of Lu3Al4.994O12Mn0.003Mg0.003.

Tag 745

Inorganic phosphor Lu3Al4.994O12Mn0.003Mg0.003
Host Lu3Al4.994O12

1st dopant Mn

1st dopant valency 4

1st dopant concentration 0.003

2nd dopant Mg

2nd dopant valency 2

2nd dopant concentration 0.003

Temp. (K) 298

Emission max. (nm) 670

CIE x coordinate 0.713

CIE y coordinate 0.286

Int. quantum efficiency (%) 72.41

Ext. quantum efficiency (%) 41.39

Thermal quenching temp. (K) NaN

Excitation source (nm) 326

Excitation max. (nm) 326

Log10 Decay time ( log10 [ns]) 6.094122

Decay time (ns) 1242000

Monitoring energy (nm) 670

Reference https://doi.org/10.1039/C7TC02514A

Publisher RSC

MP-ID mp-14132

ICSD-ID icsd-182354, icsd-23846

LOF-Score 0.971190219

Figure 1.  Element frequencies for the (a) hosts and (b) dopants of the inorganic phosphors in the dataset. 
Histograms of the elements comprising the (c) first and (d) second dopants.
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efficiencies, such as thermal quenching temperature, have small data points but are industrially meaningful 
values. Our dataset contains 157 QEext and 1168 QEint data points reported in % units, as shown in Fig. 3h, i. The 
target properties of the inorganic phosphor mentioned above include the measurement conditions for each target 
property. Connection information between the target characteristics and measurement conditions is provided in 
Supplementary, Table S1. For example, to accurately specify �PL,max , Temp. and �exc must be presented together.

Prediction results for optical properties of inorganic phosphors
To experiment with the usability of the dataset we collected, we preliminarily predicted the optical properties of 
inorganic phosphors using extreme gradient boosting tree regression (XGB), which has shown state-of-the-art 
prediction accuracy in the field of material  science19. The XGB algorithm shows excellent predictive performance 
even for a small number of datasets. To perform the prediction, we used the ML platform, SimPL-ML20. This plat-
form is suitable for performing the ML tasks we envisioned because it provides atomic feature auto-generation, 
hyper-parameter optimization, and input feature selection. Because each activator has different structure-prop-
erty relationships that affect the observed luminescence, we built prediction models using only the proprietary 
dataset for Eu activator rather than the entire IPOP dataset. To ensure that minimum data is required to build 
the prediction models, we used a dataset containing all Eu activators without distinguishing between Eu2+ and 
Eu3+ activators. If the user wants to generate optical property prediction models for activators other than Eu, 
the user must create a sub-dataset containing only the desired activator through the sorting function. However, 
users should keep in mind that if the number of sub-dataset is too small, the performance of the prediction 
model cannot be guaranteed. For information on the number of data for each activator ion, refer to Fig. 1c, d. 
Besides, users who want to generate additional atomic attribute information based on the chemical formula of 
the inorganic phosphor can visit the SimPL-ML platform and use the atomic feature auto-generation function.

First, we converted the chemical formulas of inorganic phosphors into machine-readable feature vectors based 
on elemental attributes of the elements in the chemical formulas by using the atomic feature auto-generation 
of SimPL-ML. A total of 52 features were created using the atomic ratio, atomic number, atomic weight, atomic 
radius, Pauling electronegativity, number of valence electrons, first ionization energy, and the combination 
thereof. To allow anyone to freely utilize the intermediate results created in this process, we provide machine-
readable feature vectors for inorganic phosphors for download in addition to the IPOP  dataset16. These eight CSV 
(comma separated values) formatted text files containing atomic attribute information based on atomic formulas 
can be downloaded from https://doi.org/10.6084/m9.figshare.24771186. In addition to the atomic features (AF), 
we used measurement conditions (i.e., Temp., �exc , and �PLE,dec ) as the input of the prediction models. For each 
set of chemical formulas and measurement conditions used as input, we predicted eight physical properties 
of the inorganic phosphors: �PL,max , �PLE,max(1st) , τlog ,PL , XCIE , YCIE , T50, QEext , and QEint , as shown in Fig. 4. 
Additionally, the prediction results for �PLE,max(2nd) can be confirmed by consulting Supplementary Fig. S3.

