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BioBBC: a multi‑feature model 
that enhances the detection 
of biomedical entities
Hind Alamro 1,2,3, Takashi Gojobori 1,2, Magbubah Essack 1,2* & Xin Gao 1,2*

The rapid increase in biomedical publications necessitates efficient systems to automatically handle 
Biomedical Named Entity Recognition (BioNER) tasks in unstructured text. However, accurately 
detecting biomedical entities is quite challenging due to the complexity of their names and the 
frequent use of abbreviations. In this paper, we propose BioBBC, a deep learning (DL) model that 
utilizes multi-feature embeddings and is constructed based on the BERT-BiLSTM-CRF to address 
the BioNER task. BioBBC consists of three main layers; an embedding layer, a Long Short-Term 
Memory (Bi-LSTM) layer, and a Conditional Random Fields (CRF) layer. BioBBC takes sentences from 
the biomedical domain as input and identifies the biomedical entities mentioned within the text. 
The embedding layer generates enriched contextual representation vectors of the input by learning 
the text through four types of embeddings: part-of-speech tags (POS tags) embedding, char-level 
embedding, BERT embedding, and data-specific embedding. The BiLSTM layer produces additional 
syntactic and semantic feature representations. Finally, the CRF layer identifies the best possible 
tag sequence for the input sentence. Our model is well-constructed and well-optimized for detecting 
different types of biomedical entities. Based on experimental results, our model outperformed state-
of-the-art (SOTA) models with significant improvements based on six benchmark BioNER datasets.

Keywords  Biomedical named entity recognition, Machine learning, Natural language processing, NER, 
BiLSTM, BioBERT, PubMedBERT

The number of biomedical publications is increasing rapidly. Currently, PubMed has more than 35 million 
abstracts for biomedical literature, with an average of one million new records added each year. Additionally, 
PubMed Central offers access to 9 million full-text articles1. This means that researchers need to sift through 
an impossibly large amount of literature/published articles to obtain valuable information. Moreover, new bio-
medical discoveries, experiments, and results are published in an unstructured form, making extracting relevant 
information time-consuming2. Consequently, researchers are now using biomedical text mining techniques to 
enhance this process3.

Named Entity Recognition (NER) is a form of information retrieval used in natural language processing 
(NLP). It is the task of automatically recognizing and locating entity mentions in a text and classifying them into 
predefined categories, such as person names, organizations, locations, etc. The NER task was first introduced 
in 1996 during the sixth Message Understanding Conference4 to identify specific terms and symbols. NER has 
since been used for several diverse NLP tasks, including relation extraction, knowledge graph construction, 
question answering, and machine translation5. NER can be approached as a sequence labeling problem wherein 
the objective is to assign a label to each term in a sentence based on predefined categories. There are different 
tagging choices for NER systems. Several annotation schemes have been used in the literature, including IO which 
annotates (Inside/Outside) entities, BIO (Beginning/Inside/Outside), and BIOES (Beginning/Inside/Outside/
End/Single). The choice between tagging schemes often depends on the specific requirements of the NER task 
and the preferences of the researchers or practitioners.

Identifying biomedical domain-specific entities, such as genes, diseases, drugs, and so on, referred to as 
biomedical named entity recognition (BioNER), is particularly challenging due to several reasons, such as nam-
ing complexity (a mix of symbols and numbers in entity names), frequent occurrences of abbreviations, the 
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problem of new entity names, and data privacy concerns6–8. Correctly identifying these entities is crucial for 
enhancing the quality of biomedical NLP applications, such as extracting drug-drug interactions9 and disease-
gene relationships10. In the biomedical domain, the choice of the NER model depends on the specific research 
objectives, data characteristics, and computational constraints. Several model architectures have been particularly 
influential in the BioNER task, with early systems primarily based on dictionaries, rules, and machine learning 
(ML)11–14 and more recent systems using neural networks and deep learning (DL)15,16. DL methods can learn 
and extract useful features by creating embedding vectors. Recurrent Neural Networks (RNNs), particularly 
Bi-directional Long Short-Term Memory (Bi-LSTM) networks, are utilized as an encoder to extract sequence 
information and capture dependencies within the text. Conditional random fields (CRF)17 usually follow BiLSTM 
to assign the named entity labels. CRF is a method that can consider the correlation between neighboring labels. 
It can obtain the global optimal label chain for a given sequence. These capabilities of combining BiLSTM-CRF 
make it one of the preferred architectures used in NER systems.

Moreover, pre-trained language models have gained popularity in recent years due to their remarkable success 
and outstanding performance. For instance, Bidirectional Encoder Representations from Transformers (BERT)18 
has made impressive progress in various natural language processing (NLP) tasks. In the field of biomedicine, 
numerous pre-trained models have been proposed. For instance, BioBERT19, BlueBERT20, and ClinicalBERT21 
further extend the general domain language models with biomedical text. Moreover, the pre-trained models 
SciBERT22 and PubMedBERT23 construct a domain-specific vocabulary from scratch. SciBERT was pre-trained 
on scientific literature in computer science and biomedicine, while PubMedBERT was trained from scratch on 
biomedical literature.

In this paper, our focus is on improving the performance of BioNER by enriching the BERT-BiLSTM-CRF 
with multiple feature embedding. At first, to encode the input text, we generate multiple types of feature embed-
dings, including POS tag embeddings, char-level embeddings, and contextual word-level embeddings. For char-
level embedding, we utilized a bidirectional LSTM (BiLSTM), while for word-level embedding, we employed 
the BERT and the data-specific embedding models. The outputs from the different embedding models are then 
concatenated and fed into a BiLSTM layer. The BiLSTM learns the relevant contextual information necessary for 
predicting named entities. Finally, the CRF will assign and output the best sequence of labels.

Although several studies have followed the BERT-BiLSTM-CRF architecture, they primarily rely on the 
automatically generated features of BERT. BioBBC, however, leverages additional knowledge by fusing differ-
ent types of embeddings. Incorporating these varied embeddings has enhanced the model’s capacity to capture 
relevant information for entity recognition, though it incurs significant computational costs. Consequently, it 
is crucial to carefully determine which combinations to use, ensuring they are strategically selected to enhance 
the model’s performance effectively.

BioBBC exploits the robustness of this architecture and further improves it by utilizing the following 
approaches:

•	 Incorporating additional features to complement BERT embeddings, including three extra embeddings types: 
(1) syntactic features, (2) character embeddings, and (3) domain-specific word embeddings.

•	 Evaluating the impact of the concatenated input features by assessing the effectiveness of each component.
•	 Optimizing the architecture through learning and selecting different configurations to improve the model’s 

expressiveness.

Our model follows the single learning approach, where we develop a separate model for each entity type. 
We present the performance results of our model based on eight benchmark BioNER datasets: NCBI-Disease24, 
BC5CDR-Disease25, BC5CDR-Chem25, BC4CHEMD26, BC2GM27, JNLPBA28, LINNAEUS29, and Species-80030.

Related work
The earlier studies on BioNER systems were rule-based or dictionary-based approaches11,12,31,32. These systems 
have a simple structure but require up-to-date dictionaries and manually crafted feature sets. The main problem 
with traditional methods, commonly called the out-of-vocabulary problem (OOV), is that they cannot handle 
new words not seen during training. Thus, ML-based models were also applied to solve the task of NER. For 
instance, TaggerOne33 used a semi-Markov classifier for biomedical entity identification and linking. Other 
studies solved NER using techniques such as Support Vector Machine (SVM)34,35, Hidden Markov Models 
(HMM)36,37, and Structural Support Vector Machines (SSVM)38. However, a challenge in these methods arises 
with the requirement for manual feature extraction from raw data. Thus, neural networks and DL methods were 
recently also applied to BioNER15,16.

The primary advantage of DL methods is their capability to automatically extract useful features through 
embedding vectors, eliminating the need for manual feature extraction. Examples include the model introduced 
by Lample et al. that combines the word vector representation models, LSTMs and CRF, into a single method 
called BiLSTM-CRF39. Hong et al.40 proposed a DL label-label transition model named DTranNER. Crichton 
et al.41 also used the word token with its surrounding context words as the input for a model based on Convolu-
tional Neural Networks (CNNs). Luo et al.8 proposed a document-level attention-based model for chemical NER. 
Moreover, the study42 improves the accuracy of entity recognition by combining LSTM, CRF, word embeddings, 
and char-level representation. Yoon et al43 developed the CollaboNet model that comprises multiple BiLSTM 
networks. Each network acts as a single task to recognize a specific entity type, resulting in more precise predic-
tions. Later, Tong et al.6 developed MT-BioNER, which uses a multi-task learning approach to solve BioNER.

Recently, pre-trained language models have been applied in BioNER. Domain-specific BERT such as 
BioBERT19, SciBERT22, and PubmedBERT23 have significantly outperformed previous BioNER systems. 
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Furthermore, several studies44–46 combined biomedical BERT with various ML and DL strategies and achieved 
state-of-the-art (SOTA) performances. For instance, BioByGANS45 used BioBERT with graph neural networks 
and solved BioNER as a node classification problem. Wang and Gu47 developed a Biaffine Layer on top of BERT-
BILSTM, serving as a bidirectional mapping network for improved entity extraction and semantic information 
capture. Guan and Zhou48 proposed an enhanced BERT and improved sequence labeling performance through 
a word-pair classification strategy. Moreover, some studies, such as BioBERT-MRC44 and KaNER49 adopted the 
Machine Reading Comprehension (MRC) approach to solve BioNER.