The prediction results for �PL,max , �PLE,max(1st) , τlog ,PL , XCIE , and YCIE show overall satisfactory prediction 
performance with coefficient of determination ( R2 ) scores of 0.7 or more, but in the case of predictions of QEext , 
QEint , and T50, with less than 800 data points, the R2 scores were less than 0.6921. Additionally, we performed 

Figure 2.  (a) Maximum photoluminescence (PL) emission wavelength, �PL,max , (b) maximum PL excitation 
wavelength, �PLE,max , (c) X and Y coordinates ( XCIE and YCIE ) in CIE chromaticity diagram, (d) PL decay time, 
τPL , and (e) thermal quenching temperature, T50.
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property prediction by varying the feature combinations to confirm that the Temp. (T), �exc (ES), and �mon (ME) 
values are necessary to accurately predict the optical properties of various inorganic phosphors. The prediction 
performance results for various feature combinations are shown in Table 3. In all predictions, a clear prediction 
performance improvement was confirmed by adding the ES input feature. Then, for the �PLE,max(1st) and τlog ,PL 
predictions, we confirmed that the ME measurement condition feature is a crucial input feature for more accu-
rate prediction. Contrary to our expectations, we could not confirm any prediction performance improvement 
according to the T input feature in all predictions, except for the �PLE,max(1st) and τlog ,PL predictions.

To better understand the cause for this, we analyzed the data distribution for the T input features. As a result, 
for the �PL,max target property, it was found that 93.2% of the T values were distributed at 293 K (RT). Accord-
ingly, we constructed a subset of �PL,max in which the proportion of �PL,max measured under RT measurement 
conditions was reduced to 62.8%. Surprisingly, in the subset of the �PL,max dataset, target prediction performance 
improved when the T input feature was added. Therefore, we conclude that the experimental measurement 
conditions such as T, ES, and ME provide a greater contribution to predicting various optical properties of 
inorganic phosphor through continuous data expansion and supplementation. Apart from this study, we plan to 
supplement the incomplete parts of the IPOP dataset through additional data expansion and supplementation.

Recently, various groups have reported experimental physical property prediction using a chemical formula-
based feature  alone22–27. In addition to chemical formula-based features, if additional information related to 

Figure 3.  Distribution of the material and optical properties of the inorganic phosphors: number of constituent 
elements of the (a) host (left) and dopant (right), (b) �PL,max , (c) �PLE,max(1st) , (d) τlog ,PL , (e) XCIE , (f) YCIE , (g) 
T50, (h) QEext , and (i) QEint . “Counts” on the y-axis refer to the number of collected data.
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physical property measurements is used as a feature to generate a prediction model, further improvement of the 
prediction model can be expected. This means that beyond property predictors, the property measurement of 
virtual materials is also feasible.

Furthermore, we analyzed the correlation between the targets of the inorganic phosphor dataset (Supple-
mentary, Fig. S4). Most of the target pairs have Pearson correlation values less than 0.5. Overall, because the 
relationship between the targets is independent, each target has potential for utilization. Among them, �PL,max 
and XCIE show a Pearson correlation coefficient of 0.74. This result is interesting, considering that �PL,max and YCIE 
have a value of 0.35. We can find clues to understand this phenomenon in Fig. 2c. XCIE expresses a much more 
dramatic color change from red to blue than YCIE . Therefore, XCIE is more suitable for expressing its distributed 
information by following the PL peak position(�PL,max ) of inorganic phosphor. Additionally, the coefficient 
between XCIE and τlog ,PL is 0.64, which is generally understood to be mainly related to the longer PL decay time 
as the emission wavelength becomes longer in inorganic  phosphor28.

Figure 4.  Prediction results by the XGB methods on the proprietary dataset of the Eu activator.
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Data availability
This dataset is available at https:// doi. org/ 10. 6084/ m9. figsh are. 24771 186 (or https:// github. com/ KRICT- DATA/ 
IPOP- datas et- ver-3.0). In addition, the CSV formatted text files containing atomic attribute information based 
on atomic formulas, which were created at www. simpl- ml. org, are also available.
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