In addition, syntactic features such as part-of-speech (POS tags), syntactic constituents, and dependency 
parsing have shown advantages in NLP downstream tasks. Syntactic features can help in improving the perfor-
mance of BioNER. Specifically, the text of the biomedical domain is usually formal, consists of long sentences, 
and contains domain-specific terms. Thus, syntactic information can provide helpful information by analyzing 
the grammatical structure of sentences, which helps understand the relationship between the words and recog-
nizing entities. In BioNER, several studies have used syntactic information to improve performance8,45,50,51. We 
improved this area by combining contextual and syntactic features using multi-feature embeddings. Our model 
learns the input using different representation types, including char-level, word-level, and POS tags features.

Method
Problem definition
Given an input sentence X = { x1,  x2, …, xn}, which is a sequence of words where xi represents the i-th word of the 
sentence and n represents the length of the sentence. Our NER model aims to predict a sequence of correspond-
ing labels Y = {y1, y2, …, yn}, where yi represents the label of the word xi. The labels refer to a predetermined list 
of biomedical entity types.

Model details
The proposed model is shown in Fig. 1. The model comprises three primary components: an Embedding layer, 
a BiLSTM layer, and a CRF layer. The embedding layer comprises four representation models: one for POS 
tags, one for char-level, and two for word-level. The POS tag embedding is obtained through one-hot encoding. 
The char-level representation is obtained through a BiLSTM layer, while the word contextual representations 
are obtained through a BERT layer and a data-specific embedding layer. These types of embeddings are then 
concatenated and fed to the BiLSTM layer to obtain additional syntactic and semantic feature representations. 
The output of the BiLSTM is fed into a fully connected layer, which passes the vectors to the CRF layer. The CRF 
layer identifies the best possible tag sequence for the input sentence.

Embedding layer
We use four representation methods to capture more information about the input text, i.e., POS tag embeddings, 
char-level embeddings, the data-specific embeddings, and the BERT embeddings. The four types of embeddings 
are concatenated to perform one long vector used as input to the successive layers, BiLSTM.

POS tags embedding.  POS tags indicate the grammatical properties of words within a sentence. Examples 
of these parts of speech include nouns, pronouns, adjectives, determiners, verbs, adverbs, prepositions, con-
junctions, and interjections. We used the NLTK Python library52 to extract the POS tags of the sentences. We 
employed a one-hot encoder to generate embeddings for the POS tags. The one-hot encoder is transformed into 
a lower dimension using nn.Embedding(one-hot-size, emb_dim), where one-hot-size represents the length of the 
one-hot vector, and the embedding size is set to 50.

Char‑level embedding.  We used the char-level representation to extract char-level features for each word in 
the text. Specifically, we passed each character in the input word through a BiLSTM layer, which converts the 
character into a vector representation. These vectors are combined for each word, generating a char-level repre-
sentation of a word with a vector size of 50.

Word‑level data‑specific embedding.  We utilized Flair53, an open-source Python library, to generate word-
level, data-specific embeddings. Flair offers several NLP solutions, including a Flair language model trainer that 
can be employed to create custom embedding. This language model trainer produces word-level embeddings 
that are represented at the character level, meaning it represents words as sequences of characters contextualized 
by the surrounding text. This feature is valuable for addressing OOV words common in biomedical texts.

Accordingly, we first aggregated all the datasets we used in this study to generate our data-specific embed-
dings and then trained a Flair language model on this combined dataset. This process results in our data-specific 
embeddings. The Flair language model uses an LSTM layer to generate the embeddings, and we created both 
forward and backward embeddings of the data. Thus, the output from this data-specific embedding consists of 
two vectors, one forward and one backward; these vectors will be concatenated with other embedding vectors 
in the embeddings concatenation stage.

Word‑level BERT embedding.  We obtained the second word-level representation using BERT, a pre-trained 
language model that uses multilayer bidirectional transformer encoders to generate language representations. 
The architecture of BERT uses 12 layers of transformers block with a hidden size of 768 and 12 self-attention 
heads and was trained on English text sourced from BookCorpus and Wikipedia. In this project, we used a 
domain-specific variation of the BERT model called PubMedBERT23. PubMedBERT is a pre-trained language 
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model based on the architecture of BERT, trained from scratch on PubMed abstracts and full-text articles from 
PubMed Central. We used the version trained only on the abstracts, ‘Microsoft/BiomedNLP-PubMedBERT-
base-uncased-abstract’ released by HuggingFace.

To prepare sentences for encoding by the BERT model, we must follow the input format of the BERT. First, 
we add the special tokens, [CLS] and [SEP], to each sentence’s beginning and end, respectively. Also, if the input 
sentence is shorter than the chosen max_length of 128, it will be padded to ensure that all input sentences are 
of equal length. The output of BERT is a hidden state vector of size 768 for each token in the input sequence.

Embeddings concatenation.  The output vectors obtained from the different embeddings (POS tags, char-level, 
data-specific, and BERT) are concatenated to perform one long vector. This vector is used as the input into the 
next layer.

Figure 1.   The architecture of the proposed model.
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BiLSTM layer
Long Short-Term Memory (LSTM)54 is a type of recurrent neural network (RNN) that learns long-term depend-
encies between patterns in sequence data, making it widely used in sequence labeling problems. The structure of 
LSTM includes a memory module that helps to keep track of the seen information from the sequence data that 
has been processed. This structure, called forward LSTM, processes input in one direction (e.g., left to right).

The Bidirectional LSTM (BiLSTM)55 combines forward LSTM and a backward LSTM. Thus, it can capture 
information from both preceding and succeeding words in a sequence, which allows a more comprehensive 
understanding of context and semantic information and facilitates learning of the dependencies between contexts. 
In BiLSTM, the representation of each word in the input sequence is calculated twice: once from left to right 
(ht →) and once from right to left (ht ←). These two representations are then concatenated, ht = [ht → ; ht ←], 
to produce the final vector representation of each word.

In our model, the input to the BiLSTM is the output of the Embedding layer, which consists of a sequence of 
vectors. The BiLSTM takes these vectors and calculates the forward representation (h1 → , h2 → , …, hn →) and 
backward representation (h1 ← , h2 ← , …, hn ←) using the forward LSTM and backward LSTM, respectively. 
The dimension size of each LSTM layer is 256. Then, these representations are concatenated for each word (e.g., 
h1 = [h1 → ;h1 ←]), producing an output vector with a size of 512 (2*256). The final output of BiLSTM is the 
complete representation of the sentence (h1, h2, …, hn).

The output of the BiLSTM is mapped from its original dimension of 512 to a k-dimension using a fully con-
nected layer. In this case, k represents the number of labels present in the dataset.

CRF layer
The output vector from the BiLSTM layer can be used directly with a Softmax layer to make independent tag-
ging decisions for each output. This approach may produce an invalid sequence of labels, such as "O, I-Disease, 
I-Disease, …” where in BIO format, the tag "I" must follow a "B" tag56. Thus, it is necessary to learn dependencies 
across output labels in sequence labeling tasks.

CRF solves this issue by learning the relationships between adjacent tags in a sentence, ensuring that the 
predicted tag sequences are valid. During training, the CRF layer learns constraints and transitional probabilities 
to identify the best possible tag sequence for the given sentence. Some constraints in BIO tagging format include 
that the label of the first word in a sentence should start with the tag of "B" or "O", but not "I".

CRF uses two types of scores: emission scores (P) and transition scores (T). The emission scores are the pre-
vious layer’s output, representing the predicted scores for each label (see Fig. 2). On the other hand, transition 
scores are learned during the training process. A transition score represents the probability of transitioning from 
the tag of word xi to the tag of xi + 1 in a given sequence X = {x1,  x2, …, xn}.

Mathematically, given a sentence of text X = { x1, x2, …, xn} and an output label sequence Y = {y1, y2, …, yn}, a 
CRF calculates the score of labels for the sequence using the following equation:

where P is a matrix of scores with dimensions n × k, where n represents the length of the sentence and k repre-
sents the number of distinct tags. Pi,j represents the score assigned to the jth tag for the ith word. T is a transition 
matrix where Tyi ,yi+1

 represents the probability of transitioning from label i to label i + 1.
The final decoding sequence is determined by selecting the highest predicted score obtained through the 

Viterbi algorithm.

Score(X,Y) =

n∑

i=1

Pi,yi +

n∑

i=o

Tyi ,yi+1

Figure 2.   The emission scores from previous layer are the input to CRF.
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Experiments
Datasets

•	 NCBI-Disease24 is a dataset fully annotated for diseases at both the mention and concept levels. The dataset 
includes 793 PubMed abstracts, 6,892 mentions of diseases, and 790 distinct disease concepts.

•	 BC5CDR25 is a dataset created for the BioCreative V challenge. The dataset contains two sub-datasets: 
BC5CDR-Disease and BC5CDR-Chemical. We used these sub-datasets to evaluate diseases and chemicals, 
respectively.

•	 BC4CHEMD26 is a dataset used for the BioCreative IV Chemical Compound and Drug Name Recognition 
task. The dataset comprises 10,000 abstracts of PubMed publications annotated for Chemical/Drug entities.

•	 BC2GM27 is a dataset created for the BioCreative II Gene Mention Recognition task. This dataset consists of 
20,000 sentences from PubMed annotated with over 24,000 gene mentions.

•	 JNLPBA28 is a biomedical corpus developed for a joint workshop on NLP in biomedicine and its applications. 
This dataset comprises 2,000 PubMed abstracts aimed at identifying entities related to molecular biology, such 
as proteins, DNA, RNA, cell lines, and cell types. Following19 and previous studies, we did not use cell-type 
and cell-line entity tags from JNLPBA. Instead, we focused solely on identifying protein, DNA, and RNA 
entities, which we annotated as Gene.

•	 LINNAEUS29 is a biomedical corpus for species entity recognition and normalization. It consists of 4259 
species entities annotated manually from 100 PMC full-text documents.

•	 Species-80030 is a manually annotated corpus for species entities, annotated from 800 PubMed abstracts.

For all datasets, we used the preprocessed BIO versions provided by19. The specifics of each dataset are out-
lined in Table 1.

Tagging schema
In our study, for all datasets, we used the pre-processed versions provided by19. The provided dataset was in the 
BIO form. The BIO tagging scheme allows for the representation of multi-token entities and enables the model 
to distinguish between the beginning and continuation of entities within a sequence. This facilitates the training 
and evaluation of NER models by providing clear boundaries for each entity type. Thus, we subsequently used 
this schema to make a fair comparison with the previous models.

In BIO labeling format, the term "B-Entity" (beginning) indicates that it is the first word of an entity, while 
"I-Entity" indicates that it is a middle or last word of an entity. In contrast, the label "O" (which stands for "Out-
side" or "Other") indicates that the word does not belong to any named entity. The term "entity" refers to any 
biomedical entity, including disease, chemical/drug, gene, and species targeted in this study. Figure 3 provides 
examples of the BIO tagging.

Experimental settings
Following previous works6,19,43–45, we train the final models by merging the training and development sets and 
using a 10% split of this merged set for validation, while the provided testing file was used for evaluation. Table 1 
provides the number of sentences in each set.

Several factors, such as dataset characteristics and available memory and resources, influence the hyperpa-
rameter selection process. In BioBBC, we established a range of parameter spaces, as listed in Table 2. We tuned 
these parameters on the validation set to select the optimal choices. For the maximum sentence length, we chose 
128 over 256 for two primary reasons: firstly, the performance difference between the two lengths was negligible 
across all models, and secondly, 128 is more memory-efficient. Consequently, we excluded some long sentences 
(approximately 20) from BC4CHEMD. The learning rate selection had the most substantial impact, with optimal 

Y∗
= argmax(Score(X,Y))

Table 1.   Number of sentences in Training, Validation, and Testing files in each dataset.

Dataset Entity type

Number of sentences

Training Validation Testing Total

NCBI-disease Disease 5701 634 940 7275

BC5CDR-Disease Disease 8226 915 4797 13,938

BC5CDR-Chem Chemical/Drug 8226 915 4797 13,938

BC4CHEMD Chemical/Drug 55,188 6133 26,364 87,685

BC2GM Gene/Protein 13,583 1510 5038 20,131

JNLPBA Gene/Protein 16,691 1855 3856 22,402

LINNAEUS Species 14,411 1602 7142 23,155

Species-800 Species 5906 657 1630 8193
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values varying across datasets. The batch size was set to 64, except for Linnaeus and BC4CHEMD, where it was 
adjusted to 32. The hidden state size in the BiLSTM was set to 256, as it offered an improvement over 128, while 
512 caused memory issues. The maximum number of epochs was set to 100. The selected configuration for each 
model is shown in Table 2.

The models were implemented using PyTorch version 1.13.1 and Transformers version 4.27.4.

Evaluation metrics
For the evaluation, we utilized precision (P), recall (R), and F1-score (F1). Precision measures the model’s ability 
to identify positive entities accurately. It is the ratio of correctly classified positive samples (True Positive) to the 
total number of classified positive samples. The higher the precision, the more accurate the prediction. Recall 
measures the model’s ability to identify all positive instances correctly. This refers to the ratio of correctly pre-
dicted positive samples to the total number of positive samples. The higher the recall, the more positive samples 
are detected. The F1-score represents the harmonic mean of precision and recall. Precision, recall, and F1-score 
are calculated using the following formulas:

In this context, TP refers to True Positive, which indicates the number of positive classes correctly predicted as 
positive. FP stands for False Positive, indicating the number of negative classes incorrectly predicted as positive. 
On the other hand, FN stands for False Negative, indicating the number of positive classes incorrectly predicted 
as negative. We considered strict matching at the entity level, where the predicted entity’s type and boundary 
must be correct. Thus, a true positive is only counted for an entity with multiple tokens if the entire entity, includ-
ing all its tokens, is captured. Here, we used Seqeval, a Python library for evaluating sequence labeling [https://​
github.​com/​chakki-​works/​seqev​al].

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2 ∗ P ∗ R

P ∗ R

Figure 3.   Example of BIO tagging format.

Table 2.   Hyperparameters used for each model.

Hyperparameter Max-length Batch-size Learning-rate BiLSTM hidden layer size

Search Space (128, 256) (16, 32, 64, 128) (0.1, 1e−2, 1e−3, 3e−3, 3e−5, 5e−2, 5e−3, 5e−4, 5e−5) (128, 256, 512)

Dataset

 NCBI-disease 128 64 5e−5 256

 BC5CDR-Disease 128 64 5e−3 256

 BC5CDR-Chem 128 64 5e−3 256

 BC4CHEMD 128 32 1e−3 256

 BC2GM 128 64 3e−5 256

 JNLPBA 128 64 3e−5 256

 LINNAEUS 128 32 5e−5 256

 Species-800 128 64 5e−5 256

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval


8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7697  | https://doi.org/10.1038/s41598-024-58334-x

www.nature.com/scientificreports/

Results and discussion
Comparison with existing models
To evaluate the performance of our model, we compared the model with different baseline models, includ-
ing TaggerOne33, BiLSTM-CRF39, CollaboNet43, BioBERT19, DTranNER40, BioBERT-MRC44, MT-BioNER6, 
BioByGANS45, KaNER49, and PAMDFGA48. Furthermore, we used diverse benchmark datasets, including disease 
datasets (NCBI-Disease and BC5CDR-Disease), Chemical/Drug datasets (BC5CDR-Chem and BC4CHEMD), 
and genes datasets (BC2GM and JNLPBA), and species datasets (LINNAEUS and Species-800) to demonstrate 
performance more generically.

Tables 3, 4, 5 and 6 summarize the performance results of the existing BioNER models for comparison. We 
used bold and underline to indicate the best and second-best performance scores, respectively. Overall, our 
proposed system outperformed the baseline model in almost all the datasets. This might result from how we 
designed our model so that the embedding layer learns enriched features of the input text, resulting in a better 
understanding of the text from different aspects, including POS tag, char-level, and word-level. Specifically, 
Table 3 shows our model achieved the best scores overall, except for the recall score in NCBI-Disease, where 
BioByGANS achieved a better result. On BC5CDR-Disease, though, our model improved the F1-score by 1.32% 
compared to the previous best score. Also, for the Chemical/Drug entities, shown in Table 4, our model achieved 
the best score of 0.9422 (with an improvement of 1.25%) on the BC4CHEMD dataset and the second-best F1 
on the BC5CDR-Chem. Our model also achieved significant improvement using the Gene/protein datasets 
(see Table 5), with best scores of 0.8912 (which represents an improvement of 3.64%) in BC2GM and 0.7939 in 
JNLPBA.

Tables 3, 4, 5 and 6 show BioByGANS is the most competitive model to ours, as it achieved higher recall in 
NCBI-Disease and higher precision and F1-score in BC5CDR-Chem than our model. However, for no dataset 
does BioByGANS outperform our model in all metrics, except LINNAEUS (see Table 6), whereas our model 
outperformed BioByGANS in all metrics using the BC5CDR-Disease, BC4CHEMD, BC2GM, JNLPBA, and Spe-
cies-800 datasets. Although BioByGANS uses a different approach than our model, we see that the shared prop-
erty between BioByGANS and our model is that both models capture the POS tags features of the input sentence, 
which suggests that capturing the contextual and syntactic features improves the performance of the BioNER.

Table 3.   Performance comparison for the disease entity. The best scores are Bold and the second best are 
underlined.

Method\Dataset

NCBI-disease BC5CDR-disease

P R F1 P R F1

TaggerOne33 0.8510 0.8080 0.8290 0.8520 0.8020 0.8260

BiLSTM-CRF39 0.8611 0.8549 0.8580 0.8760 0.8625 0.8692

CollaboNet43 0.8548 0.8727 0.8636 0.8561 0.8261 0.8408

DTranNER40 0.8821 0.8904 0.8862 0.8675 0.8770 0.8722

BioBERT-MRC44 0.8967 0.9042 0.9004 0.8861 0.8707 0.8783

MT-BioNER6 0.8890 0.9094 0.8991 – – –

BioByGANS45 0.8999 0.9320 0.9157 0.8669 0.8882 0.8774

BioBERT19 0.8822 0.9125 0.8971 0.8647 0.8784 0.8715

PAMDFGA48 0.8976 0.9135 0.9055 0.8711 0.8795 0.8753

KaNER49 0.9043 0.9207 0.9124 – – –

Ours 0.9057 0.9278 0.9166 0.8870 0.8961 0.8915

Table 4.   Performance comparison for Chemical/Drug entity.

Method\Dataset

BC5CDR-Chem BC4CHEMD

P R F1 P R F1

TaggerOne33 0.9420 0.8880 0.9140 – – –

BiLSTM-CRF39 0.9282 0.8852 0.9062 0.9131 0.8773 0.8948

CollaboNet43 0.9426 0.9238 0.9331 0.9078 0.8701 0.8885

DTranNER40 0.9428 0.9404 0.9416 0.9194 0.9204 0.9199

BioBERT-MRC44 0.9437 0.9400 0.9419 0.9389 0.9196 0.9292

MT-BioNER6 0.9329 0.9469 0.9398 – – –

BioByGANS45 0.9453 0.9495 0.9474 0.9342 0.9252 0.9297

BioBERT19 0.9368 0.9326 0.9347 0.9280 0.9192 0.9236

PAMDFGA48 0.9366 0.9467 0.9416 0.9174 0.9337 0.9255

Ours 0.9404 0.9534 0.9469 0.9399 0.9445 0.9422
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Effect of using different pre‑trained models
To investigate the impact of different BERT models, we compared four pre-trained language models from the 
biomedical domain. All four models, BioBERT, ClinicalBERT, SciBERT, and PubMedBERT, were downloaded 
from the HuggingFace website (https://​huggi​ngface.​co/​models).

BioBERT19 is based on the BERT model18, with further pre-training on biomedical scientific texts including 
PubMed abstracts (PubMed) and PubMed Central full-text articles (PMC). We used the “biobert-v1.1 (+ Pub-
Med, Cased)” variant of BioBERT.

ClinicalBERT21 is also based on the BERT model, with further pre-training on biomedical domain-related 
clinical notes. We used the “emilyalsentzer/Bio_ClinicalBERT” variant of ClinicalBERT.

SciBERT22 is trained on 1.14 M full-text scientific papers from Semantic Scholar57 (18% papers from the 
computer science domain and 82% from the biomedical domain). SciBERT builds a domain-specific vocabulary 
(scivocab) from scratch to best match the training corpus. We used the “scibert-scivocab-uncased” variant of 
SciBERT.

PubMedBERT23 is trained from scratch and generates its own vocabulary. The pretraining corpus comprises 14 
million PubMed abstracts with 3 billion words, and it also has another version that includes PMC full text arti-
cles, which increased the pretraining corpus to 16.8 billion words. PubMedBERT is the most recent pre-trained 
language model in the biomedical domain. We used the abstract-only variant of PubMedBERT “microsoft/
BiomedNLP-PubMedBERT-base-uncased-abstract”.

Figure 4 provides the models’ performance results of each of the four pre-trained language models using 
NCBI-Disease, BC5CDR-Disease, and BC5CDR-Chem, respectively. The results show that PubMedBERT and 
SciBERT outperformed other models in this task. PubMedBERT achieved the highest scores for the BC5CDR-
Disease and BC5CDR-Chem datasets, while for the NCBI-Disease dataset, SciBERT demonstrated superior 
performance. One reason could be that both ClinicalBERT and BioBERT use the same vocabulary as the general 
BERT, whereas SciBERT and PubMedBERT build domain-specific vocabularies from scratch. On the other hand, 
ClinicalBERT performed the worst for all the datasets used. This result corroborates Gu et al.23 findings and their 
suggestion that BERT models pre-trained on clinical notes are not well suited for BioNER tasks.

Although the differences in performance between PubMedBERT and SciBERT are small, we will mainly select 
PubMedBERT over SciBERT because it was trained on a larger biomedical domain, increasing its ability to cover 
more biomedical vocabulary. Specifically, the more extensive PubMedBERT vocabulary enhances the vocabu-
lary coverage because it is more domain-specific, which further improves the performance. This is important 
for improving the performance because if the model does not recognize the term. In that case, it will be divided 
into small sub-words by the tokenizer, reducing its chance of being correctly identified in its biomedical class. 
In contrast, if the term is already included in the models’ vocabulary, it will more likely be correctly recognized.

Ablation study
We further conducted an ablation study to better understand each component’s importance in our proposed 
model. We used the NCBI-Disease and BC5CDR-Disease datasets in this experiment.

Table 5.   Performance comparison for Gene entity.

Method\Dataset

BC2GM JNLPBA

P R F1 P R F1

TaggerOne33 – – – – – –

BiLSTM-CRF39 0.8157 0.7948 0.8051 0.7135 0.7574 0.7348

CollaboNet43 0.8049 0.7899 0.7973 0.7443 0.8322 0.7858

DTranNER40 0.8421 0.8484 0.8456 – – –

BioBERT-MRC44 0.8704 0.8398 0.8548 0.7596 0.8213 0.7893

MT-BioNER6 0.8442 0.8514 0.8478 – – –

BioByGANS45 0.8497 0.8532 0.8515 0.7269 0.8454 0.7816

BioBERT19 0.8432 0.8512 0.8472 0.7224 0.8356 0.7749

PAMDFGA48 0.8543 0.8547 0.8545 – – –

KaNER49 – – – 0.7832 0.7937 0.7884

Ours 0.8944 0.8881 0.8912 0.7347 0.8635 0.7939

Table 6.   Performance comparison for Species entity.

Method\Dataset

LINNAEUS Species-800

P R F1 P R F1

BioByGANS45 0.9391 0.8825 0.9099 0.7153 0.7883 0.7501

BioBERT19 0.9077 0.8583 0.8824 0.7280 0.7536 0.7406

Ours 0.9064 0.8612 0.8732 0.7121 0.8031 0.7549

https://huggingface.co/models
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Table 7 shows that the most impactful component is the PubMedBERT embeddings, while the data-specific 
embedding is the least impactful indicating the effectiveness of domain-specific BERT language models. The 
reason the data-specific embedding had the least impact may be because domain-specific BERT covers most 
of the information it provides. That is, the PubMedBERT model was trained on PubMed articles, which is the 
primary source of the experimental datasets.

Figure 4.   Performance comparison of using different BERT models with the (a) NCBI-Disease, (b) BC5CDR-
Disease, and (c) BC5CDR-Chem datasets.
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Moreover, we found that removing the char-level embedding had a drop of 3.26% in F1-score in NCBI-
Disease and a drop of 0.69% in BC5CDR-Disease. We also found that removing the POS tags embedding affects 
performance, resulting in a drop of 2.74% in NCBI-Disease and 0.62% in BC5CDR-Disease, indicating these 
components’ importance in improving the model’s performance.

Furthermore, removing the BiLSTM layer results in only a slight decrease in score. The reason could be 
that the BiLSTM is already used to produce the char-level and the data-specific embeddings; thus, most of the 
information that BiLSTM addresses is already gained in the embedding layer.

We also observed that the difference in the results is more noticeable in the NCBI-Disease dataset. One reason 
may be related to the size of the testing file. In NCBI-Disease, the test file includes only 940 sentences, whereas, 
in BC5CDR-Disease, the testing file contains more than 4700 sentences. Thus, even small changes in the results 
may impact the smaller testing size more.

Finally, in all cases of the ablation study, we observed that the model’s performance was slightly degraded in 
each metric, indicating the critical impact of each component of the overall model.

Note, to further demonstrate the improvements that our model brings to BioNER, we conduct a case study 
comparing BioBBC to an existing online BioNER tool, PubTator3 [https://​www.​ncbi.​nlm.​nih.​gov/​resea​rch/​pubta​
tor3/]. We show examples of single sentences, large text with multiple sentences, and instances of error cases 
generated by BioBBC in the Supplementary Material.

Limitations and concluding remarks
We developed a DL, end-to-end model named BioBBC to improve BioNER. Our model uses multi-feature 
embeddings to represent the input text, including char-level, word-level, and POS tags features. For the word-
level, we used contextual features by PubMedBERT and data-specific features, which are embeddings generated 
for our datasets. We evaluated our approach using benchmark datasets for biomedical entities of diseases, chemi-
cals, genes, and species types. The experimental results showed that BioBBC outperformed the existing BioNER 
model in terms of the F1-score on six out of eight benchmark datasets. Moreover, our case studies show the 
importance of syntactic and semantic learning in our model. Specifically, through several examples, our models 
show better performance in recognizing more biomedical entities and understanding the structure of the text, 
which results in more accurate entity detection.

While our model successfully recognizes biomedical entities, it does have some limitations. Firstly, it does not 
encompass all types of biomedical entities. For example, we did not include Phenotype in our study. However, 
most of the Phenotypes are covered under the disease entity type, for which we utilized two datasets including 
NCBI-Disease and BC5CDR. Secondly, the syntactic information extracted by the NLTK library may contain 
errors due to the specificity of biomedical text compared to general domain text, which could impact our model’s 
performance. In addition, while enriching the model with extra knowledge through the BERT and data-specific 
embeddings, they may cause some ambiguity in the capturing of the entities.

In future work, we plan to expand the model to a multi-task learning approach that combines several datasets 
into one model. We will also include additional biomedical entity types, such as phenotypes, variants, and cell 
lines. Furthermore, we aim to explore more advanced syntactic and linguistic features specifically designed for 
the biomedical domain. Moreover, we intend to leverage Large Language Models (LLMs) like GPT-3 and its 
successors in BioNER to take advantage of the advancements in this field.

Data availability
The datasets used in this study are publicly available at https://​github.​com/​dmis-​lab/​biobe​rt. The trained models 
will be available at https://​github.​com/​HindA​lamro/​BioBBC.
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